

Coupled Neural Associative Memories

Amir Hesam Salavati, Amin Karbasi, Amin Shokrollahi alg \oplus lœの \qquad $\mathbf{a l g} \oplus$ リm@

Memorize the following images

Puzzle!

Memorize the following images

Now answer!

Now answer!

What was the most similar painting to this one?

Now answer!

What was the most similar painting to this one?

Now answer!

What was the most similar painting to this one?

4
 Neural Associative Memory

Neural Associative Memory

- Nane
- Retlinceredrie

Neural Associative Memory

- Nane
- Retlintoserefrise

Learning

Neural Associative Memory

- Nane
- Retlintretedrise

Learning
Good noise tolerance

Neural Associative Memory

- Naie
- Retlinoserefrise

Learning
Good noise tolerance
Large capacity

Neural Associative Memory

- Nane
- Retlintoserefrise

Learning
Good noise tolerance
Large capacity

- Artificial neural networks to mimic brain:
[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989],
[Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003],
[Salavati et al. 2011], [Gripon et al., 2011], [Karbasi et al., 2012]

Neural Associative Memory

- Nane
- Retlintoserefrise

Learning
Good noise tolerance

Large capacity

- Artificial neural networks to mimic brain:
[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989],
[Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003],
[Salavati et al. 2011], [Gripon et al., 2011], [Karbasi et al., 2012]

Traditional Approach

Traditional Approach

Traditional Approach

[Hopfield, 1982], [McEliece et al., 1987], [Venkatesh et al. 1989],
[Komlos et al., 1993], [Lee, 2001], [Muezzinoglu et al. 2003]

Problem: versatility causes low capacity
Out of 2^{n} possible binary vectors of length n, only $O(n)$ can be memorized

Puzzle, Again!

Now memorize these images:

6
 Puzzle, Again!

Now memorize these images:

7
 Now Answer!

Now Answer!

What was the most similar painting to this one?

Structured Patterns

Structured Patterns

- TOO($\left.\mathrm{a}^{\mathrm{n}}\right)$ Vilta>1 [Kumed201]

Structured Patterns

In This Talk...

In This Talk...

- Inraderestarexe
- Sonethistoy
- Nencespertivefromendtiondtocapted
- Sindirimells
- ©ajoryak

The Model

\&
 Some History

Neural Model

- Pltas

- Vetros $\delta l e=0 t h$
- IItegendues cortorregtive(firigdd
- ag quantizedge levd vdues
- Pltmo
- Vetrosoleodtn

- eg quantizedgey leved vdues

The Learning Process

- Lesforscreetrumberas
- Leerlleathreds) dremeddrembedms
- Ledroscriedtremetreas

The Learning Process

- Lesforsuethembedes

The Learning Process

- Lesforsuethembedes

The Learning Process

- Lesforsuethembedes

The Learning Process

- Ledrossuedrumbeds

All in all, we have a parity-check graph!

The Recall Phase

[1] Iterative learning and denoising in convolutional neural associative memories
A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories
A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

[1] Iterative learning and denoising in convolutional neural associative memories A. Karbasi, A. H. Salavati, A. Shokrollahi, ICML 2013

Relations to Peeling Decoder

Relations to Peeling Decoder

Coupled Associative Memories

Coupling Neural Graphs

Coupling Neural Graphs

Coupling Neural Graphs

- Smercrainguinintescequilidxectstes contrentens

Coupling Neural Graphs

- Scedirfandion
frezelerctainereuors tothecoret vice

Coupling Neural Graphs

- Scedirfandion
frezelwadfinemerors tothecored vic
- Remides.

Coupling Neural Graphs

- Scedirfandion
frezelarctlinererors tothecored vic
- Pameres.
- D: nunter of plane

Coupling Neural Graphs

- Scedirfandion
frezelarctlinererors tothecored vic
- Remides.
- D: runtree of plane
- L: nunber of dusters ineachpdare

Coupling Neural Graphs

- Scedirfandion
frezelarctlinererors tothecored vic
- Remides.
- D: nuntre of plane
- L: number of dusters ineachpdare
- Ω : capdingwincow

Biological Appeals

Biological Appeals

"the dffle" (chroled.

Biological Appeals

- Sceirimandiofrometrecogitivede

'tle_dffes' (chorctel.

Mbdha et d., Cognitive computing, Communications of the ACM 2011.

Performance Analysis

Performance Analysis

[2] A simple proof of threshddsdurdionfor coupedscdia rearsians
A.YedaY.Jion, P.S.Ngyen, H.D.Pfister, ISTC2012.

Performance Analysis

- Teminidtcdstaroceciont!
- Cexte

- p_{e} : "ctand"' eror podedility
- $z(t)$: orecogepdedility of eror initediont
- $p_{e}{ }^{\dagger}$: naxinemp p_{e} for widhtheuncaperdsystenis sucessfu
- Teminidicdstaroceciont!
- ceate

- p_{e} : "drane"' eror pdedility
- $z(t)$: वrecogepdadility of eror initediont
- $p_{e}{ }^{\dagger}$: naxinomp p_{e} for widhtheuncapeedsystenis sucessfu

$$
\mathrm{U}^{\prime}\left(z ; p_{e}\right)>0 \text { fø } p_{e}<p_{e}^{\dagger}
$$

[2] Asimpeproof of threshddscturctionfor coupedscdiar rearsions
A.YedaY.Jian, P.S.Ngyen, H.D.Pfister, ISTC2012.

- Teminidicdstaroceciont!
- Cexte

- p_{e} : "chane"'eror prdatolity
- $z(t)$: वuecsepprdadility of erro initediont
- $p_{e}{ }^{\dagger}$: noxinampe p_{e} for wichtheuncap dedsysternis sucessfu
- VAterfietterctelidU $\left(z ; p_{e}\right)$ thetrestlempeety

$$
\mathrm{U}^{\prime}\left(z ; p_{e}\right)>0 \mathrm{f} \sigma p_{e}<p_{e}^{\dagger}
$$

- Define $p_{e}{ }^{\dagger}<p_{e}{ }^{*}$ to be the maximum p_{e} for which

$$
\min _{z} \mathrm{U}\left(z ; p_{e}\right)>0
$$

[2] Asimpeproof of threshddscturctionfor coupedscdiar rearsions
A.YedaY.Jian, P.S.Ngyen, H.D.Pfister, ISTC2012.

Results

Error Correction Performance

Error Correction Performance

 pllefownequdedilie $p_{e}<p_{e}^{*}$.

- \quad Ntethd $\operatorname{sincepe}{ }^{\dagger}<p_{e}{ }^{*}$ this means thd thecapledsystematperforns the uncapedsystem
 pleqfodmequedifile $p_{e}<p_{e}^{*}$.
- \quad Ntethd $\operatorname{since} e_{e}{ }^{\dagger}<p_{e}{ }^{*}$ this means thd thecapledsystematperforns the uncapedsystem
- Thelower bandfor Ω provides a sufficient condition.

Simulations

- Plefricrudedidysirifidetes

Simulations

- Rllamporcditilysiiiidmas

- Truesicdindeds

	p_{e}^{\dagger}	p_{e}^{*}
$e=1$	0.078	0.114
$e=2$	0.197	0.394

Ongoing Work

Internal Noise Helps!

Internal Noise Helps!

Internal Noise Helps!

- Thererosincon ace vegefeti.ectlerinisic
- Btretreroscensexilhetaitartrise

Internal Noise Helps!

- Therercsinorn returgefeti.ecterinisic
- Btretreroscesscefilitetaintentrise

thenewrok artiers leette threshdds inpreserced itenduncise.

Noise-Enhanced Associative Memories
A. Karbasi, A. H. Salavati, A. Shokrollahi, L. R. Varshney To appearn in NIPS 2013

T梖

Backup Slides

Pattern Retrieval Capacity

Pattern Retrieval Capacity

 $W^{*} k=\operatorname{rank}(X)=O(n)$.

