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•Artificial neural networks to mimic brain:
[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989], 
[Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003],
[Salavati et al. 2011], [Gripon et al., 2011], [Karbasi et al., 2012]
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Traditional Approach

•Design a network to memorize any set of random patterns
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•Design a network to memorize any set of random patterns

5

[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989], 
[Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003]

Problem: versatility causes low capacity

Out of 2n possible binary vectors of length n, 
only O(n) can be memorized
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Structured Patterns

• Structured patterns increase the capacity

• To O(n2) [Gripon&Berrou 2011]

• To O(an) with a>1 [Kumar et al. 2011]
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• To O(n2) [Gripon&Berrou 2011]

• To O(an) with a>1 [Kumar et al. 2011]
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Good noise tolerance Large capacityLearning
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In This Talk...

• Improve the noise tolerance

• Some history

• New perspective: from convolutional to coupled

• Simulation results

•Ongoing work

9
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Neural Model

•Patterns
• Vectors of length n

• Integer values and non-negative (firing rate)

• e.g. quantized grey level values
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• e.g. quantized grey level values
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vs.

• Strong local correlations: each sub-pattern comes from a subspace
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• Look for sparse orthogonal vectors

12

Monday 9 February 15



ITW 2013, Seville, Spain

The Learning Process

• Learn the dual vector(s) orthogonal to the sub-patterns

• Look for sparse orthogonal vectors

12

x1 x2 xnx3 x4

Monday 9 February 15



ITW 2013, Seville, Spain

The Learning Process

• Learn the dual vector(s) orthogonal to the sub-patterns

• Look for sparse orthogonal vectors

12

x1 x2 xnx3 x4

y1

Monday 9 February 15



ITW 2013, Seville, Spain

The Learning Process

• Learn the dual vector(s) orthogonal to the sub-patterns

• Look for sparse orthogonal vectors

12

x1 x2 xnx3 x4

y1 y2

Monday 9 February 15



ITW 2013, Seville, Spain

The Learning Process

• Learn the dual vector(s) orthogonal to the sub-patterns

• Look for sparse orthogonal vectors

12

x1 x2 xnx3 x4

y1 y2

Monday 9 February 15



ITW 2013, Seville, Spain

The Learning Process

• Learn the dual vector(s) orthogonal to the sub-patterns

• Look for sparse orthogonal vectors

12

x1 x2 xnx3 x4

y1 y2

All in all, we have a parity-check graph!
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The Recall Phase

• Theorem [1]: Each block could correct 1 error reliably.

13

[1] Iterative learning and denoising in convolutional neural associative memories
A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013
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Relations to Peeling Decoder

• Very similar to the Peeling Decoder over the following graph

14
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• Same decoding principle: sequential over clusters and then planes

• Side information: 
freeze borderline neurons to the correct value
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Coupling Neural Graphs16

• Same decoding principle: sequential over clusters and then planes

• Side information: 
freeze borderline neurons to the correct value

• Parameters:

• D: number of plane

• L: number of clusters in each plane

• !: coupling window
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• Side information from other cognitive levels:

“the _at flies” (cat or bat?)
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Biological Appeals17

Modha et al., Cognitive computing, Communications of the ACM, 2011.

• Side information from other cognitive levels:

“the _at flies” (cat or bat?)

• Similar “spatial connections” in mammalian brain.
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Performance Analysis18

• Technical tools borrowed from [2]

[2] A simple proof of threshold saturation for coupled scalar recursions
A.Yedla,Y.Jian, P.S.Nguyen, H.D.Pfister, ISTC 2012.
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Performance Analysis18

• Technical tools borrowed from [2]

[2] A simple proof of threshold saturation for coupled scalar recursions
A.Yedla,Y.Jian, P.S.Nguyen, H.D.Pfister, ISTC 2012.

• Denote

• pe: “channel” error probability

• z(t): average probability of error in iteration t

• pe†: maximum pe for which the uncoupled system is successful

• We define the potential U(z; pe) that has the property

U’(z; pe) > 0 for pe < pe†

• Define pe† < pe* to be the maximum pe for which 

minz U(z; pe) > 0
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Error Correction Performance

• Theorem: if the coupling window !  is large enough, then the coupled system converges to the correct memorized 
pattern for all error probabilities pe < pe*.
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Error Correction Performance

• Theorem: if the coupling window !  is large enough, then the coupled system converges to the correct memorized 
pattern for all error probabilities pe < pe*.

• Note that since pe†  < pe*this means that the coupled system outperforms the uncoupled system.

• The lower bound for ! provides a sufficient condition.

20

Monday 9 February 15



ITW 2013, Seville, Spain

Simulations21

Monday 9 February 15



ITW 2013, Seville, Spain

Simulations

• Pattern error probability vs. initial errors
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n = 4096, L = 29, D = 29-Const.

Fig. 3: The final pattern error probability for the constrained and unconstrained coupled neural systems.

Once finished, we declare failure if the output of the algorithm, ˆx, is not equal to the pattern x (assumed to be the all-zero
vector).

Figure 3 illustrates the final error rate of the proposed algorithm, for the constrained and unconstrained system. For the
constrained system, we fixed the state of a patch of neurons of size 3 ⇥ 3 at the four corners of the 2D pattern. The results
are also compared to the similar algorithms in [5] and [6] (uncoupled systems). In [5] (the dashed-dotted curve), there are
no clustering while in [6] the network is divided into 50 overlapping clusters all lying on a single plane (the dotted curve).
Although clustering improves the performance, it is still inferior than the coupled system with some side information (the solid
curve). Even though the same recipe (i.e., Alg. 1) is used in all approaches, the differences in the architectures has a profound
effect on the performance. One also notes the sheer positive effect of network size on the performance (the dotted vs. dashed
curves).

Table I shows the thresholds p†e and p⇤e for different values of e. From Figure 3 we notice that p⇤e ' 0.39 and p†e ' .1 which
is close to the thresholds for e = 2 in Table I. Note that according to Theorem 2, a sufficient condition for these thresholds
to be exact is for ⌦ to be very large. However, the comparison between Table I and Figure 3 suggest, one could obtain rather
exact results even with ⌦ being rather small.

p

†
e p

⇤
e

e = 1 0.078 0.114
e = 2 0.197 0.394

TABLE I: The thresholds for the uncoupled (p†e) and coupled (p⇤e) systems.

Figure 4 illustrates how the potential function for uncoupled systems behaves as a function of z and for various values of pe.
Note that for pe ' p⇤e , the minimum value of potential reaches zero, i.e. �E(p

⇤
e) = 0, and for pe > p⇤e the potential becomes

negative for large values of z.

IX. CONCLUSIONS

In this paper, we proposed a novel architecture for neural associative memories. The proposed model comprises a set of
neural planes with sparsely connected overlapping clusters. Furthermore, planes are sparsely connected together as well.

Given the similarity of the suggested framework to spatially-coupled codes, we employed recent developments in analyzing
these codes to investigate the performance of our proposed neural algorithm. We also presented numerical simulations that
lend additional support to the theoretical analysis. We derived two thresholds on the maximum initial bit error probability that
can be corrected by the proposed algorithm with probability close to 1. Using simulations, we confirmed that there is a good
match between the thresholds derived theoretically and those obtained in practice.

Given that our main interest in this paper was the performance of the error correcting algorithm in the recall phase, we
did not address the learning phase here. However, we are currently in the middle of applying the learning method in [6] to a
database of natural images to assess the performance of the recall algorithm in this real-world setup as well.
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IX. CONCLUSIONS

In this paper, we proposed a novel architecture for neural associative memories. The proposed model comprises a set of
neural planes with sparsely connected overlapping clusters. Furthermore, planes are sparsely connected together as well.

Given the similarity of the suggested framework to spatially-coupled codes, we employed recent developments in analyzing
these codes to investigate the performance of our proposed neural algorithm. We also presented numerical simulations that
lend additional support to the theoretical analysis. We derived two thresholds on the maximum initial bit error probability that
can be corrected by the proposed algorithm with probability close to 1. Using simulations, we confirmed that there is a good
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• Theoretical thresholds
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• The neurons in our model were perfect, i.e. deterministic.
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• The neurons in our model were perfect, i.e. deterministic.

• But real neurons are susceptible to internal noise.

• So what happens if we introduce internal noise in our model?

23

Noise-Enhanced Associative Memories
A. Karbasi, A. H. Salavati, A. Shokrollahi, L. R. Varshney To appearn in NIPS 2013

Rather counterintuitively, internal noise improves the error correction performance!

the network achieves better thresholds in presence of internal noise.
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Thank You!

Thanks!

24
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Pattern Retrieval Capacity 26
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Pattern Retrieval Capacity 26

• Theorem: There exists a data set X with C vectors of length n such that C = ak, with a ≥ 2, 
where k = rank(X) = O(n).
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