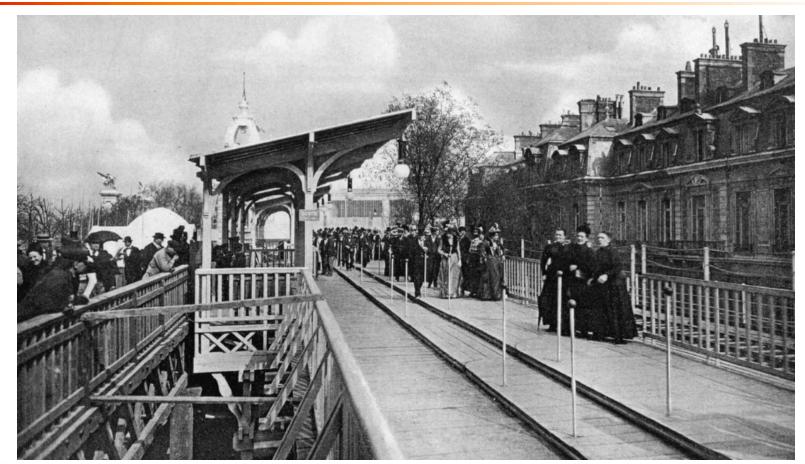
Optimization of the network design of a futuristic transport system based on moving walkways

Riccardo Scarinci Guillaume Lopez

Jianghang Chen Michel Bierlaire


Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

14th Swiss Transportation Research Conference STRC

14-16 May 2014 – Monte Verità, Ascona, Switzeland

Moving walkway, Exposition Universelle, Paris 1900

Global project

Post-Car World

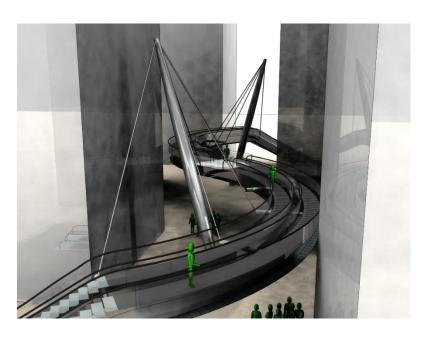
No use of private car

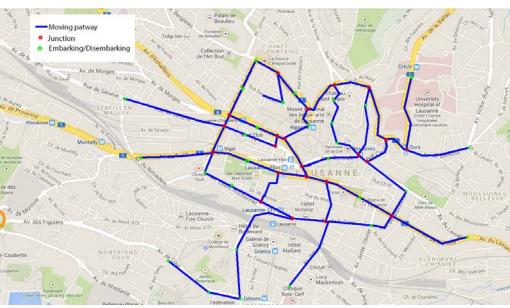
 Redistribute the "future" demand on a mix of transport systems

Traditional

Innovative

Futuristic





Research idea

Accelerated Moving Walkway (AMW)

A network of Accelerated Moving Walkway in urban area

Contents

- Accelerated Moving Walkway (AMW)
 - Implementation examples
 - System description
- Optimization of a network of AMW
 - Decision variables
 - System parameters
 - Objective function and constraints
- Results for a single link
- Conclusions

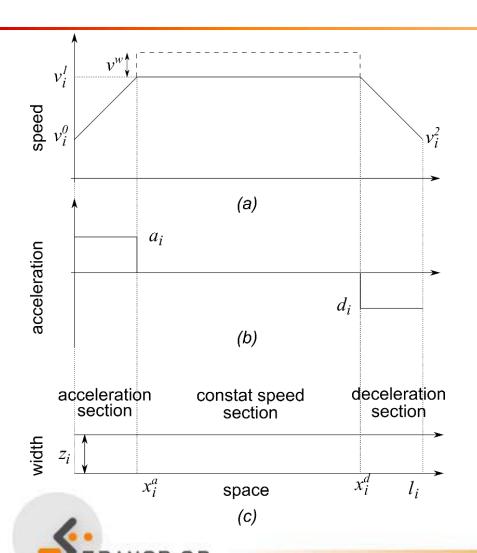
Accelerated Moving Walkway

Accelerated Moving Walkway

Implementation examples

TurboTrack Toronto

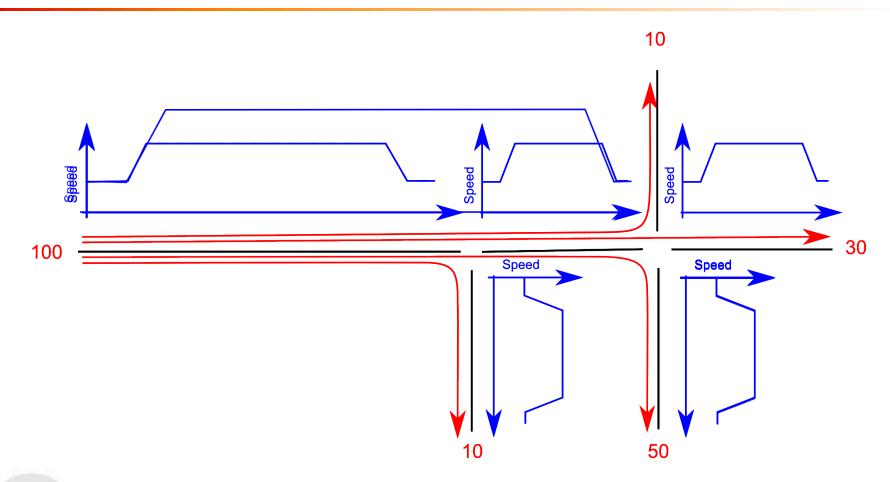
Gateway Paris


- High speed: 2 m/s (7.2 km/h)
- Length: 270 m
- Acceleration zone: ~13 m
- Acceleration: ~0.14 m/s²
- Width: 1.2 m

- Entry speed: 0.65 m/s (2.3 km/h)
 Entry speed: 0.62 m/s (2.2 km/h)
 - High speed: 2.5 m/s (9 km/h)
 - Length: 185 m
 - Acceleration zone: ~10 m
 - Acceleration: ~0.28 m/s²
 - Width: 1.2 m

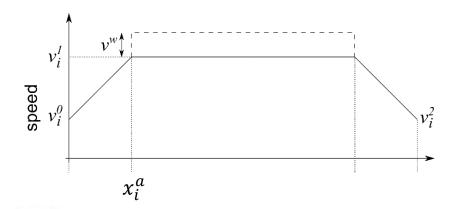
Accelerated Moving Walkway

System description



l_i	[m]	Input
x_i^a	[m]	Decision variable
z_i	[m]	Decision variable
v_i^0	$[\mathrm{m/s}]$	0.65
a_i	$[\mathrm{m/s^2}]$	0.50
v_i^1	$[\mathrm{m/s}]$	Derived
v^{\max}	$[\mathrm{m/s}]$	4.57
v^w	$[\mathrm{m/s}]$	$1.34\ (1.04)$

Conceptual example

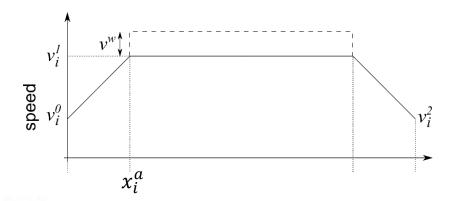


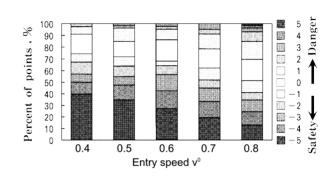
Decision variables and criteria

Decision variables:

- y_i equipped or not
- x_i^a acceleration section
- z_i width of the walkway

Criteria:

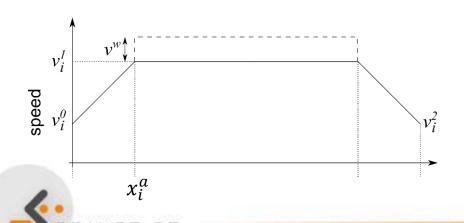

- Travel time
- Discomfort
- Energy consumption
- Construction cost
- Operational cost



Criteria

• Travel time
$$TT_i = 2t_a + t_c = \frac{1}{a} \left(\sqrt{v_0^2 + 2ax_i^a} - v_0 \right) + \frac{l_i - 2x_i^a}{\sqrt{v_0^2 + 2ax_i^a} + v^w}$$

• Discomfort
$$d_i = \delta 2t_a + \gamma = \frac{2\delta}{a} \left(\sqrt{v_0^2 + 2ax_i^a} - v_0 \right) + \gamma$$

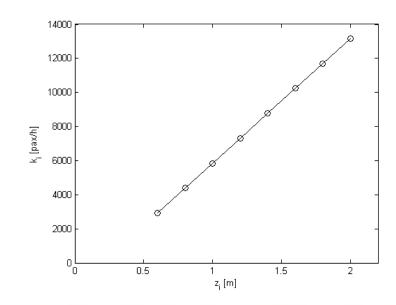


13 | 21

Criteria

- Energy consumption $e_i = (3(2x_i^a) + x_i^d x_i^a) e^{\text{CMW}} = (3(2x_i^a) + (l_i 2x_i^a)) e^{\text{CMW}}$
- Construction cost $c_i^c = (1.2(2x_i^a) + x_i^d x_i^a) c^{\text{CMW}} = (1.2(2x_i^a) + (l_i 2x_i^a)) c^{\text{CMW}}$
- Operational cost $c_i^o = 0.25l_iq + 0.15v_0$

 e^{CMW} ~ 0.02-0.05 MJ/passenger-km c^{CMW} ~ 30,000 \$/150m ~ 200,000 \$/km c^o_i ~ 0.08-0.42 \$/passenger-km Maintenance cost ~ 0.13-0.17 \$/km



Capacity

Function of z_i width of the walkway Typically between 0.8-1.6 m large Minimum of 1.2 m to allow two "columns" of passenger

Optimal width will be function of the passenger demand

$$k_i = 2250v_i^0(5z_i - 1)$$

Objective function

The resulting optimization problem is defined by an weighted multi-objective mixed integer nonlinear objective function

$$f_i = y_i(w_1TT_i + w_2d_i + w_3e_i + w_4c_i^c + w_5c_i^o) + (1 - y_i)w_6l_i/v^w$$

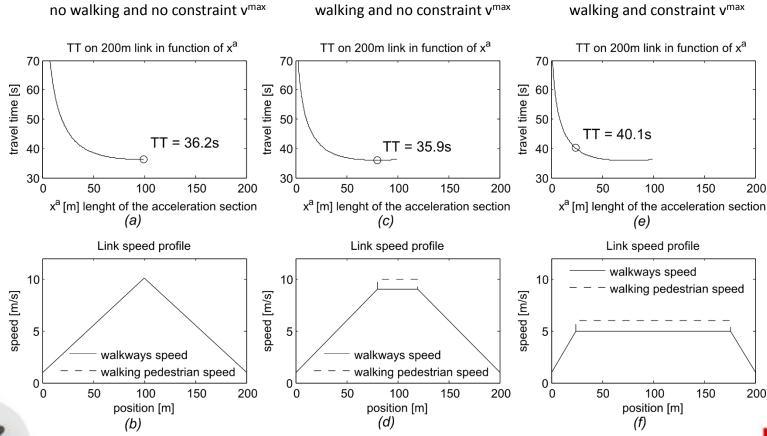
Subject to constraints:

- Maximum acceleration length
- Maximum speed
- Maximum width

$$x_i^a \le l_i/2$$

$$v_i^1 \le v^{\max}$$
; $\sqrt{v_0^2 + 2ax_i^a} \le v^{\max}$ $z_i \le z_i^{\max}$

$$z_i \leq z_i^{\max}$$


Results for a single link

Results for a single link

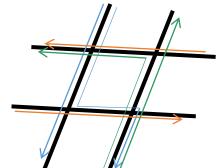
Objective function and resulting speed profile:

Conclusions

Conclusions

- Review of Accelerated Moving Walkway (AMW)
- Definition of the optimization problem, decision variables, system parameters, objective function and constraints
- Preliminary results for a single link

Assumption: a world without private cars


 AMW could be competitive with urban public transport and private cars (average speed of 15 km/h)

Conclusions

Further works

Network optimization considering route choice and demand

$$f = \sum_{i=1}^{N} f_i$$

- Intersection design
- Embarking/disembarking
- Safety and comfort
- Active Management, e.g. dynamic speed, dynamic lane direction

Thank you for your attention

Riccardo Scarinci riccardo.scarinci@epfl.ch

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

