
1. INTRODUCTION 

The disposal of radioactive waste arising from nuclear 
power plants operations and decommissioning represents 
a major issue for those economies that adopted nuclear 
technology for energy production purposes. In 
Switzerland, as well as in other developed countries, 
according to international recommendations, deep 
geological disposal of high level radioactive waste is 
seen at present as the best solution to protect humans and 
the environment from the dangers associated with 
radioactive substances. The concept of engineered 
barrier system (EBS) is applied and the host rock 
selected is Opalinus Clay (OPA), of which properties of 
low hydraulic conductivity will guarantee the isolation 
from the biosphere [1]. 

According to Bossart et al. [2] OPA can be viewed as a 
“stiff, over-consolidated clay with a hydraulic 
conductivity less than 10-12 m/s, a Young’s modulus 
varying between 4000 and 10,000 MPa (large range due 
to bedding anisotropy) and a cohesion greater than 2 
MPa”. Some typical features that are common to many 
shales can be clearly distinguished such as intrinsic 
structural anisotropy, quasi-brittle behavior, strength 
dependency on mean pressure and degradation of 
stiffness. Quasi-brittle materials are defined as those 
materials that exhibit no or negligible plastic strain prior 

to failure [3]. Concrete, some ceramics and in this case 
Opalinus Clay [4, 5], usually exhibit this type of 
behavior. The formation and growth of micro-cracks can 
be considered to be responsible for both the softening 
behavior observed in the post-peak stress-strain curve 
and the development of plastic irreversible strains. To 
account on a solid base for this behavior the most suited 
solution is employing a coupled elasto-plastic-damage 
model. Micro-cracks growth, semi-brittle behavior, 
inelastic permanent strain development can all be 
accounted for in this unified formulation. In the 
following a coupled elasto-plastic-damage model, which 
is based on the theory of Continuum Damage 
Mechanics, will be presented in details. Thermodynamic 
admissibility of the proposed formulation will be 
investigated to set a strong physical base on which the 
model is founded. The proposed formulation is 
integrated numerically with an implicit scheme. 
Simulations at Gauss point level, which are 
representatives of simple conditions such as standard 
triaxial or oedometric tests, are performed.  Model 
predictions are then compared with experimental 
findings. 

2. PROBLEM FORMULATION 

The coupling between the theories of Continuum 
Damage Mechanics and the theory of plasticity is 
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particularly useful for the representation of quasi-brittle 
materials that exhibit both microcracks formation, 
inelastic strains and post peak softening behavior. A 
series of constitutive models coupling plasticity and 
isotropic damage for concrete, and in general 
geomaterials, were proposed in literature (e.g. [6-10]). 
Generally the coupling between the two theories can be 
realized following different approaches. Models can be 
built by specifying one single yield surface (either 
damage or plastic as in [11, 12]), or multiple surfaces 
[13]. Rate equations can be derived by applying 
normality rules to the yield surfaces. Plastic-damage 
models are usually derived from thermodynamic 
potential to ensure the respect of the first and second 
laws of thermodynamics. This theory is valid for 
generalized standard materials. Geomaterials are often 
considered not belonging to this class of materials, since 
to predict realistic values of dilatancy they often need 
non associated flow rule. For this class of materials the 
authors of [14] have proposed a different approach in 
which both yield surfaces and rate equations of internal 
variables are simply postulated and then checked 
afterwards for thermodynamic compatibility. In this 
work we follow the latter approach since it generates 
models that can be readily extended to non-associated 
frameworks. The constitutive equation that relates 

stresses ij to strains e
ij can be written as: 

 e e
ij ijkl klD   (1) 

where e
ijklD is the elastic stiffness tensor. By introducing 

the damage internal variable d , the strain decomposition 

between plastic p
ij and elastic e

ij : 

 e p
ij ij ij     (2) 

and the concept of effective stress ij as: 

  1ij ijd     (3) 

the stress strain equation can be rewritten as: 

      1 1 e p
ij ij ijkl kl kld d D         (4) 

In this work when referring to “effective stress” it will 
be intended “damage effective stress”. Damage effective 
stress is the stress that will act on the undamaged part of 
the material (if damage is seen as the reduction of the 
area sA on which stresses act, then by external 

equilibrium consideration effective stress ij acting on 

the reduced area sA is equal to nominal stress acting on 

the area considered as ij s ij sA A  ). For a complete 

derivation of the concept of effective stress refer to [3]. 

2.1. Plasticity 
The plastic response of the model is formulated in the 
effective stress space and includes the definition of the 
yield surface, the flow rule (associated in this case) and 
the rate equation of the internal variable that governs the 

hardening. The plastic yield function pf is: 

  , 0p
ij rf h   (5) 

where pf is formulated in the damage effective stress 

space and rh is the variable which controls the hardening 

of the plastic yield surface. The evolution of the 
hardening variable is a function of the rate of plastic 
strain as: 

  p
r ijh g    (6) 

The plastic strain rate, whose magnitude is controlled by 

the plastic multiplier p  is given by the plastic flow rule, 
associated in this case: 

 
ij

p p p
ij f   

  (7) 

The loading-unloading problem is represented by the 
Karush-Kuhn-Tucker conditions: 

 0 0 0p p p pf f       (8) 

2.2. Damage 
The damage response is formulated in the elastic strain 
space so that the yield surface, analogously to plasticity, 
can be expressed in the following way: 

  , , 0d p
ij ijf d    (9) 

in which df is the damage yield function formulated in 
terms of total strain, plastic strain and damage internal 
variable. The rate of damage internal variable d is 
normal to the damage yield function through the damage 
associated variable Y (often called damage 
thermodynamic force), therefore: 

 d d
Yd f    (10) 

in which d is the damage multiplier that controls the 
magnitude of damage rate. The loading unloading 
problem is once again represented by the Karush-Kuhn-
Tucker conditions applied to the damage formulation: 

 0 0 0d d d df f       (11) 

3. THERMODYNAMIC FRAMEWORK 

Thermodynamic compatibility of the proposed 
formulation ensures the respect at all time of the first and 
second postulates of thermodynamics. As already 
mentioned, the model is not derived from a dissipation 



potential and therefore is clear the necessity to examine 
its consistency so that no postulates are violated (one of 
the dangers often encountered is that spurious energy 
generation might arise during simulations). The 
framework is based on the work of Lubliner on the 
thermodynamics of non-linear solids [15]. The local 
thermodynamic state of a solid body is assumed in this 
sense to be uniquely determined by the strain tensor ij , 

the entropy per unit volume S  and a set of the so called 
internal variables i (in the method of local state the 

latter represent the history of the material, i.e. are 
representative of dissipative phenomena [16]). Therefore 
the internal energy of the solid is a function of the above 

mentioned variables  , ,ij iE E S   and the local 

equation of energy conservation is expressed as: 

 
ij i kS ij i ij ij x kE ES E E h                (12) 

where kh is the heat flow vector and kx is the vector of 

spatial coordinates. The Clausius-Duhem inequality, 
which is representative of the second law of 
thermodynamics, can be written as: 

 
2

1
0

k k k

k k
x x k x

h h
S S h T

T T T
         
 

   (13) 

whereT is the temperature. Alternatively: 

 0
k k

k
x k x m T

h
TS h T d d

T
        (14) 

where
km x kd TS h   is the mechanical dissipation and

kT k xd h T T   is the thermal dissipation. For slow 

processes the thermal dissipation becomes small if 
compared with the mechanical dissipation, which 
implies itself to be non-negative. Under the assumption 
of isothermal conditions, substitution of Eq. (12) into 
Eq. (13) while keeping in mind the alternative standard 
expression for the rate of E , leads to: 

     0
ij iS ij ij iT E S E E           (15) 

By definition of the state equations: ST E  and

ijij E   , it results in the mechanical dissipation: 

 0
im id E     (16) 

For coupled plastic-damage models the internal energy 
can be expressed as a function of the total strain, the 

entropy per unit volume, the damage d and plastic p
ij

internal variables as: 

     21
, , , 1

2
p e p

ij ij ijkl kl klE S d d D TS        (17) 

which yields to the constitutive equation: 

    1
ij

e p
ij ijkl kl klE d D        (18) 

The damage associated variableY , which represents the 
elastic energy density inside the material, is: 

  21

2
e p

d ijkl kl klY E D       (19) 

and the associated variable for plasticity: 

    1p
kl

e p
ij ijkl kl klE d D


        (20) 

The dissipation equation in isothermal conditions for an 
elasto-plastic-damage model is: 

 0p
ij

p p
ij d ij ijE Ed Yd


           (21) 

in which the first term accounts for the plastic 
dissipation and the second one for damage dissipation. 

According to [14] the Clausius-Duhem inequality must 
be valid globally, although a sufficient but non necessary 
condition is that each term is non negative. In this case

0Yd  is always valid since the elastic energy density is 
a quadratic form and the damage rate is always positive 
by definition. By applying the normality rule to plastic 
dissipation mechanism one can write:  

  1 0
ij

p p p
ij ij ijd f      

   (22) 

which means that the scalar product between the damage 
effective stress ij and the plastic flow rule must be non-

negative. This is always true for associated flow rules 
and if the hypothesis of coaxiality between stresses and 
strains is accepted. In the proposed model an associated 
flow rule is applied. An extension to non-associated flow 
rules that better describe dilatancy of shales can be made 
considering the thermodynamics restrictions that follow 
from the previous considerations. 

4. PLASTIC-DAMAGE MODEL 

The formulation of the complete elasto-plastic-damage 
model requires appropriate plastic and damage yield 
functions as well as rate equations for the respective 
internal variables. The plastic yield surface implemented 
is a non-linear extension of the Lade-Duncan model as 
proposed by [17]. The advantage of such a choice is that 
Opalinus Clay has shown a strong non-linear 
dependence of the yield locus on the mean stress, and 
has often been interpreted with bi-linear Mohr-Coulomb 
type of models (e.g. [4]). The following formulation in 
the tridimensional effective stress space is implemented: 

    p p p
q pf q f p f      (23) 



which is a combination of functions in the q p  plane 

and in the octahedral plane to account for a complete 

tri-dimensional formulation of class 1C in the stress 
space that depends on three invariants of the stress 
tensor defined as: 

 1

3

I
p 


  (24) 

 23q J   (25) 

 
 

3
3 2

2

1 3 3
arcsin

3 2

J

J


 
  
 
 





 (26) 

in which 1 3iiI   is the first invariant of the stress 

tensor, 2 1 2 ij ijJ s s    the second invariant of the 

deviatoric stress tensor, 3 det ijJ s    the third invariant of 

the deviatoric stress tensor and ij ij kks p     is the 

deviatoric stress tensor. The complete formulation can 
be written as: 
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(27) 

where ,  , c , 0k , and 1t are material parameters. This 

formulation ensures regularity and convexity of the yield 
surface and can account for anisotropic strength 
available in the octahedral plane , which is a typical 
feature of geomaterials (the strength in triaxial extension 
is lower than the strength available in triaxial 
compression conditions). In this paper only simulations 
in triaxial compression conditions are considered, 
therefore from now on only the function in the q p   

plane  p p
q pf q f p    is retained, since in such 

conditions 30    , and therefore   1pf   . In the 

proposed model the parameter c represents the cohesion 
component of the material in the effective stress space. 
Fig. 1 illustrates the plastic yield surface for different 
values of the hardening variable rh . Negative values of 

p correspond to traction components. 

 

 

Fig. 1. Plastic yield function in the q p  plane for different 

values of the hardening parameter rh . 

 
Fig. 2. Evolution of the hardening variable with the plastic 
strain norm for different values of the parameter . 

The hardening of the yield function is governed by the 
parameter rh which depends on the norm of the plastic 

strain tensor p p p
ij ii ii   and its expression is taken 

after [14]: 

 
 

2
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1 1

p p p
ij ij ij
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if h
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                
 

(28) 

The hardening function dependency on the plastic strain 
norm is shown in Fig. 2. The material parameters to be 
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determined are ,  , c , 0rh  and . For the response in 

damage the model proposed by Marigo [18] has been 
followed. This model is particularly suitable for brittle 
materials. The yield surface for damage can therefore be 
represented in the elastic strain space as: 

    , ,d p
ij ijf d Y k d     (29) 

where: 

 
21

2
e e
ijkl klY D  

  (30) 

is the elastic energy density associated with negative 
(tensile) elastic strains. No sign distinction is made on 
the shear strains, for which both positives and negatives 
ones are responsible for damage initiation, so that finally 
damage results from the accumulation of tensile and 
shear fractures. Another advantage of such a choice is 
the implicit accounting of confining stress dependency. 

The expression of  k d follows from the work of 

Weibull as reported in [3].  

  
Fig. 3. Stress strain plot for pure damage with different values 
of the Weibull modulus. 

This model originates from a probabilistic approach to 
the fracture of brittle materials and results in the 

following expression for  k d : 

  
1

1
log

1

wm

dk d
d

        
 (31) 

where d and wm are material parameters. 2wm is the 

Weibull modulus and controls the brittleness of the 
material, while for example in uniaxial conditions: 

 
2
1,

2
f

d E


   (32) 

in which 2
1, f  is the failure stress (i.e. when damage 

tends to one, since the limit of  k d for damage that 

tends to one is d ) in uniaxial conditions and E the 

Young’s modulus in the given direction. In Fig. 3 plots 
of stress-strain behavior with different values of the 
Weibull modulus illustrate that an increase in wm
corresponds to an increase in the brittleness of the 
response. 

5. NUMERICAL IMPLEMENTATION  

The proposed model has been integrated into an implicit 
Newton-Raphson scheme to ensure convergence and 
stability of the solution independently from the step size. 
The problem can be seen as strain driven, so the 
objective is to find a right solution of the internal 

variables of damage d  and plasticity p
ij  and the 

effective stress ij for a given value of total strain 

increment ij . In order to do so a stress return algorithm 

for multidissipative materials has been implemented 
based on the work of [19]. The scheme is based on a 

minimization of the residuals  R   representing the 

discretized form of the problem at the load step 1n  (in 
this case the engineering notation is assumed instead of 
tensorial notation): 
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(33) 

which are functions of the variables that represent the 
unknowns of the problem: 
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 (34) 

Writing the rate problem equation of the residuals in a 
discretized form leads to: 
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where the matrix J  is the Jacobian matrix of the 
problem and contains the second derivatives of the 
constitutive model, i.e. the derivatives of the residual 
vector with respect to the unknowns of the problem. 
New values of the unknowns are computed by setting

 1
1 0m

nR 
  which leads to: 

    11
1 1 1 1

m m m m
n n n nJ R


         (36) 

The process is iterated through the m  index until the 
norm of the residuals is less than a given value of 

tolerance     2
1 1
1 1

1

nres
m m
n i n tol

i

R R  
 



       and the 

solution 1
1

m
n

 is obtained. 

6. NUMERICAL SIMULATIONS 

The proposed constitutive model is used to numerically 
simulate experimental finding reported in [4]. A series of 
undrained triaxial compression tests on Opalinus Clay 
were performed to investigate the strength resistance of 
the material. Three different tests at 1, 3 and 6 MPa of 
confining pressure were used to validate the proposed 
elasto-plastic-damage formulation. The parameters were 
determined based on literature values, triaxial tests 
interpretation and numerical calibration against the 
experimental findings. The model parameters 
determination procedure starts with the determination of 
the elastic parameters. The parameters to be determined 
are Young’s modulus eE  and Poisson’s ratio  . 

Parameters are taken from literature [20] and Young’s 
modulus is adjusted to the experimental evidence 
considered in this work [4] and their values are shown in 
Tab. 1.  

A rigorous procedure to determine the values of the 
parameters involved in the damage model will require 
the probabilistic analysis of a consistent number of tests 
(between 10 and 20 according to [3]). Therefore, it is 
hardly applicable unless such a number of tests is 
available. Alternatively the Weibull modulus wm  can be 

calibrated numerically on uniaxial or low confinement 
tests so that the brittle response is correctly predicted. In 
this case its value was taken to reproduce the behavior 
observed at 1 MPa of confinement. In the absence of a 
good number of tests a rough estimate of d  can be 

obtained as: 
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Where G  is the shear elastic modulus and 2
1 fq is the 

square of the failure stress (residual stress) taken as 
medium value between the three tests. For what 

concerns plasticity, since it governs in the present model 
the values of stress at steady states, the points at this 
state can be plotted in the q p  plane as in fig. 4. 

The data can be interpolated with a second degree 
polynomial function which gives the values of the three 
coefficient pola , polb  and polc  that are related to plastic 

parameters via the following equations: 
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so that plastic parameters can be obtained by solving this 
simple system. 

 
Fig. 4. Calibration of plastic parameters from experimental 
results. 

Keeping in mind that the plasticity is formulated in 
terms of damage effective stress, the surface should be 
translated to account for those values of stress (it is not 
possible to predict the damage effective stress a-priori 
from analyses given the high non-linearities). Therefore 
the cohesion c  is increased to the value of 13.2 MPa to 
better represent the experimental behavior, which gives 
then 0.0324 13.2 0.428pola c        . The set 

of parameters used to simulate triaxial behavior of 
Opalinus Clay is illustrated in tab. 1. The value of 0rh  is 

quite difficult to be measured from experimental data.  
Hence in this case the assigned value has been calibrated 
to well reproduce low values of irreversible strains 
shown before the peak of stress is reached.   To calibrate 
  one would require the whole measurements of all the 
plastic strain components, which is practically 
impossible to perform, so that the parameter has to be 
adjusted in numerical simulations. 
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Table 1. Set of parameters used for the simulation of triaxial 
tests on Opalinus Clay. 

Parameter Values Units 
Ee 9800 MPa 
 0.3 - 
 -0.428 - 
 1.9804 - 
c 13.2 MPa 
hr0 0.35 - 
 0.01 - 
mw 10 - 
d 0.016 MPa 

 

The simulation of triaxial tests has been carried out by 
first applying an isotropic pressure to reach the values of 
confinement, and then vertical displacement has been 
applied to simulate the shearing phase. The samples are 
so called P samples, in which the bedding planes that 
confer anisotropy to Opalinus Clay are perpendicular to 
the direction of the maximum principal stress applied 
[5]. Therefore the results can be interpreted as being 
representative of the shale matrix. The comparison 
between the numerical results and experimental findings 
is shown in Figs. 5, 6 and 7. It is shown how the 
proposed model can correctly predict the main 
characteristics of the investigated material. The damage 
formulation is responsible for the post peak softening 
that represents the brittleness of the material. One of the 
hypotheses is that before the peak of stress is reached, 
the response shows very low values of irreversible 
strains. In this phase the microcracks inside the material 
are growing and this is well represented by the damage 
part. 

 
Fig. 5. Deviatoric stress vs axial strain plot for comparison of 
experimental results against numerical simulations at 1 MPa 
of confining pressure. 

 

Fig. 6. Deviatoric stress vs axial strain plot for comparison of 
experimental results against numerical simulations at 3 MPa 
of confining pressure. 

 

 
Fig. 7. Deviatoric stress vs axial strain plot for comparison of 
experimental results against numerical simulations at 6 MPa 
of confining pressure. 

Low values of irreversible strain before the stress peak is 
reached can be predicted by the model. After the 
softening response the material exhibit constant values 
of the deviatoric stress: it is possible to assert that the 
material is plastically flowing in this phase as confirmed 
by the unloading carried out. In the proposed model the 
steady conditions for plasticity reached in the last phase 
are responsible for this behavior. The elastic unloading 
is well predicted both in the pre peak and in the post 
peak phase (slight discrepancy can be observed for the 
test at 3 MPa of confinement). An overall good 
agreement between the proposed model and 
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experimental evidences is shown, which validates the 
hypothesis made in the formulation. 

7. CONCLUSIONS 

An elasto-plastic-damage model for quasi-brittle shales 
was presented. The aim was to develop a model that well 
represents the main mechanisms of the stress-strain 
feature of Opalinus Clay. The physical interpretation of 
the mechanical response of the material has set the 
starting point of the modeling process. The proposed 
framework includes coupling between the theories of 
plasticity and continuum damage mechanics. The plastic 
and damage yield functions as well as the rate equations 
of internal variables have been postulated with respect to 
thermodynamic restrictions. The stress return algorithm 
implemented to integrate the model is presented and 
results were compared with experimental findings. The 
good agreement between model simulation and 
experimental data lead to the validation of the proposed 
formulation. 
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