

Coupled Neural Associative Memories

alg⊕lma

Amir Hesam Salavati, Amin Karbasi, Amin Shokrollahi

alg⊕lma

Puzzle!

ITW 2013, Seville, Spain

Puzzle!

Memorize the following images

Puzzle!

Memorize the following images

ITW 2013, Seville, Spain

ITW 2013, Seville, Spain

What was the most similar painting to this one?

What was the most similar painting to this one?

What was the most similar painting to this one?

ITW 2013, Seville, Spain

ITW 2013, Seville, Spain

Monday 9 February 15

4

- Natice
- Rabinosseefrise

Monday 9 February 15

4

• Ratinesectrise

4

Learning

• Ratinesectrice

Good noise tolerance

4

• Natrice

Learning

• Rabinasseefrise

Good noise tolerance

Large capacity

ITW 2013, Seville, Spain

4

Learning

• Ratinesectrice

Good noise tolerance

Large capacity

• Artificial neural networks to mimic brain:

[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989], [Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003], [Salavati et al. 2011], [Gripon et al., 2011], [Karbasi et al., 2012]

Learning

• Ratinesectrice

Good noise tolerance

Large capacity

• Artificial neural networks to mimic brain:

[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989], [Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003], [Salavati et al. 2011], [Gripon et al., 2011], [Karbasi et al., 2012]

Traditional Approach

ITW 2013, Seville, Spain

Traditional Approach

Traditional Approach

• Biguetakoerizegstaadpalles

[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989], [Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003]

Problem: versatility causes **low capacity**

Out of 2^n possible binary vectors of length n, only O(n) can be memorized

Puzzle, Again!

Now memorize these images:

Puzzle, Again!

Now memorize these images:

(Pfl

ITW 2013, Seville, Spain

ITW 2013, Seville, Spain

What was the most similar painting to this one?

ITW 2013, Seville, Spain

Structured Patterns

ITW 2013, Seville, Spain

- $TO(n^2)$ [Good Brould]
- $ToO(a^n)$ vita>1 [Knowed201]

8

Structured Patterns

- $TO(n^2)$ [Good Brould]
- $ToO(a^n)$ vita>1 [Knowed201]

In This Talk...

ITW 2013, Seville, Spain

In This Talk...

- Sonehistory
- Newperspective from and ution ditocay decl

Snationells

The Model & Some History

Neural Model

ITW 2013, Seville, Spain

Neural Model

- Vetas of leadm
- Integer volues and nonregive (fiing de)
 - eg quantized grey level values

Neural Model

- Vetas of lead m
- Integer volues and nonregive (fing de)
 - eg quantized grey level values
- Strongastandetions extra lepotter constrongulspace

VS.

ITW 2013, Seville, Spain

ITW 2013, Seville, Spain

- Leanteenbuedors) of combio resultadores
- Lasfogased agobietas

- Leanteenbuedors) of combio tes lapoters
- Lasfogased applieds

- Leanteenbuedors) of combio tes lapoters

12

- Leanteedbredges aragebolies ladies
- Lasfogased and vetas

The Learning Process

- Lastopased and vetas

The Learning Process

- Lasfogased agobietas

All in all, we have a parity-check graph!

ITW 2013, Seville, Spain

Theren]: Eachter (aroreid).

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

- Theremi]: Eachterkaalaareet 7 eroreidely.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

- Theremi]: Eachterkaal olareet 7 eroreidety.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

- Theremi]: Eachterkaal olareet 7 eroreidety.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

- Theremi]: Eachterkaal olareet 7 eroreidety.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

ITW 2013, Seville, Spain

- Theren]: Eachtakaloaret / eroreidty.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

- Theremi]: Eachterkaal olareet 7 eroreidety.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

ITW 2013, Seville, Spain

- Theren]: Eachtakaloaret / eroreidty.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

- Theren]: Eachtakaloaret / eroreidty.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

- Theremi]: Eachterkaal olareet 7 eroreidety.
- Hove the order on the state of the state o

[1] *Iterative learning and denoising in convolutional neural associative memories* A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

Relations to Peeling Decoder

ITW 2013, Seville, Spain

Relations to Peeling Decoder

ITW 2013, Seville, Spain

Monday 9 February 15

Relations to Peeling Decoder

• Versinitation Peding Decode over the following graph

ITW 2013, Seville, Spain

Monday 9 February 15

Coupled Associative Memories

ITW 2013, Seville, Spain

Monday 9 February 15

ITW 2013, Seville, Spain

Monday 9 February 15

• Sonececcitoprinciple sequelidore dustes and reptares

ITW 2013, Seville, Spain

Monday 9 February 15

Sona de coil oprinciples cequeri do se dustes cocher plones

Schrfandion
frezelozationeneurors to the correct value

ITW 2013, Seville, Spain

Monday 9 February 15

Some excitoprinciples capetion over dusters and the places

Schinfundion.
frezelozationeneurors to the correct value

16

ITW 2013, Seville, Spain

Some de contration de la contraticion de la contrat

Schrfandion.
frezelozativenezos tothecaret vale

Promotes:

16

• D: number of plane

ITW 2013, Seville, Spain

Sonaceccity principle sexperticity and the places

Schrfandion.
frezelozativenezos tothecaret vale

Prontes

16

- D: nunter of plane
- L: number of dusters in each plane

ITW 2013, Seville, Spain

Some de contration de la contration

Schrfandion.
frezelozativenezos tothecaret vale

Provides:

16

- D: nunter of plane
- L: number of dusters in each plane
- Ω : capling window

ITW 2013, Seville, Spain

Biological Appeals

ITW 2013, Seville, Spain

Biological Appeals

• Satirfandio fronthe cogitivelexes:

'the_difle''(cholds)

Biological Appeals

• Satirfandiofrondræcogitiveledes:

'the_difles' (cholods)

• Snita 'spotiotrametics' 'imandiatrain.

Modha et d., Cognitive computing, Communications of the AOM, 2011.

ITW 2013, Seville, Spain

• Tetrichtals larove from [2]

- Tetricoltals larove from [2]
- - p_e : "chand" error probability
 - z(t): are approximited in term inited in t
 - p_e^{\dagger} : noximum p_e for which the uncay declaysteris successful

[2] Asimple proof of thresholds duration for coupleds calar recursions A.Yeola,Y.Jian, P.S.Nguyen, H.D.Pfister, IST C 2012.

- Technicoltats laroverfron[2]
- - p_e : "chand" error probability
 - z(t): are appreciable interview of error initediant
 - p_e^{\dagger} : noximum p_e for which the uncay declaysteris successful
- VacefretherateridU($z; p_e$) that is the property

 $U'(z; p_e) > 0 \text{ for } p_e < p_e^{\dagger}$

[2] Asimple proof of thresholds duration for coupleds calar recursions A.Yeola,Y.Jian, P.S.Nguyen, H.D.Pfister, IST C 2012.

ITW 2013, Seville, Spain

- Technicoltats laroverfron[2]
- - p_e : "chand" error probability
 - z(t): are approximited in term inited in t
 - p_e^{\dagger} : noximum p_e for which the uncay declaystern is successful
- VsetretrepotetidU($z; p_e$) that is the poperty

 $U'(z; p_e) > 0 \text{ for } p_e < p_e^{\dagger}$

• Define $p_e^{\dagger} < p_e^{*}$ to be the maximum p_e for which

 $\min_{z} U(z; p_{e}) > 0$

[2] Asimple proof of thresholds durdian for coupleds adar recursions A.Yeda,Y.Jian, P.S.Nguyen, H.D.Pfister, IST C 2012.

Results

Error Correction Performance

ITW 2013, Seville, Spain

Monday 9 February 15

Error Correction Performance

• There if the approximately is to be a provided if the provide the provided if the provide the provide the provided if the provide the provided if the provide the provide the provide the provide the provide the provided if the provide the provide the provided if the provide the providet the provide the

Error Correction Performance

- There if the approximation is to be a particular to be a particular
 - Note that since $p_e^{\dagger} < p_e^{*}$ this means that the coupled system outperforms the uncoupled system.

ITW 2013, Seville, Spain

20

Error Correction Performance

- There is the appropriate provide the pr
 - Note that since $p_e^{\dagger} < p_e^{*}$ this means that the calcular system at performs the uncalcular system.
 - The love band for Ω provides a sufficient condition.

ITW 2013, Seville, Spain

20

Simulations

ITW 2013, Seville, Spain

Simulations

Simulations

ITW 2013, Seville, Spain

Ongoing Work

ITW 2013, Seville, Spain

• Therefores in compared very affect, i.e. attentistic

- Trereros inconcervergefet, i.e. ateriristic
- Birebrenos desucetidet cinter brize
- Sovkahappers if vertradeinter an is in our noet?

- Therefores in compared very affect, i.e. atteninistic
- Birebrenos des setiletoriterotrise
- Sovkathappers if vertradeinter an ise normael?

Rheanteinitive/interdriscingesteenaatiogeforme

therefore katter thresholds in presence of internationise

Noise-Enhanced Associative Memories A. Karbasi, A. H. Salavati, A. Shokrollahi, L. R. Varshney To appearn in NIPS 2013

ITW 2013, Seville, Spain

Thank You!

ITW 2013, Seville, Spain

Backup Slides

Pattern Retrieval Capacity

ITW 2013, Seville, Spain

Monday 9 February 15

26

Pattern Retrieval Capacity

• Therefore is a conducter X with C vectors design n such that $C = a^k$, with $a \ge 2$, where $k = \operatorname{rank}(X) = O(n)$.

