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Recent advances in associative memory design through structured pat-
tern sets and graph-based inference algorithms have allowed reliable
learning and recall of an exponential number of patterns that satisfy cer-
tain subspace constraints. Although these designs correct external errors
in recall, they assume neurons that compute noiselessly, in contrast to
the highly variable neurons in brain regions thought to operate asso-
ciatively, such as hippocampus and olfactory cortex. Here we consider
associative memories with boundedly noisy internal computations and
analytically characterize performance. As long as the internal noise level
is below a specified threshold, the error probability in the recall phase
can be made exceedingly small. More surprising, we show that internal
noise improves the performance of the recall phase while the pattern
retrieval capacity remains intact: the number of stored patterns does not
reduce with noise (up to a threshold). Computational experiments lend
additional support to our theoretical analysis. This work suggests a func-
tional benefit to noisy neurons in biological neuronal networks.

1 Introduction

Brain regions such as hippocampus and olfactory cortex are thought to op-
erate as associative memories (Treves & Rolls, 1994; Stettler & Axel, 2009;
Wilson & Sullivan, 2011), having the ability to learn patterns from pre-
sented inputs, store a large number of patterns, and retrieve them reliably
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in the face of noisy queries (Hopfield, 1982; McEliece, Posner, Rodemich,
& Venkatesh, 1987; Amit & Fusi, 1994). Mathematical models of associative
memory are therefore designed to memorize a set of given patterns so that
corrupted versions of the memorized patterns may later be presented and
the correct memorized pattern retrieved.

Although such information storage and recall seemingly falls naturally
into the information-theoretic framework (Palm, 1980), where an expo-
nential number of messages can be communicated reliably using a linear
number of symbols (Shannon, 1948), classical associative memory models
can store only a linear number of patterns with a linear number of symbols
(McEliece et al., 1987). A primary shortcoming of such classical models has
been their requirement to memorize a randomly chosen set of patterns. By
enforcing structure and redundancy in the possible set of memorizable pat-
terns through subspace constraints—much like natural stimuli (Olshausen
and Field, 2004), internal representations in neural systems (Koulakov
& Rinberg, 2011), and code words in error-control codes (Richardson &
Urbanke, 2008)—new advances in associative memory design allow stor-
age of an exponential number of patterns with a linear number of symbols
(Salavati & Karbasi, 2012; Karbasi, Salavati, & Shokrollahi, 2013), just like
in communication systems.1

Information-theoretic and associative memory models of storage have
been used to predict experimentally measurable properties of synapses
in the mammalian brain (Brunel, Hakim, Isope, Nadal, & Barbour, 2004;
Varshney, Sjöström, & Chklovskii, 2006). But contrary to the fact that noise
is present in computational operations of the brain (Koch, 1999; Faisal,
Selen, & Wolpert, 2008; Rolls & Deco, 2010; McDonnell & Ward, 2011;
Destexhe & Rudolph-Lilith, 2012), associative memory models with ex-
ponential capacity have assumed no internal noise in the computational
nodes (Karbasi et al., 2013); the same is true with many classical models
(Hopfield, 1982). The purpose of this letter is to model internal noise in
associative memories with exponential pattern retrieval capacity and study
whether they are still able to operate reliably. A particular model of neu-
ronal computation and of bounded internal noise is assumed. Surprisingly,
we find that internal noise actually enhances recall performance without
loss in capacity, thereby suggesting a functional role for variability in the
brain.

In particular, we consider a convolutional, graph code–based, associative
memory model (Karbasi et al., 2013) and find that even if all components
are noisy, the final error probability in recall can be made exceedingly
small. We characterize a threshold phenomenon and show how to optimize

1The idea of restricted pattern sets leading to associative memories with increased
storage capacity was first suggested in an unpublished doctoral dissertation (Biswas,
1993).
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algorithm parameters when knowing statistical properties of internal noise.
Rather counterintuitively, the performance of the memory model improves
in the presence of internal neural noise, as has been observed previously
as stochastic resonance in the literature (Chen, Varshney, Kay, & Michels,
2007; McDonnell & Ward, 2011). Deeper analysis shows mathematical con-
nections to perturbed simplex algorithms for linear programing (Spielman
& Teng, 2004), where some internal noise helps the algorithm get out of
local minima.

1.1 Related Work. Designing neural networks to learn a set of patterns
and recall them later in the presence of noise has been an active topic of
research for the past three decades. Inspired by Hebbian learning (Hebb,
1949), Hopfield (1982) introduced an autoassociative neural mechanism of
size n with binary state neurons in which patterns are assumed to be binary
vectors of length n. The capacity of a Hopfield network under vanishing
block error probability was later shown to be O(n/ log(n)) (McEliece et al.,
1987). With the hope of increasing the capacity of the Hopfield network,
extensions to nonbinary states were explored (Amit & Fusi, 1994). In par-
ticular, Jankowski, Lozowski, and Zurada (1996) investigated a multistate
complex-valued neural associative memory with estimated capacity less
than 0.15n; Müezzinoǧlu, Güzeliş, and Zurada (2003) showed the capacity
with a prohibitively complicated learning rule to increase to n. Lee (2006)
proposed the modified gradient descent learning rule (MGDR) to overcome
this drawback.

To increase capacity and robustness further, a recent line of work con-
siders exploiting structure in patterns. This is done either by making use of
correlations among patterns or by memorizing only patterns with redun-
dancy (rather than any possible set of patterns). By utilizing neural cliques,
Gripon and Berrou (2011) demonstrated that increasing the pattern retrieval
capacity of Hopfield networks to O(n2) is possible. Modification of neural
architecture to improve pattern retrieval capacity has also been previously
considered by Venkatesh (1994) and Biswas (1993), where the capacity is in-
creased to �

(
bn/b

)
for semirandom patterns, where b = ω(ln n) is the size of

clusters. This significant boost to capacity is achieved by dividing the neural
network into smaller fully interconnected disjoint blocks or nested blocks
(Baram, 1991). This huge improvement comes at the price of limited worst-
case noise tolerance capabilities. Deploying higher-order neural models
beyond the pairwise correlation considered in Hopfield networks increases
the storage capacity to O(np−2), where p is the degree of correlation (Peretto
& Niez, 1986). In such models, neuronal state depends not only on the state
of neighbors, but also on the correlations among them. A new model based
on bipartite graphs that captures higher-order correlations (when patterns
belong to a subspace), but without prohibitive computational complexity,
improved capacity to O(an) for some a > 1, that is, exponential in network
size (Salavati & Karbasi, 2012).
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The basic memory architecture, learning rule, and recall algorithm used
here is from Karbasi et al. (2013), which also achieves exponential capac-
ity by capturing internal redundancy by dividing the patterns into smaller
overlapping clusters, with each subpattern satisfying a set of linear con-
straints. The problem of learning linear constraints with neural networks
was considered in Xu, Krzyzak, and Oja (1991), but without sparsity re-
quirements. This has connections to compressed sensing (Candés & Tao,
2006); typical compressed sensing recall and decoding algorithms are too
complicated to be implemented by neural networks, but some have sug-
gested the biological plausibility of message-passing algorithms (Fletcher,
Rangan, Varshney, & Bhargava, 2011).

Building on the idea of structured pattern sets (Gripon & Berrou, 2011),
the basic associative memory model used here (Karbasi et al., 2013) relies
on the fact that all patterns to be learned lie in a low-dimensional subspace.
Learning features of a low-dimensional space are very similar to autoen-
coders (Vincent, Larochelle, Bengio, & Manzagol, 2008). The model also
has similarities to deep belief networks (DBNs) and, in particular, convo-
lutional neural networks (Le et al., 2010), albeit with different objectives.
DBNs are made of several consecutive stages, similar to overlapping clus-
ters in our model, where each stage extracts some features and feeds them
to the following stage. The output of the last stage is then used for pat-
tern classification. In contrast to DBNs, our associative memory model is
not classifying patterns but rather is recalling patterns from noisy versions.
Also, overlapping clusters can operate in parallel to save time in informa-
tion diffusion over a staged architecture.

In most deep or convolutional models, one not only has to find the
proper dictionary for classification, but also calculate the features for each
input pattern. This increases the complexity of the whole system when
the objective is simply recall. Here the dictionary corresponds to the dual
vectors from previously memorized patterns.

In this work, we reconsider the neural network model of Karbasi et al.
(2013) but introduce internal computation noise consistent with biology.
Note that the sparsity of the model architecture is also consistent with
biology (Song, Sjöström, Reigl, Nelson, & Chklovskii, 2005). We find that
there is actually a functional benefit to internal noise.

The benefit of internal noise has been noted previously in associative
memory models with stochastic update rules (Amit, 1992) by analyzing
attractor dynamics. In particular, it has been shown that noise may reduce
recall time in associative memory tasks by pushing the system from one at-
tractor state to another (Liljenström & Wu, 1995). However, our framework
differs from previous approaches in three key aspects. First, our memory
model is different, which makes extension of previous analysis nontrivial.
Second, and perhaps most important, pattern retrieval capacity in previous
approaches decreases with internal noise (Amit, 1992, Figure 6.1), in that
increasing internal noise helps correct more external errors but also reduces
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the number of memorizable patterns. In our framework, internal noise does
not affect pattern retrieval capacity (up to a threshold) but improves recall
performance. Finally, our noise model has bounded rather than gaussian
noise, and so a suitable network may achieve perfect recall despite internal
noise.

Reliably storing information in memory systems constructed completely
from unreliable components is a classical problem in fault-tolerant comput-
ing (Taylor, 1968; Kuznetsov, 1973; Varshney, 2011), where typical models
have used random access architectures with sequential correcting networks.
Although direct comparison is difficult since notions of circuit complexity
are slightly different, our work also demonstrates that associative memory
architectures can store information reliably despite being constructed from
unreliable components.

2 Associative Memory Model

In this section, we introduce our main notation, the model of associative
memories and noise. We also explain the recall algorithms.

2.1 Notation and Basic Structure. In our model, a neuron can assume
an integer-valued state from the set Q = {0, . . . , Q − 1}, interpreted as the
short-term firing rate of neurons. A neuron updates its state based on the
states of its neighbor {si}n

i=1 as follows. It first computes a weighted sum
h = ∑n

i=1 wisi + ζ , where wi is the weight of the link from si and ζ is the
internal noise, and then applies nonlinear function f : R → Q to h.

An associative memory is represented by a weighted bipartite graph,
G, with pattern neurons and constraint neurons. Each pattern x =
(x1, x2, . . . , xn) is a vector of length n, where xi ∈ Q, i = 1, . . . , n. Follow-
ing Karbasi et al. (2013), the focus is on recalling patterns with strong local
correlation among entries. Hence, we divide entries of each pattern x into L
overlapping subpatterns of lengths n1, n2, . . . , nL. Due to overlaps, a pattern
neuron can be a member of multiple subpatterns, as depicted in Figure 1a.
The ith subpattern is denoted x(i) = (x(i)

1 , x(i)
2 , . . . , x(i)

ni
), and local correlations

are assumed to be in the form of subspaces, that is, the subpatterns x(i) form
a subspace of dimension ki < ni.

We capture the local correlations by learning a set of linear constraints
over each subspace corresponding to the dual vectors orthogonal to that
subspace. More specifically, let {w(i)

1 , w
(i)
2 , . . . , w(i)

mi
} be a set of dual vectors

orthogonal to all subpatterns x(i) of cluster i. Then:

y(i)
j = (

w
(i)
j

)T · x(i) = 0, for all j ∈ {1, . . . , mi} and for all i ∈ {1, . . . , L}.
(2.1)
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Figure 1: The proposed neural associative memory with overlapping clusters.

Equation 2.1 can be rewritten as W (i) · x(i) = 0, where W (i) = [w(i)
1 |w(i)

2 | · · · |
w(i)

mi
]T is the matrix of dual vectors. Now we use a bipartite graph with con-

nectivity matrix determined by W (i) to represent the subspace constraints
learned from subpattern x(i); this graph is called cluster i. We developed an
efficient way of learning W (i) in Karbasi et al. (2013), also used here. Briefly,
in each iteration of learning:

1. Pick a pattern x at random from the data set.
2. Adjust weight vectors w

(i)
j for j = {1, . . . , mi} and i = {1, . . . , L} such

that the projection of x onto w
(i)
j is reduced. Apply a sparsity penalty

to favor sparse solutions.

This process repeats until all weights are orthogonal to the patterns in the
data set or the maximum iteration limit is reached. The learning rule allows
us to assume the weight matrices W (i) are known and satisfy W (i) · x(i) = 0
for all patterns x in the data set X , in this letter.

For the asymptotic analysis, we need to define a contracted graph G̃
whose connectivity matrix is denoted W̃ and has size L × n. This is a bipar-
tite graph in which constraints in each cluster are represented by a single
neuron. Thus, if pattern neuron xj is connected to cluster i, W̃i j = 1; other-

wise W̃i j = 0 (see Figure 1b). We also define the degree distribution from an

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-000.jpg&w=192&h=69
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-001.jpg&w=192&h=77
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edge perspective over G̃, using

λ̃(z) =
∑

j

λ̃ jz
j−1, (2.2)

ρ̃(z) =
∑

j

ρ̃ jz
j−1, (2.3)

where λ̃ j (resp., ρ̃ j) equals the fraction of edges that connect to pattern
(resp., cluster) nodes of degree j.

2.2 Noise Model. There are two types of noise in our model: external
errors and internal noise. A neural network should be able to retrieve mem-
orized pattern x̂ from its corrupted version x due to external errors. We as-
sume the external error is an additive vector of size n, denoted by z satisfying
x = x̂ + z, whose entries assume values independent from {−1, 0,+1} with
corresponding probabilities p−1 = p+1 = ε/2 and p0 = 1 − ε.2 The realiza-
tion of the external error on subpattern x(i) is denoted z(i). Note that the sub-
space assumption implies W · y = W · z and W (i) · y(i) = W (i) · z(i) for all i.

Neurons also suffer from internal noise. We consider a bounded noise
model—a random number uniformly distributed in the intervals [−υ, υ]
and [−ν, ν] for the pattern and constraint neurons, respectively (υ, ν < 1).

The goal of recall is to filter the external error z to obtain the desired
pattern x as the correct states of the pattern neurons. When neurons compute
noiselessly, this task may be achieved by exploiting the fact that the set of
patterns x ∈ X satisfies the set of constraints W (i) · x(i) = 0. However, it is
not clear how to accomplish this objective when the neural computations
are noisy. Rather surprisingly, we show that eliminating external errors is
not only possible in the presence of internal noise, but that neural networks
with moderate internal noise demonstrate better external error resilience.

2.3 Recall Algorithms. To efficiently deal with external errors in asso-
ciative memory, we use two simple iterative message-passing algorithms.
The role of the first one, called the intracluster algorithm and formally de-
fined in algorithm 1, is to correct at least a single external error in each
cluster. However, without overlaps between clusters, the error resilience of
this approach and the network in general is limited. The second algorithm,
the intercluster recall algorithm, exploits the overlaps: it helps clusters with
external errors recover their correct states by using the reliable information
from clusters that do not have external errors. The error resilience of the
resulting combination thereby drastically improves.

2Note that the proposed algorithms also work with larger noise values, that is, from a
set {−S, . . . , S} for some S ∈ N (see section 4.2). The ±1 noise model is presented here for
simplicity.
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To go further into details and with abuse of notations, let xi(t) and y j(t)
denote the message transmitted at iteration t by pattern and constraint
neurons, respectively. In the first iteration, we initialize the pattern neurons
with a pattern randomly drawn from the data set, x̂, corrupted with some
external noise, z. Thus, x(0) = x̂ + z. As a result, for cluster 
, we have
x(
)(0) = x̂(
) + z(
), where z(
) is the realization of the external error on
cluster 
.

With these notations in mind, algorithm 1 iteratively performs a series of
forward and backward steps in order to remove (at least) one external error
from its input domain. Assuming that the algorithm is applied to cluster 
,
in the forward step of iteration t, the pattern neurons in cluster 
 transmit
their current states to their neighboring constraint neurons. Each constraint
neuron j then calculates the weighted sum of the messages it received
over its input links. Nevertheless, since neurons suffer from internal noise,
additional noise terms appear in the weighted sum, h(
)

j = ∑n



i=1 W (
)

i j x(
)
i +

vi, where vi is the random internal noise affecting node i. As before, we
consider a bounded noise model for vi it is uniformly distributed in the
interval [−ν, ν] for some ν < 1.

A nonzero input sum, excluding the effect of vi, is an indication of the
presence of external errors among the pattern neurons. Thus, constraint
neurons set to their states to the sign of the received weighted sum if its
magnitude is larger than a fixed threshold, ψ . More specifically, constraint
neuron j updates its state based on the received weighted sum according to
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the following rule:

y(
)

j (t) = f
(
h(
)

j (t), ψ
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1, if h(
)

j (t) ≥ ψ

0, if − ψ ≤ h(
)

j (t) ≤ ψ.

−1, otherwise

(2.4)

Here, x(
)(t) = [x(
)

1 (t), . . . , x(
)
n



(t)] is the vector of messages transmitted by

the pattern neurons and vi is the random internal noise affecting node i.3

In the backward step, the constraint neurons communicate their states
to their neighboring pattern neurons. The pattern neurons then compute
a normalized weighted sum on the messages they receive over their input
link and update their current state if the amount of received (nonzero)
feedback exceeds a threshold. Otherwise they will retain their current state
for the next round. More specifically, pattern node i in cluster 
 updates its
state in round t according to

x(
)
i (t + 1) =

{
x(
)

i (t) − sign
(
g(
)

i
(
t
))

, if
∣∣g(
)

i (t)
∣∣ ≥ ϕ

x(
)
i (t), otherwise

, (2.5)

where ϕ is the update threshold and

g(
)
i (t) = ((sign(W (
))� · y(
)(t))i

d(
)
i

+ ui.

Note that x(
)
i (t + 1) is further mapped to the interval [0, Q − 1] by saturat-

ing the values below 0 and above Q − 1 to 0 and Q − 1, respectively; this
saturation is not stated mathematically for brevity. Here, d(
)

i is the degree
of pattern node i in cluster 
, y(
)(t) = [y(
)

1 (t), . . . , y(
)
m




(t)] is the vector of
messages transmitted by the constraint neurons in cluster 
, and ui is the
random internal noise affecting pattern node i. Basically, the term g(
)

i (t)
reflects the (average) belief of constraint nodes connected to pattern neu-
ron i about its correct value. If g(
)

i (t) is larger than a specified threshold ϕ,
it means that most of the connected constraints suggest the current state
x(
)

i (t) is not correct; hence, a change should be made. Note that this average
belief is diluted by the internal noise of neuron i. As mentioned earlier, ui
is uniformly distributed in the interval [−υ, υ], for some υ < 1.

3Note that although the values of y(
)
i (t) can be shifted to 0, 1, 2, instead of −1, 0, 1

to match our assumption that neural states are nonnegative, we leave them as such to
simplify later analysis.
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The error correction ability of algorithm 1 is fairly limited, as determined
analytically and through simulations in the sequel. In essence, algorithm 1
can correct one external error with high probability but degrades terribly
against two or more external errors. Working independently, clusters cannot
correct more than a few external errors, but their combined performance is
much better. As clusters overlap, they help each other in resolving external
errors: a cluster whose pattern neurons are in their correct states can al-
ways provide truthful information to neighboring clusters. This property is
exploited in algorithm 2 by applying algorithm 1 in a round-robin fashion
to each cluster. Clusters either eliminate their internal noise, in which case
they keep their new states and can now help other clusters, or revert to
their original states. Note that by such a scheduling scheme, neurons can
change their states only toward correct values. This scheduling technique is
similar in spirit to the peeling algorithm (Luby, Mitzenmacher, Shokrollahi,
& Spielman, 2001).

3 Pattern Retrieval Capacity

Before proceeding to analyze recall performance, for completeness we re-
view pattern retrieval capacity results from Karbasi et al. (2013) to show
that the proposed model is capable of memorizing an exponentially large
number of patterns. First, note that since the patterns form a subspace, the
number of patterns C does not have any effect on the learning or recall
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algorithms (except for its obvious influence on the learning time). Thus, in
order to show that the pattern retrieval capacity is exponential in n, all we
need to demonstrate is that there exists a training set X with C patterns of
length n for which C ∝ arn, for some a > 1 and 0 < r.

Theorem 1 (Karbasi et al., 2013). Let X be a C × n matrix, formed by C
vectors of length n with entries from the set Q. Furthermore, let k = rn for some
0 < r < 1. Then there exists a set of vectors for which C = arn, with a > 1, and
rank(X ) = k < n.

The proof is constructive: we create a data setX such that it can be memo-
rized by the proposed neural network and satisfies the required properties;
the subpatterns form a subspace, and pattern entries are integer values from
the set Q = {0, . . . , Q − 1}. The complete proof can be found in Karbasi et al.
(2013).

4 Recall Performance Analysis

Now let us analyze recall error performance. The following lemma shows
that if ϕ and ψ are chosen properly, then in the absence of external errors, the
constraints remain satisfied and internal noise cannot result in violations.
This is a crucial property for algorithm 2, as it allows one to determine
whether a cluster has successfully eliminated external errors (step 4 of
algorithm) by merely checking the satisfaction of all constraint nodes.

Lemma 1. In the absence of external errors, the probability that a constraint neuron
(resp. pattern neuron) in cluster 
 makes a wrong decision due to its internal noise

is given by π
(
)
0 = max

(
0,

ν−ψ

ν

)
(resp. P (
)

0 = max
(
0,

υ−ϕ

υ

)
).

Proof. To calculate the probability that a constraint node makes a mistake
when there are no external errors, consider constraint node i whose decision
parameter will be

h(
)
i = (

W (
) · x(
)
)

i + vi = vi.

Therefore, the probability of making a mistake will be

π
(
)

0 = Pr{|vi| > ψ} = max
(

0,
ν − ψ

ν

)
. (4.1)

Thus, to make π
(
)

0 = 0, we will select ψ > ν. Note that this might not be
possible in all cases since, as we will see, the minimum absolute value of
network weights should be at least ψ ; if ψ is too large, we might not be
able to find a proper set of weights. Nevertheless, and assuming that it is
possible to choose a proper ψ , we will have

π(0) = 0. (4.2)
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Knowing that the constraint will not send any nonzero messages in
the absence of external noise, we focus on the pattern neurons in the same
circumstance. A given pattern node x(
)

j will receive a zero from all its neigh-
bors among the constraint nodes. Therefore, its decision parameter will be
g(
)

j = uj. As a result, a mistake could happen if |uj| ≥ ϕ. The probability of
this event is given by

P(
)

0 = Pr{|ui| > ϕ} = max
(

0,
υ − ϕ

ϕ

)
. (4.3)

Therefore, to make P(
)

0 go to zero, we must select ϕ ≥ υ.

In the sequel, we assume ϕ > υ and ψ > ν so that π
(
)

0 = 0 and P(
)

0 = 0.
However, an external error combined with internal noise may still push
neurons to an incorrect state.

Given the above lemma and our neural architecture, we can prove the
following surprising result: in the asymptotic regime of increasing numbers
of iterations of algorithm 2, a neural network with internal noise outper-
forms one without, with the pattern retrieval capacity remaining intact. Let
us define the fraction of errors corrected by the noiseless and noisy neural
network (parameterized by υ and ν) after T iterations of algorithm 2 by
�(T ) and �υ,ν (T ), respectively. Note that both �(T ) ≤ 1 and �υ,ν (T ) ≤ 1
are nondecreasing sequences of T. Hence, their limiting values are well
defined: limT→∞ �(T ) = �∗ and limT→∞ �υ,ν (T ) = �∗

υ,ν .

Theorem 2. Let us choose ϕ and ψ so that π
(
)
0 = 0 and P (
)

0 = 0 for all 
 ∈
{1, . . . , L}. For the same realization of external errors, we have Λ∗

υ,ν ≥ Λ∗.

Proof. We first show that the noisy network can correct any external error
pattern that the noiseless counterpart can correct in the T → ∞ limit. If
the noiseless decoder succeeds, then there is a nonzero probability P that
the noisy decoder succeeds in a given round as well (corresponding to the
case that noise values are rather small). Since we do not introduce new
errors during the application of algorithm 2, the number of errors in the
new rounds is smaller than or equal to the previous round; hence, the
probability of success is lower-bounded by P. If algorithm 2 is applied
T times, then the probability of correcting the external errors at the end
of round T is P + P(1 − P) + · · · + P(1 − P)T−1 = 1 − (1 − P)T . Since P > 0,
for T → ∞ this probability tends to 1.

Now we turn our attention to cases where the noiseless network fails in
eliminating external errors and show that there exist external error patterns,
called stopping sets, for which the noisy network is capable of eliminating
them while the noiseless network has failed (see section A.1 for further
explication). Assuming that each cluster can eliminate i external errors in
their domain and in the absence of internal noise, stopping sets correspond
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to noise patterns in which each cluster has more than i errors.4 Then algo-
rithm 2 cannot proceed any further. However, in the noisy network, there is
a chance that in one of the rounds, the noise acts favorably and the cluster
could correct more than i errors.5 In this case, if the probability of getting
out of the stopping set is P in each round, for some P > 0, then a similar
argument to the previous case shows that P → 1 when T → ∞.

It should be noted that if the amount of internal noise or external er-
rors is too high, the noisy architecture will eventually get stuck just like
the noiseless network would. The high-level idea of why a noisy network
outperforms a noiseless one comes from understanding stopping sets—
realizations of external errors where the iterative algorithm 2 cannot correct
them all. We showed that the stopping set shrinks as we add internal noise,
and so the supposedly harmful internal noise helps algorithm 2 to avoid
stopping sets. Section A.1 illustrates this notion further.

Theorem 2 suggests that the only possible downside to using a noisy
network is its possible running time in eliminating external errors: the
noisy neural network may need more iterations to achieve the same error
correction performance. Interestingly, our empirical experiments show that
in certain scenarios, even the running time improves when using a noisy
network.

Theorem 2 indicates that noisy neural networks (under our model) out-
perform noiseless ones, but does not specify the level of errors that such
networks can correct. Now we derive a theoretical upper bound on error
correction performance. To this end, let Pci

be the average probability that
a cluster can correct i external errors in its domain. The following theorem
gives a simple condition under which algorithm 2 can correct a linear frac-
tion of external errors (in terms of n) with high probability. The condition
involves λ̃ and ρ̃, the degree distributions of the contracted graph G̃.

Theorem 3. Under the assumptions that graph G̃ grows large and it is chosen
randomly with degree distributions given by λ̃ and ρ̃, algorithm 2 is successful if

ελ̃

(
1 −

∑
i≥1

Pci

zi−1

i !
· di−1ρ̃(1 − z)

dzi−1

)
< z, f or z ∈ [0, ε]. (4.4)

Proof. The proof is based on the density evolution technique (Richardson
& Urbanke, 2008). Without loss of generality, assume we have Pc1

, Pc2
, and

Pc3
(and Pci

= 0 for i > 3), but the proof can easily be extended if we have Pci

4In Figure 2, we will see that i = 2 in this case.
5This is reflected in Figure 2, where the value of Pci

is larger when the network is
noisy.
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for i > 3. Let �(t) be the average probability that a super-constraint node
sends a failure message: it cannot correct external errors lying in its domain.
Then the probability that a noisy pattern neuron with degree di sends an
erroneous message to a particular neighbor among super-constraint nodes
is equal to the probability that none of its other neighboring super-constraint
nodes could have corrected its error:

Pi(t) = pe(�(t))di−1.

Averaging over di we find the average probability of error in iteration t:

z(t + 1) = pẽλ(�(t)). (4.5)

Now consider a cluster 
 that contains d
 pattern neurons. This cluster
will not send a failure message over its edge to a noisy pattern neuron in
its domain with probability

1. Pc1
if it is not connected to any other noisy neuron

2. Pc2
if it is connected to exactly one other constraint neuron

3. Pc3
if it is connected to exactly two other constraint neurons

4. 0 if it is connected to more than two other constraint neurons

Thus,

�(
)(t)= 1 − Pc1
(1 − z(t))d



−1 − Pc2

(
d
 − 1

1

)
z(t) (1 − z(t))d



−2

− Pc3

(
d
 − 1

2

)
z(t)2 (1 − z(t))d



−3 .

Averaging over d
 yields

�(t)= Ed



(
�(
)(t)

) = 1 − Pc1
ρ(1 − z(t)) − Pc2

zρ ′(1 − z(t))

− 1
2

Pc2
z(t)2ρ ′′ (1 − z(t)) , (4.6)

where ρ ′(x) and ρ ′′(x) are derivatives of the function ρ(x) with respect to x.
Equations 4.5 and 4.6 yield the value of z(t + 1) as a function of z(t). We

calculate the final error probability as limt→∞ z(t); for limt→∞ z(t) → 0, it is
sufficient to have z(t + 1) < z(t), which proves the theorem.

Theorem 3 holds when the decision subgraphs for the pattern neurons
in graph G̃ are tree-like for a depth of τL, where τ is the total number of
number of iterations performed by algorithm 2 (Richardson & Urbanke,
2008).
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Figure 2: The value of Pci
as a function of pattern neurons noise υ for i = 1, . . . , 4.

The noise at constraint neurons is assumed to be zero (ν = 0).

Theorem 3 states that for any fraction of errors �υ,ν ≤ �∗
υ,ν that satisfies

the above recursive formula, algorithm 2 will be successful with proba-
bility close to one. Note that the first fixed point of the above recursive
equation dictates the maximum fraction of errors �∗

υ,ν that our model can
correct. For the special case of Pc1

= 1 and Pci
= 0, for all i > 1, we obtain

ε̃λ (1 − ρ̃(1 − z)) < z, the same condition given in Karbasi et al. (2013). The-
orem 4 takes into account the contribution of all Pci

terms, and as we will
see, their values change as we incorporate the effect of internal noise υ and
ν. Our results show that the maximum value of Pci

does not occur when the
internal noise is equal to zero, υ = ν = 0, but instead when the neurons are
contaminated with internal noise. As an example, Figure 2 illustrates how
Pci

behaves as a function of υ in the network considered (note that maxi-
mum values are not at υ = 0). This finding suggests that even individual
clusters are able to correct more errors in the presence of internal noise.

To estimate the Pci
values, we use numerical approaches.6 Given a set

of clusters W (1), . . . ,W (L), for each cluster, we randomly corrupt i pattern
neurons with ±1 noise. Then we apply algorithm 1 over this cluster and
calculate the success rate once finished. We take the average of this rate over
all clusters to end up with Pci

. The results of this approach are shown in
Figure 2, where the value of Pci

is shown for i = 1, . . . , 4 and various noise
amounts at the pattern neurons (specified by parameter υ).

6Section A.2 derives an analytical upper bound to estimate Pc1
but this requires ap-

proximations that are loose.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-002.jpg&w=239&h=146
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Figure 3: The final SER for a network with n = 400, L = 50. The υ = 0 curves
correspond to the noiseless neural network.

4.1 Simulations. Now we consider simulation results for a finite sys-
tem. To learn the subspace constraints 2.1 for each cluster G(
), we use the
learning algorithm in Karbasi et al. (2013). Henceforth, we assume that the
weight matrix W is known and given. In our setup, we consider a net-
work of size n = 400 with L = 50 clusters. We have 40 pattern nodes and 20
constraint nodes in each cluster on average. External error is modeled by
randomly generated vectors z with entries ±1 with probability ε and 0 oth-
erwise. Vector z is added to the correct patterns, which satisfy equation 2.1.
For recall, algorithm 2 is used, and results are reported in terms of symbol
error rate (SER) as the level of external error (ε) or internal noise (υ, ν) is
changed; this involves counting positions where the output of algorithm 2
differs from the correct pattern.

4.1.1 Symbol Error Rate as a Function of Internal Noise. Figure 3 illustrates
the final SER of our algorithm for different values of υ and ν. Remember
that υ and ν quantify the level of noise in pattern and constraint neurons,
respectively. Dashed lines in Figure 3 are simulation results, whereas solid
lines are theoretical upper bounds provided in this letter. There is a thresh-
old phenomenon such that SER is negligible for ε ≤ ε∗ and grows beyond
this threshold. As expected, simulation results are better than the theoretical
bounds. In particular, the gap is relatively large as υ moves toward one.

A more interesting trend in Figure 3 is the fact that internal noise helps
in achieving better performance, as predicted by theoretical analysis (see
theorem 2). Notice how ε∗ moves toward one as ν increases.

This phenomenon is inspected more closely in Figure 4, where ε is fixed
to 0.125 while υ and ν vary. Figures 5a and 5b display projected versions
of the surface plot to investigate the effect of υ and ν separately. As we see

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-003.jpg&w=239&h=146
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Figure 4: The final symbol error probability when ε = 0.125 as a function of
internal noise parameters at the pattern and constraint neurons, denoted by υ

and ν, respectively.

Figure 5: The final symbol error probability as a function of internal noise
parameters at pattern and constraint neurons for ε = 0.125.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-004.jpg&w=228&h=186
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-005.jpg&w=228&h=101
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-006.jpg&w=228&h=101


2510 A. Karbasi et al.

Figure 6: The final SER for a network with n = 400, L = 50 and noise values
chosen from {−3,−2, . . . , 2, 3}. The ν = 0 curves correspond to the noiseless
neural network.

again, a moderate amount of internal noise at both pattern and constraint
neurons improves performance. There is an optimum point (υ∗, ν∗) for
which the SER reaches its minimum. Figure 5b indicates, for instance, that
ν∗ ≈ 0.25, beyond which SER deteriorates. There is greater sensitivity to
noise υ in the pattern neurons, reminiscent of results for decoding circuits
with internal noise (Tabatabaei Yazdi, Cho, & Dolecek, 2013).

4.1.2 Larger Noise Values. So far, we have investigated the performance
of the recall algorithm when noise values are limited to ±1. Although this
choice facilitates the analysis of the algorithm and increases error correction
speed, our analysis is valid for larger noise values. Figure 6 illustrates the
SER for the same scenario as before but with noise values chosen from
{−3,−2, . . . , 2, 3}. We see exactly the same behavior as we witnessed for ±1
noise values.

4.2 Recall Time as a Function of Internal Noise. Figure 7 illustrates the
number of iterations performed by algorithm 2 for correcting the external
errors when ε is fixed to 0.075. We stop whenever the algorithm corrects all
external errors or declare a recall error if all errors were not corrected in 40
iterations. Thus, the corresponding areas in the figure where the number of
iterations reaches 40 indicates decoding failure. Figures 8a and 8b, projected
versions of Figure 7, show the average number of iterations as a function of
υ and ν, respectively.

The amount of internal noise drastically affects the speed of algorithm 2.
First, from Figures 7 and 8b, observe that running time is more sensitive to
noise at constraint neurons than pattern neurons and that the algorithms

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-007.jpg&w=239&h=146
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Figure 7: The effect of internal noise on the number of iterations performed by
algorithm 2, for different values of υ and ν with ε = 0.075.

Figure 8: The effect of internal noise on the number of iterations performed by
algorithm 2 for different values of υ and ν with ε = 0.075. The average iteration
number of 40 indicates the failure of algorithm 2.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-008.jpg&w=216&h=172
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-009.jpg&w=216&h=105
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-010.jpg&w=216&h=105
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Figure 9: The effect of internal noise on the number of iterations performed by
algorithm 2 for different values of υ and ν with ε = 0.125.

become slower as noise at constraint neurons is increased. In contrast, note
that internal noise at the pattern neurons may improve the running time,
as seen in Figure 8a. Ordering of sensitivity to noise in pattern neurons and
in constraint neurons is opposite for running time as compared to error
probability.

Note that the results presented so far are for the case where the noiseless
decoder succeeds as well and its average number of iterations is pretty
close to the optimal value (see Figure 7). Figure 9 illustrates the number of
iterations performed by algorithm 2 for correcting the external errors when
ε is fixed to 0.125. In this case, the noiseless decoder encounters stopping
sets, while the noisy decoder is still capable of correcting external errors.
Here we see that the optimal running time occurs when the neurons have a
fair amount of internal noise. Figures 10b and 10a are projected versions of
Figure 9 and show the average number of iterations as a function of υ and
ν, respectively.

4.3 Effect of Internal Noise on the Performance in the Absence of
External Noise. Now we provide results of a study for a slightly modified
setting where there is only internal noise and no external errors and further
ϕ < υ. Thus, the internal noise can now cause neurons to make wrong
decisions, even in the absence of external errors. With abuse of notation, we
assume pattern neurons are corrupted with a ±1 noise added to them with
probability υ. The rest of the model setting is the same as before.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-011.jpg&w=239&h=191
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Figure 10: The effect of internal noise on the number of iterations performed by
algorithm 2 for different values of υ and ν with ε = 0.125. The average iteration
number of 40 indicates the failure of algorithm 2.

Figure 11 illustrates the effect of internal noise as a function of υ and
ν, the noise parameters at the pattern and constraint nodes, respectively.
This behavior is shown in Figures 12a and 12b for better inspection. Here,
we witness the more familiar phenomenon where increasing the amount of
internal noise results in a worse performance. This finding emphasizes the
importance of choosing update threshold ϕ and ψ properly, according to
lemma 1. See section A.3 for details on choosing thresholds.

5 Discussion

We have demonstrated that associative memories with exponential pat-
tern capacity still work reliably even when built from unreliable hardware,

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-012.jpg&w=264&h=128
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-013.jpg&w=264&h=128
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Figure 11: The effect of the internal noise on final pattern error rate (PER) as a
function of υ and ν in the absence of external noise.

addressing a major problem in fault-tolerant computing and further arguing
for the viability of associative memory models for the (noisy) mammalian
brain. After all, brain regions modeled as associative memories, such as
the hippocampus and the olfactory cortex, do display internal noise (Koch,
1999; Yoshida, Hayashi, Tateno, & Ishizuka, 2002; McDonnell & Ward, 2011).

We used a particular neuronal computation model. The linear-nonlinear
computations of algorithm 1 are nearly identical to message-passing algo-
rithms such as belief propagation and are certainly biologically plausible
(Beck & Pouget, 2007; Dayan, Hinton, Neal, & Zemel, 1995; Deneve, 2008;
Doya, Ishii, Pouget, & Rao, 2007; Hinton & Sejnowski, 1986; Ma, Beck,
Latham, & Pouget, 2006; Litvak & Ullman, 2009). The state reversion com-
putation of algorithm 2 requires keeping a state variable for a short amount
of time, which has been suggested as realistic for biological neurons (Druck-
mann & Chklovskii, 2012), but the general biological plausibility of algo-
rithm 2 remains an open question.

We found a threshold phenomenon for reliable operation, which mani-
fests the tradeoff between the amount of internal noise and the amount of
external noise that the system can handle. In fact, we showed that bounded
internal noise actually improves the performance of the network in dealing
with external errors, up to some optimal value. This is a manifestation of
the stochastic facilitation (McDonnell & Ward, 2011) or noise enhancement

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-014.jpg&w=263&h=215
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Figure 12: The effect of the internal noise on final pattern error rate (PER) as a
function of υ and ν in absence of external noise.

(Chen et al., 2007) phenomenon that has been observed in other neuronal
and signal processing systems, providing a functional benefit to variability
in the operation of neural systems.

The associative memory design developed here uses thresholding oper-
ations in the message-passing algorithm for recall. As part of our investiga-
tion, we optimized these neural firing thresholds based on the statistics of
the internal noise. As Sarpeshkar (1998) noted in describing the properties
of analog and digital computing circuits, “In a cascade of analog stages,
noise starts to accumulate. Thus, complex systems with many stages are
difficult to build. [In digital systems] round-off error does not accumulate
significantly for many computations. Thus, complex systems with many
stages are easy to build.” One key to our result is capturing this benefit
of digital processing (thresholding to prevent the buildup of errors due to
internal noise) as well as a modular architecture, which allows us to correct
a linear number of external errors (in terms of the pattern length).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-015.jpg&w=264&h=116
http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-016.jpg&w=264&h=117
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Figure 13: An external noise pattern that contains a stopping set in a noiseless
neural circuit. (Left) The original pattern. (Right) The result of the decoding
algorithm after sufficient number of iterations where the algorithm gets stuck.
Dark-colored pattern nodes are those that are connected to at least one cluster
with a single external error. Obviously the stopping set on the right does not
have any dark-colored nodes.

This letter has focused on recall; however, learning is the other critical
stage of associative memory operation. Indeed, information storage in ner-
vous systems is said to be subject to storage (or learning) noise, in situ noise,
and retrieval (or recall) noise (Varshney et al., 2006, Figure 1). It should be
noted, however, that there is no essential loss by combining learning noise
and in situ noise into what we have called external error herein (cf. Varshney,
2011, note 1 and proposition 1). Thus our basic qualitative result extends to
the setting where the learning and stored phases are also performed with
noisy hardware.

Going forward, it is of interest to investigate other neural information
processing models that explicitly incorporate internal noise and see whether
they provide insight into observed empirical phenomena. As an example,
we might be able to explain the threshold phenomenon observed in the sym-
bol error rate of human telegraph operators under heat stress (Mackworth,
1946, Figure 2) by invoking a thermal internal noise explanation. Returning
to engineering, internal noise in decoders for limited-length error-correcting
codes may improve performance as observed herein, since stopping sets are
a limiting phenomenon in that setting also.

Appendix

A.1 Illustrating Proof of Theorem 2. Figure 13a illustrates an example
of a stopping set over the graph G̃ in our empirical studies. In the figure,
only the nodes corrupted with external noise are shown for clarity. Pattern
neurons that are connected to at least one cluster with a single error are
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dark-colored, and other pattern neurons are light-colored. Figure 13b il-
lustrates the same network but after a number of decoding iterations that
result in the algorithm getting stuck. We have a stopping set in which no
cluster has a single error and the algorithm cannot proceed further since
Pci


 0 for i > 1 in a noiseless architecture. Thus, the external error cannot
get corrected.

As evident from Figure 13, the stopping set is the result of clusters not
being able to correct more than one external error; this is where internal
noise might come to the rescue. Interestingly, an “unreliable” neural circuit
in which υ = 0.6 could easily get out of the stopping set shown in Figure 13b
and correct all of the external errors. We try several times to correct errors in
a cluster (and overall in the network) while making sure that the algorithm
does not introduce new errors itself. Thus, the noise might act in our favor in
one of these attempts and the algorithm might be able to avoid the stopping
set, as depicted in Figure 13.

A.2 Estimating Pc1
Theoretically. To bound Pc1

, consider four event
probabilities for a cluster:

• π
(
)

0 (resp. P(
)

0 ): The probability that a constraint neuron (resp. pat-
tern neuron) in cluster 
 makes a wrong decision due to its internal
noise when there is no external noise introduced to cluster 
, that is,
‖z(
)‖0 = 0.

• π
(
)

1 (resp. P(
)

1 ): The probability that a constraint neuron (resp. pattern
neuron) in cluster 
 makes a wrong decision due to its internal noise
when one input error (external noise) is introduced, that is, ‖z(
)‖0 =
‖z(
)‖1 = 1.

Notice P(
)
c1

= 1 − P(
)

1 .
We derive an upper bound on the probability a constraint node makes a

mistake in the presence of one external error.

Lemma 2. In the presence of a single external error, the probability that a constraint
neuron makes a wrong decision due to its internal noise is given by

π
(
)
1 ≤ max

(
0,

ν − (η − ψ)
2ν

)
,

where η = mini, j,Wi j �=0(|Wi j |) is the minimum absolute value of the nonzero weights

in the neural graph and is chosen such that η ≥ ψ .7

7This condition can be enforced during simulations as long as ψ is not too large, which
itself is determined by the level of constraint neuron internal noise, ν, as we must have
ψ ≥ ν.
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Proof. Without loss of generality, assume it is the first pattern node, x(
)

1 ,
that is corrupted with noise +1. Now calculate the probability that a con-
straint node makes a mistake in such circumstances. We need only analyze
constraint neurons connected to x(
)

1 since the situation for other constraint
neurons is as when there is no external error. For a constraint neuron j
connected to x(
)

1 , the decision parameter is

h(
)

j = (W (
).(x(
) + z(
))) j + v j

= 0 + (W (
).z(
)) j + v j

= w j1 + v j.

We consider two error events:

• A constraint node j makes a mistake and does not send a message at
all. The probability of this event is denoted by π

(1)

1 .
• A constraint node j makes a mistake and sends a message with the

opposite sign. The probability of this event is denoted by π
(1)

2 .

We first calculate the probability of π
(1)

2 . Without loss of generality, as-
sume the w j1 > 0 so that the probability of an error of type 2 is as follows
(the case for w j1 < 0 is exactly the same):

π
(1)

2 = Pr{w ji + v j < −ψ}

= max
(

0,
ν − (ψ + w j1)

2ν

)
. (A.1)

However, since ψ > ν and w j1 > 0, then ν − (ψ + w j1) < 0 and π
(1)

2 = 0.
Therefore, the constraint neurons will never send a message that has an
opposite sign to what it should have. All that remains is to calculate the
probability they remain silent by mistake.

To this end, we have

π
(1)

1 = Pr{|w ji + v j| < ψ}

= max
(

0,
ν + min(ψ − w j1, ν)

2ν

)
. (A.2)

This can be simplified if we assume that the absolute values of all weights
in the network are bigger than a constant η > ψ . Then equation A.2 will
simplify to

π
(1)

1 ≤ max
(

0,
ν − (η − ψ)

2ν

)
. (A.3)
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Putting equations A.2 and A.3 together, we obtain

π(1) ≤ max
(

0,
ν − (η − ψ)

2ν

)
. (A.4)

In the case η − ψ > ν, we could even manage to make this probability
equal to zero. However, we will leave it as is and use equation A.4 to
calculate P(
)

1 .

A.2.1 Calculating P(
)

1 . We start by calculating the probability that a
noncorrupted pattern node x(
)

j makes a mistake, which is to change its

state in round 1. Let us denote this probability by q(
)

1 . To calculate q(
)

1 ,
assume x(
)

j has degree dj and it has b common neighbors with x(
)

1 , the
corrupted pattern node.

Out of these b common neighbors, bc will send ±1 messages and the
others will, mistakenly, send nothing. Thus, the decision-making parameter
of pattern node j, g(
)

j , will be bounded by

g(
)

j =
(sign(W (
))� · y(
)) j

d j
+ uj. ≤ bc

d j
+ uj.

We denote
(
sign(W (
))� · y(
)

)
j by oj for brevity from this point on.

In this circumstance, a mistake happens when |g(
)

j | ≥ ϕ. Thus

q(
)

1 = Pr
{∣∣g(
)

j

∣∣ ≥ ϕ|deg(a j) = d j&|N (x1) ∩ N (a j)| = a
}

= Pr

{
o j

d j
+ uj ≥ ϕ

}
+ Pr

{
o j

d j
+ uj ≤ −ϕ

}
, (A.5)

where N (ai) represents the neighborhood of pattern node ai among con-
straint nodes.

By simplifying equation A.5, we get

q(
)

1 (o j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1, if |o j| ≥ (υ + ϕ)d j

max
(

0,
υ − ϕ

υ

)
, if |o j| ≤ |υ − ϕ|d j.

υ − (ϕ − o j/d j)

2υ
, if |o j − ϕd j| ≤ υd j

υ − (ϕ + o j/d j)

2υ
, if |o j + ϕd j| ≤ υd j
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We now average this equation over oj, bc, b, and dj. To start, suppose
that out of the bc nonzero messages node aj receives, e of them have the
same sign as the link they are being transmitted over. Thus, we will have
o j = e − (bc − e) = 2e − bc. Assuming the probability of having the same
sign for each message is 1/2, the probability of having e equal signs out of

bc elements will be
(bc

e

) ( 1
2

)bc . Thus, we will get

q̄(
)

1 =
bc∑

e=0

(
bc

e

) (
1
2

)bc

q(
)

1 (2e − bc). (A.6)

Now note that the probability of having a − bc mistakes from the con-
straint side is given by

( b
bc

)
(π

(
)

1 )b−bc (1 − π
(
)

1 )bc . With some abuse of notation,
we get

q̄(
)

1 =
b∑

bc=0

(
b
bc

)
(π

(
)

1 )b−bc (1 − π
(
)

1 )bc

bc∑
e=0

(
bc

e

) (
1
2

)bc

q(
)

1 (2e − bc). (A.7)

Finally, the probability that aj and x1 have b common neighbors can be

approximated by
(d j

b

)
(1 − d̄(
)/m
)

d j−b
(d̄(
)/m
)

b, where d̄(
) is the average
degree of pattern nodes. Thus (again abusing some notation), we obtain

q̄(
)

1 =
d j∑

b=0

pb

b∑
bc=0

pbc

bc∑
e=0

(
bc

e

) (
1
2

)bc

q(
)

1 (2e − bc), (A.8)

where q(
)

1 (2e − bc) is given by equation A.5, pb is the probability of having b

common neighbors and is estimated by
(d j

b

)
(1 − d̄(
)/m
)

d j−b
(d̄(
)/m
)

b, with

d̄(
) being the average degree of pattern nodes in cluster 
. Furthermore, pbc

is the probability of having b − bc out of these b nodes making mistakes.
Hence, pbc

= ( b
bc

)
(π

(
)

1 )b−bc (1 − π
(
)

1 )bc . We will not simplify equation A.8 any
further and use it as it is in our numerical analysis in order to obtain the
best parameter ϕ.

Now we turn our attention to the probability that the corrupted node,
x1, makes a mistake: either not to update at all or to update itself in the
wrong direction. Recalling that we have assumed the external noise term
in x1 to be a +1 noise, the wrong direction would be for node x1 to increase
its current value instead of decreasing it. Furthermore, we assume that
out of d1 neighbors of x1, some j of them have made a mistake and will
not send any messages to x1. Thus, the decision parameter of x1 will be
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g(
)

1 = u + (d1 − j)/d1. Denoting the probability of making a mistake at x1

by q(
)

2 , we get

q(
)

2 = Pr
{
g(
)

1 ≤ ϕ|deg(x1) = d1 and j errors in constraints
}

= Pr
{

d1 − j
d1

+ u < ϕ

}
, (A.9)

which simplifies to

q(
)

2 ( j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+1, if | j| ≥ (1 + υ − ϕ)d1

max
(

0,
υ − ϕ

υ

)
, if | j| ≤ (1 − υ − ϕ)d1.

υ + ϕ − (d1 − j)/d1

2υ
, if |ϕd1 − (d1 − j)| ≤ υd1

(A.10)

Noting that the probability of making j mistakes on the constraint side is(d1
j

)
(π

(
)

1 ) j(1 − π
(
)

1 )d1− j, we get

q̄(
)

2 =
d1∑
j=0

(
d1

j

)(
π

(
)

1

) j(
1 − π

(
)

1

)d1− j
q(
)

2 ( j), (A.11)

where q(
)

2 ( j) is given by equation A.11.
Putting the above results together, the overall probability of making a

mistake on the side of pattern neurons when we have one bit of external
noise is

P(
)

1 = 1
n(
)

q̄(
)

2 + n(
) − 1
n(
)

q̄(
)

1 . (A.12)

Finally, the probability that cluster 
 could correct one error is that all
neurons take the correct decision,

P(
)
c1

= (
1 − P(
)

1

)n(
)

,

and the average probability that clusters could correct one error is simply

Pc1
= E


(
P(
)

c1

)
. (A.13)

We use this equation in order to find the best update threshold ϕ.
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Figure 14: The behavior of Pc1
as a function of ϕ for different values of noise

parameter, υ. Here, π
(1)

= 0.01.

Figure 15: The behavior of ϕ∗ as a function of υ for π1 = 0.01.

A.3 Choosing Proper ϕ. We now apply numerical methods to equation
A.12 to find the best ϕ for different values of noise parameter υ. Figures 14
through 16 show the best choice for the parameter ϕ. The update threshold
on the constraint side is chosen such that ψ > ν. In each figure, we have
illustrated the final probability of making a mistake, P(
)

1 , for comparison.
Figure 14 illustrates the behavior of the average probability of correcting

a single error, Pc1
, as a function of ϕ for different values of υ and for π1 = 0.01.

The interesting trend here is that in all cases, ϕ∗, the update threshold that
gives the best result, is chosen such that it is quite large. This is in line
with our expectation because a small ϕ will result in noncorrupted nodes
updating their states more frequently. On the other hand, a very large ϕ will
prevent the corrupted nodes from correcting their states, especially if there
some mistakes are made on the constraint side, π

(
)

1 > 0. Therefore, since

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00655&iName=master.img-017.jpg&w=263&h=159
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Figure 16: The optimum Pe1
as a function of υ for different values π1.

we have many more noncorrupted nodes than corrupted nodes, it is best
to choose a rather high ϕ but not too high. Also note that when π

(
)

1 is very
high, there are no values of υ for which error-free storage is possible.

Figure 15 illustrates the exact behavior of ϕ∗ against υ for the case where
φ1 = 0. As can be seen from the figure, ϕ should be quite large. Figure 16
illustrates Pe1

= 1 − Pc1
for the best chosen threshold, ϕ∗, as a function of υ

for various choices of π1.
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