Self-Assembly: Lightweight Language Extension
and Datatype Generic Programming, All-in-One!

Heather Miller

heather.miller@epfl.ch

Abstract

In this paper we show a general mechanism, called self-assembly,
for lightweight language extensions (LLEs). LLEs allow users to
define generic operations or properties that operate over a large
class of types. With LLEs it is possible, for example, for users
to define their own Java-style automatic serialization mechanism;
or implement simple forms of custom pluggable type system ex-
tensions like an immutability checker. However unlike language
built-in mechanisms (such as Java serialization), LLEs are user-
definable, multi-purpose (they can be used to define various forms
of generic functionality), and highly customizable and extensible.
The key idea, inspired by existing datatype-generic programming
approaches, is to provide programmers with a generic mechanism
for providing automatic implementations of type classes. We im-
plemented our technique as a library, self-assembly, for Scala, and
evaluated its practicality by migrating a full-featured industrial-
strength serialization framework, Scala/Pickling, keeping the same
published performance numbers while reducing the code size for
type class instance generation by 56%.

1. Introduction

Defining functionality that should apply to a large set of types is
a common problem faced by both language designers and normal
users. One common approach is to provide specialized functional-
ity across arbitrary types at the level of the compiler or runtime. For
example, in Java, every object is synthetically provided with a few
methods; toString, equals, clone, and hashCode. Serialization, on
the other hand, is also an ubiquitously needed functionality, but un-
like the above, Java does not ensure that serialization functionality
exists for every type. Instead, serialization in Java is opt-in; if a class
implements a Serializable interface then instances of that class
are automatically serializable by the JVM. While compiler/runtime-
integrated approaches such as Java’s serialization are typically easy
to use (no boilerplate required), they are inflexible and are often im-
possible to customize. For example, it is not possible to adapt Java
serialization to work with other formats (such as JSON or XML).

Library-based approaches to generic programming which re-
quire type classes [33] as a language feature are a lot more flexi-
ble. Type classes provide a mechanism where a certain functional-
ity can be captured in an interface. When programmers need certain
types of values to support a given functionality, they can imple-
ment an instance of a type class. Type classes support retroactive
extensibility [17]; functionality can be implemented after the type
or class has been defined. This is in contrast with conventional OO
programming, where all methods (such as toString or equals) are
implemented together with the definition of the class. Retroactive
extensibility enables flexibility and the possibility to customize be-
havior. As a result, several authors have argued for the software
engineering benefits of using type classes [17, 26], and Scala has
embraced them [21, 24, 26].

Philipp Haller

EPFL Typesafe, Inc.
philipp.haller@typesafe.com

Bruno C. d. S. Oliveira

The University of Hong Kong
bruno@cs.hku.hk

Type classes are more general than built-in mechanisms like
Java serialization, since any functionality (including serialization)
can be modeled as a type class. However, an approach based on type
classes is not without challenges. To provide functionality across a
large number of types, users are required to implement many type
class instances manually. To reduce this vast amount of boilerplate,
there have been a number of proposals for datatype-generic pro-
gramming (DGP) [15, 29]. DGP is an advanced form of generic
programming [23], where generic functions can be defined by in-
specting the structure of types. For this, library-based approaches
typically introduce run-time type representations. However, those
come with a significant performance penalty [1]. Moreover, the vast
majority of DGP approaches has been developed for Haskell, and
are thus fundamentally limited when ported to mainstream OO lan-
guages, due to their lack of support for subtyping or object identity.

These compiler-based and library-based approaches using type
classes are at odds with one another. On the one hand, language-
integrated approaches can be more powerful in the sense that they
can do a great deal of static analysis, and because they are so spe-
cialized, typically require no boilerplate to programmers. However
this is done at the cost of customizability and extensibility. On the
other hand, with type class-based approaches, one must contend
with an enormous amount of boilerplate or pay a non-negligible
performance penalty;' in all cases, however, type class-based ap-
proaches offer no way to statically restrict runtime behavior. Per-
haps most important for mainstream languages is the lack of sup-
port for pervasively used object-oriented features such as subtyping
and object identity, which so far have not been addressed, except for
specialized functionality [21].

In this paper, we attempt to strike a sweet spot in the design
space. Our approach is guided by the following principles:

* Extensibility and customizability. Like for type class-based
approaches, retroactive extensibility and type-based customiza-
tion should be supported.

* Little boilerplate. Like language-integrated approaches, usage
of generic code should fee/ built-in. Users shouldn’t have to
define type class instances or provide a lot of scaffolding.

* Performance. Generic functions written by library authors or
library users should have the same or better performance than
approaches with compiler/runtime support.

* Generality. In addition to generic functions, lightweight static
analysis capabilities should be supported.

In our previous work on Scala/Pickling [21], we sought to
achieve many of these goals for one particular application: serial-
ization. Scala/Pickling is based on type classes which are generated
and composed at compile time, according to their type signatures.
Due to its compile-time properties, serialization code is fast and
inlined, without requiring any boilerplate. Due to the fact that it

!'Some approaches trade type-safety for performance [1].

2014/6/3



is completely based upon type classes, flexibility and extensibility
come for free. However, the approach is specialized on providing
type class instances for only the Pickling type class. Other type
classes or generic functions are not supported.

In this paper, we present self-assembly, a general technique for
lightweight language extensions (LLEs). LLEs allow users to define
generic operations or properties that operate over a large class of
types. Importantly, the technique supports many features of main-
stream OO languages such as subtyping, object identity, and sepa-
rate compilation. So far, these features have been missing in existing
approaches for DGP; in addition, we also support these features for
generic properties.

We additionally provide a library, also called self-assembly, for
Scala, which embodies this technique. To validate our approach,
we migrated the full-featured, industrial-strength Scala/Pickling?
framework to be based upon self-assembly. Importantly, the refac-
toring preserves its high performance, flexibility, customization,
and absence of boilerplate. In addition, the use of self-assembly led
to a significant reduction in code size, and improved code clarity.

Finally, we also show a different application of LLEs: generic
properties. In self-assembly it is possible to define some forms of
lightweight static checking, which guarantee that a certain property,
e.g., deep immutability, holds. In this case, if a class is immutable,
the immutability checker generates a type class instance for that
class, which certifies that property.

In summary the contributions of this paper are:

* Self-Assembly, a general technique for LLEs that requires little
boilerplate; shares the extensibility and customizability proper-
ties of type classes; and, due to compile-time code generation,
provides high performance. It allows defining generic functions
in a statically type-safe way.

A full-featured DGP approach for OOP. self-assembly en-
ables the definition of datatype-generic functions that support
features present in production OO languages, including subtyp-
ing, object identity, and generics.

Support for generic properties. self-assembly enables
lightweight pluggable type system extensions to guarantee that
certain static properties hold at runtime, e.g., immutability.
The self-assembly library, a complete and full-featured im-
plementation of our technique in and for Scala. The library in-
cludes several auxiliary definitions, such as generic queries and
transformations, that help define new LLEs. Importantly, self-
assembly doesn’t require any extension to the language or com-
piler.

A case study on basing Scala/Pickling on self-assembly. We
evaluate the expressivity and performance of self-assembly by
porting a full-featured serialization framework, keeping the
same published performance numbers while reducing the code
size for type class instance generation by 56%.

2. Type Classes and a Boilerplate Problem

This section provides an introduction to type classes [33] and re-
views how to encode them in Scala using implicits and conven-
tional OO features [26]. This section also observes that type class
instances for various types tend to require code that follows a com-
mon pattern. The pattern can be viewed as a source of code boil-
erplate, since similar code needs to be repeated throughout several
definitions. The remainder of the paper aims at showing how to cap-
ture the pattern as reusable code and generate type class instances
automatically from that code.

2 https://github.com/scala/pickling

trait Show[T] {def show(visitee : T) : String}

implicit object IntInstance extends Show[Int] {
def show(o : Int) = o.toString()
}

Figure 1. show type class and corresponding instance for integers.

2.1 Implicits

In Scala, it is possible to select values automatically based on type.
These capabilities are enabled when using the implicit keyword.
For example, a method log with multiple parameter lists may anno-
tate their last parameter list using the implicit keyword.
def log(msg: String)(implicit o: PrintStream) =
o.println(msg)

This means that in an invocation of log, the implicit argument
list may be omitted if, for each parameter of that list, there is exactly
one value of the right type in the implicit scope. The implicit scope
is an adaptation of the regular variable scope. Imported implicits, or
implicits declared in an enclosing scope are contained in the implicit
scope of a method invocation.

implicit val out = System.out
log("Does not compute!")

In the above example, the implicit val out is in the implicit
scope of the invocation of log. Since out has the right type, it is
automatically selected as an implicit argument.

2.2 Type Classes

Type classes are a language mechanism that provide a disciplined
alternative to ad-hoc polymorphism. They have been popularized
by Haskell. Type classes allow functions to be defined over a set
of types. If values of a type T should provide a certain functionality
then that functionality can be specified as an instance of a type class.

In Scala type classes can be implemented using a combination
of standard OO features (traits, classes and objects) and implic-
its [26]. The Scala encoding of type classes is essentially a design
pattern [13]: instead of having built-in language concepts for type
classes, Scala uses general language features to model type classes.
A type class is simply an interface that provides operations over one
(or more) generic types. Such interfaces can be modeled as traits in
Scala. An example of a type class is shown in Figure 1. The trait
show[T] models a type class that provides pretty printing function-
ality for some type T via a method show.

The main conceptual difference between standard OO methods
and type-class methods is that the later are provided externally to
objects. Suppose that we wanted to add pretty printing functional-
ity to integers. To do this we create an instance of the type class
show where the generic type parameter T is instantiated to Int. The
object IntInstance in Figure 1 models such instance in Scala using
regular objects. In that object, the show method takes an argument o
of type Int an invokes the tostring() method on o.

Type-Directed Resolution of Instances An interesting aspect of
type classes is that instances can be automatically determined using
a type-directed resolution mechanism. This type-directed resolution
mechanism allows type classes to be used from client code through
amechanism similar to overloading. This is achieved in Scala using
an implicit parameter:

def ishow[T](v :
showT.show(v)

T)(implicit showT : Show[T]) =

In ishow the idea is that the method takes two parameters, with
the last of these (showT) being implicit. As we have seen in Sec-
tion 2.1 this means that the second parameter can be automatically
determined by the compiler. For example if we wanted to use show
on integers we could simply write a program such as:

2014/6/3



sealed trait Tree

case class Fork(left : Tree, right : Tree)
extends Tree

case class Leaf(elem : Int) extends Tree

implicit object TreeInst extends Show[Tree] {
def show(visitee : Tree) : String = visitee match {
case Fork(l,r) =>
"Fork(" + show(l) + ", " + show(r) + ")"
case Leaf(x) => "Leaf(" + x.toString() + ")"

3r

Figure 2. Trees of integers and corresponding Show instance.

def testl = ishow(5)

Provided that an implicit value of type Show[Int] is in the
implicit scope (for example IntInstance from Figure 1), the second
parameter is automatically inferred by the compiler.

Context Bounds Type classes are pervasively used in Scala. Be-
cause of this Scala offers an alternative convinient syntax sugar
called context bounds. Context bounds allows code using type
classes to be written more compactly and arguably more intuitively.
With context bounds, instead of writting ishow we could write:

def show[T : Show](v : T) =
implicitly[Show[T]].show(v)

The idea of context bounds comes from the fact that type classes
can also be seen as a generic programming mechanism [23], which
allows generic parameters to be constrained. In this case the type
of show can be read as a generic method where the generic type
argument must be an instance of Show. A small problem with context
bounds there is no parameter name to be used in the definition of
show. However, it is possible to guery the implicit scope for a value
of a certain type using a simple auxiliary method called implicitly:

def implicitly[T](implicit x : T) : T = x
This precludes the need for having to have the name of the im-
plicit argument in hand in order to use it. From the client perspec-

tive, using show is similar to using ishow.

2.3 Pretty Printing Complex Structures

Of course it is also possible to apply type classes to more complex
structures. For example consider a simple type of binary trees with
integers at the leafs. Figure 2 shows how to model such trees in
Scala using case classes [11] and sealed traits. The keyword sealed
in Scala means that the trait can only be implemented by definitions
in the existing compilation unit. Together with case classes this al-
lows modeling algebraic datatypes, which are a well-know concept
from functional programming. The Tree trait is the type of trees. The
case class Fork models the binary nodes of the tree, wheres the case
class Leaf models the leafs containing an integer value.

To define pretty printing for Tree using the Show type class we
create an object TreeInst. This object provides a definition for
the show method that pattern matches on the two tree constructors
(cases) of Tree. The implementation of the two cases is unremarca-
ble: both cases print the constructors names and the arguments.

A simple test program illustrating the use of TreelInst is shown
next. The value tree defines a simple tree and the definition test3
pretty prints that tree.

val tree : Tree = Fork(Fork(Leaf(3),Leaf(4)),Leaf(5))
def test3 = show(tree)

Recursive Resolution and Compositionality of Instances An-
other interesting aspect of type classes is that they provide a highly
compositional way to define instances. Lets consider a variant of
trees, shown in Figure 3, which is parametrized by some element
type A. The type these trees is PTree[A] and there are two types of

sealed trait PTree[A]

case class Branch[A](x: A, 1: PTree[A], r: PTree[A])
extends PTree[A]

case class Empty[A] extends PTree[A]

implicit def PTreeInst[A : Show]
new Show[PTree[A]] {
def show(visitee : PTree[A]) = visitee match {
case Branch(x,1l,r) =>
"Branch(" + implicitly[Show[A]].show(x) +
", " + show(1l) + + show(r) + ")"
case Empty() => "Empty()"

: Show[PTree[A]] =

" "
B

1}

Figure 3. Parametrized trees and corresponding Show instance.

nodes: Branch nodes with an element of type A and two branches;
and Empty nodes with no content.

Like other types it is possible to define an instance (PTreeInst)
for the type pTree[A]. However in order to pretty print such trees it
is necessary to know how to print the elements of type A as well.
To accomplish this we require that the generic type parameter A
has a show instance using a context bound. To print the elements
in the Branch case, the instance can be retrieved from the implicit
scope using implicitly and then used to print the element. With this
instance it is possible to print trees with integer elements, such as:

val ptree : PTree[Int] = Branch(5,Empty, Empty)
def test4 = show(ptree)

However, more interestingly, it is also possible to print trees
where for any element type that has a show instance. For example:

val ptree2 : PTree[PTree[Tree]] =
Branch(Branch(tree,Empty, Empty),Empty, Empty)

def test5 = show(ptree2)
Here ptree2 has elements of type PTree[Tree]. To print ptree2
the instance for PTree is used twice: once for values of type
PTree[PTree[Tree]]; and another time for values of type PTree[Tree].
In fact it is possible to use arbitrarely many instances of the vari-
ous types (possible multiple times) during type-directed resolution,
which makes the process very compositional. This is possible be-
cause the type-directed resolution mechanism is recursive.

2.4 A Boilerplate Problem

Although type classes are nice, they often require similar code for
different instances. For example consider the two instances in Fig-
ures 2 and 3. The code that is needed in both instances is quite sim-
ilar and it follows a common pattern: for each case the constructor
name and parameters are printed. Therefore code tends to be quite
similar across instances. This code can be viewed as a form of boil-
erplate since we could hope that it could be mechanically generated.

3. Type-Safe Meta-Programming in Scala

Scala macros [5, 6] enable a form of type-safe meta-programming.
Macros are methods that are invoked at compile time. Instead of
runtime values, macros operate on and return typed expression
trees. In the following we provide an overview of macros, type
checking, and properties.

3.1 Definition

Macro defs are methods that are transparently loaded by the com-
piler and executed (or expanded) during compilation. A macro is
defined like any normal method, but it is linked using the macro
keyword to an additional method that provides its implementation,
which operates on expression trees.

def assert(x: Boolean, msg: String): Unit =

macro assert_impl
def assert_impl(c: Context)

2014/6/3



object Show extends Query[String] {
def mkTrees[C <: SContext](c: C) = new Trees(c)

class Trees[C <: SContext](override val c: C)
extends super.Trees(c) {
import c.universe._
type SExpr = c.Expr[String]

def combine(left: SExpr, right: SExpr) =
reify { left.splice + right.splice }

def delimit(tpe: c.Type) = {
val start = constant(tpe.toString + "(")
(start, reify(", "), reify(")"))

I

implicit def generate[T]: Show[T] =
macro genQuery[T, this.type]
}

Figure 4. Implementing the Show type class using self-assembly.

(x: c.Expr[Boolean], msg: c.Expr[String]):
c.Expr[Unit] = ...

In the above example, the parameters of assert_impl are typed ex-
pression trees, which the body of assert_impl operates on, itself
returning an expression of type Expr[Unit]. assert_impl is eval-
uated at compile time, and its result is inlined at the call site of
assert. Note that expression trees are typed, i.e., assert’s parame-
ter of type Boolean corresponds to a typed expression tree of type
Expr[Boolean].

In the type-safe subset of macros that we consider in this paper,
expression trees are built using reify/splice:

val expr: c.Expr[Boolean] = reify {
if (x.splice > 10) x.splice
else true

}

Here, the body of reify consists of regular Scala code. Expressions
in the enclosing scope are spliced into the result expression using the
splice method. Importantly, the code within reify is type-checked
at its definition site. This means, for the above code, Scala’s type
checker reports type errors not in terms of the generated code, but
in terms of the high-level user-written code.

Due to limitations in the reify API, we use quasiquotes (type-
checked during macro expansion) to circumvent the above type-
checking in a small trusted core of self-assembly, shielded from
users. However, we never lose soundness, since, unlike
MetaML [32], all splicing is done at compile time, and generated
expressions are always re-type-checked after expansion.

3.2 Properties

Constant Type Signatures In this work, we focus on one of two
macro def varieties: “blackbox’ macros. In this case, the type sig-
nature of the macro provides all information necessary for type-
checking all of its invocations. That is, the macro does not have to
be expanded prior to type-checking. This has important software en-
gineering benefits, namely that abstract, type-based reasoning about
programs is maintained independently of the macro’s corresponding
implementation. This is particularly useful when reasoning about
the result type of a macro. For blackbox macros, the implementa-
tion (and expansion) is not required to determine the result type.

Local Expansion Since macros are simply methods that are in-
voked at compile time, they are expanded and inlined at invocation
site. For this reason, we consider macro defs to be “local compiler
extensions.” They cannot change the compiler’s global symbol ta-
ble. Thus, they cannot introduce new top-level type definitions.

4. Basic Self-Assembly

Section 2 showed how to write type classes like Show[T] manually,
pointing out a source of significant boilerplate code. In section 4.1,
we outline the basic usage of the self-assembly library, which al-
lows defining type classes desired in a way where the required boil-
erplate is automatically generated. Section 4.2 explains the mechan-
ics of the automatic type class generation implemented in the self-
assembly library. Section 4.3 outlines how one can customize the
generation of type classes for specific types.

4.1 Basic Usage

The self-assembly library allows implementing type classes in-
stances automatically on demand at compile time. This main idea
is introduced using the simple show type class in Figure 1. Section 6
shows how our approach extends to different forms of type classes,
commonly referred to as queries and transformations [18].

Generating Instances for show Suppose a user wants to provide
instances of Show[T] for as many types as possible. Using self-
assembly we can create a singleton object that extends a library-
provided trait, and that implements two factory methods, generate
and mkTrees. Figure 4 shows the show companion object,’ which
extends the Query trait. The mkTrees factory method, abstract in
Query, creates a new Trees instance; Trees[C] provides a number of
methods that are invoked by the self-assembly library at compile
time to obtain AST fragments that are inlined in the generated code.
The show type class converts objects to strings; thus, the query has
to define how to assemble result strings, based on an associative
combination operator (combine), begin/end delimiters (first/last),
and a separator. As mentioned in Section 3, the syntax reify { ... }
creates a typed expression based on Scala code. left.splice splices
the expression left into the result expression. The compiler type-
checks reify blocks at their definition site.

Apart from implementing a subclass of Trees[C], the Show sin-
gleton object also needs to define a generic implicit method (here,
generate) that invokes the generation macro genQuery. The genQuery
macro is provided by our library.*

Result With the show singleton object defined as in Figure 4 it is
no longer necessary for the user to define a type class instance for
every single type manually. Instead, whenever an instance of type,
say, Show[MyClass], is required (typically, using an implicit param-
eter), Scala’s type checker automatically inserts a call to the implicit
def generate[MyClass]; this implicit def generates a suitable imple-
mentation of the searched type class instance on-the-fly. As a result,
type class instances do not have to be defined manually.

4.2 Generation Mechanism

We illustrate the general idea of our generation technique through
a simple example based solely on closed ADT-style datatypes in
Scala. Such datatypes consist of either sealed traits or case classes
extending such traits. In subsequent sections, we generalize this
view to richer types.

Our treatment is centered on an example, in which, our goal is to
automatically “derive” type class instances that “show” information
about a given type. Think of it as a toString method that traverses
the structure of a type, and nicely prints information about all of the
fields of that type.

We structure our treatment into three distinct steps: (1) in Sec-
tion 4.2.1, we show how our generation is triggered; (2) in Sec-
tion 4.2.2, we explain our macro-based generation technique; (3) in

3 A companion object is a singleton object with the same name as a trait.

4 The type argument this. type is the type of the enclosing singleton object;
it is passed to genQuery to identify the type class and the mkTrees method that
should be used by the library to generate instances.

2014/6/3



trait Query[R] ... {
def mkTrees[C <: Context with Singleton](c: C)
: Trees[C]

abstract class Trees[C <: Context with Singleton]
(override val c: C) extends super.Trees(c) { }

def genQuery[T:c.WeakTypeTag, S:c.WeakTypeTag]

(c: Context): c.Tree = {

import c.universe._

val tpe = weakTypeOf[T]

val stpe = weakTypeOf[S]

val tpeOfTypeClass =
stpe.typeSymbol.asClass.companion.asType

.asClass.toTypeConstructor

val gresTpe =

tpeOfTypeClass.decls.head.asMethod.returnType

val trees = mkTrees[c.type](c)

Figure 5. Macro-based generation: set-up

Section 4.2.3, we show some example type class instances that re-
sult from our generation technique, and relate them to the type class
pattern introduced in Section 2.2.

4.2.1 Triggering Generation

To be able to generate suitable instances for all possible types for
which show[T] can be defined, we put an implicit macro into the
companion object of Show[T]. The fact that the implicit macro is in-
side the companion object means that whenever an instance Show[S]
is requested, Scala’s implicit lookup mechanism searches the mem-
bers of the companion object show where it finds the implicit macro:

object Show extends Query[String] {

implicit def generate[T]: Show[T] =
macro genQuery[T, this.type]
}
Thus, the implicit lookup mechanism inserts an invocation of the
macro method genQuery.

4.2.2 Macro-Based Generation

Being a macro, genQuery returns an abstract syntax tree instead of a
(runtime) value. It is declared as follows:

def genQuery[T:c.WeakTypeTag, S:c.WeakTypeTag]
(c: Context): c.Tree = ...

Note that in this declaration, the type parameters T and s are anno-
tated with context bounds c.WeakTypeTag. First, the macro collects
information about the types and the type class for which an instance
should be generated. Second, the macro creates an instance of the
user-provided Trees class by invoking the mkTrees factory method.
These steps are shown in Figure 5.

The body of the type class is generated using:

val tpe = weakTypeOf[T] // see Fig. 5

val (first, separator, last) =
trees.delimit(tpe)

val body = trees.combine(
fieldsExpr(first, separator), last)

To create the result expression, the macro utilizes the trees in-
stance (of type Trees) that we initialize in the set-up phase (see Fig-
ure 5). Calling delimit returns three expressions (“delimiters”) of
type Expr[R] based on the reified type tpe. Recall that tpe corre-
sponds to type parameter T, which is the type for which the macro
generates a type class instance. The fieldsExpr method creates an
Expr[R] by folding the Expr[R]s obtained for each field (see below)
using the user-overridden combine method:

if (paramFields.size < 2)

(:) implicit object CShowInstance extends Show[C] {
(:) def show(visitee: C): String = {
var result = "C("

() val inst_1 = implicitly[Show[D1]]
(:) () result += inst_1.show(visitee.p_1)

val inst_n = implicitly[Show[DN]]
result += inst_n.show(visitee.p_n)
result += ")"

Figure 6. Basic generation of type classes.

else
paramFields.tail.foldLeft(first) { (acc, sym) =>
val withSep = trees.combine(acc, separator)
trees.combine(withSep, fieldValue(sym))
}

For example, Figure 4 shows that the definition of combine for
Show is just string concatenation. As a result, this code concatenates
the string values of all fields separated with separator.

The expression tree fieldvalue(sym) is obtained as follows. For
each field declared in type tpe, the following subexpression is gen-
erated:

val symTp = sym.typeSignatureIn(tpe)

val fieldName = sym.name.toString.trim

trees.fieldValueExpr(visitee, fieldName,
symTp, tpeOfTypeClass)

The invocation of fieldvalueExpr expands to (a) a nested look-
up of a type class instance for the field, and (b) an invocation of the
type class method:

def fieldValueExpr(visitee: c.Expr[T], name: String,
tpe: c.Type, tpeOfTypeClass: c.Type): c.Expr[R] =
c.Expr[R](

implicitly[${appliedType(tpeOfTypeClass, tpe)}]
.apply($visitee.${TermName(name)})
")

The syntax g"""...""" indicates the use of a quasiquote to cre-
ate an untyped tree that is cast to an Expr[R], effectively form-
ing part of a small trusted core of self-assembly. The main rea-
son for creating an untyped tree at this point is that the value of
field “name” is obtained using only the field’s name—the selection
$visitee.${TermName(name)} must fundamentally be untyped. It is
clear, though, that the result will be of type R, since that’s the result
type of all type class instances of type tpe0OfTypeClass.

4.2.3 Generated Type Class Instances

The generation technique explained in the previous section pro-
duces implicit (singleton) objects which correspond to the type class
instances portion of the type class pattern introduced in Section 2.2.

Let’s say the datatype that we’d like to call show on is the Tree
type in Figure 2. In order to create a type class instance of type
Show[Tree], we also create type class instances for Tree’s two sub-
classes, Fork and Leaf. Fork and Leaf are case classes with the gen-
eral shape:

case class C(p_1: D_1, ..., p_n: D_n)
extends E_1 with . with EEm { ... }

An arbitrary type class instance (implicit singleton object) can
be generated using the technique described in the previous section.
Figure 6 shows the general structure that is generated for an arbi-
trary shape . The implicit object (1) is exactly the same as in the
manual type class pattern described in Section 2.2. (2) is the im-
plementation of the single abstract method of the type class (the

2014/6/3



// File PersonA.scala:
abstract class Person {
def name: String
def age: Int
}
case class Employee(n: String, a: Int, s: Int)
extends Person {
def name = n
def age = a
}

// File PersonB.scala:

case class Firefighter(n: String, a: Int, s: Int)
extends Person {
def name = n
def age = a
def since =

}

S

Figure 7. Open class hierarchy

show method of the show trait). (3) is the result of expanding the
implicitly invocation within the method fieldvalueExpr above. (4)
corresponds to the accumulation logic which itself results from the
fold of paramFields above (to simplify the presentation we use the
result accumulator variable instead of a deeply nested tree). Fi-
nally, (5) corresponds to first and last in the body of the macro-
generated implementation of Show’s single abstract method, show.

4.3 Customization

Generation as provided by self-assembly is convenient, but in some
cases it is desirable to have full control over the type class instances
for specific types (one strength of the type class pattern as intro-
duced in Section 2.2). When using the self-assembly library, cus-
tomization is still possible. It is sufficient to define custom instances
for selected types manually; these custom instances are then trans-
parently picked up and chosen in place of automatically-generated
ones. It is even possible to use Scala’s scoping and implicit prece-
dence rules to prioritize certain instances over others.

5. Self-Assembly for Object Orientation

A cornerstone of the design of self-assembly is its support for
features of mainstream OO languages. The following Section 5.1
explains how our approach supports subtyping polymorphism in
the context of open class hierarchies (Section 5.1.1) and separate
compilation (Section 5.1.2). In Section 5.2 we discuss how self-
assembly handles cyclic object graphs, which are easily created
using mutable objects with identity.

5.1 Subtyping

Object-oriented languages like Java or Scala enable the definition of
a subtyping relation based on class hierarchies. Given the pervasive
use of subtyping in typical object-oriented programs, our approach
is designed to account for subtyping polymorphism. In addition, we
provide mechanisms that enable the object-oriented features even
in a setting where modules/packages are separately compiled.

5.1.1 Open Hierarchies

Classes defined in languages like Java are by default “open,” which
means that they can have an unbounded number of subclasses
spread across several compilation units. By contrast, final classes
cannot have subclasses at all. In addition, sealed classes in Scala
can only have subclasses defined within the same compilation unit.

Our approach enables the generation of type class instances even
for open classes. For example, consider the class hierarchy shown
in Figure 7. The self-assembly library can automatically generate
an instance for type Person:

val em = Employee("Dave", 35, 80000)

val ff = Firefighter("Jim", 40, 2004)
val inst = implicitly[Show[Person]]
println(inst.show(em))
// prints: Employee(Dave, 35, 80000)
println(inst.show(ff))
// prints: Firefighter(Jim, 40, 2004)
Note that we are using the same Show instance to convert both
objects to strings.

Generation Concrete instances of a classtype, such as Person in
Figure 7, in general have subtypes (dynamically). One approach
to account for subtypes is by building the logic for all possible
subtypes into the type class instance for the supertype, like is shown
in Figure 2 in Section 2.3. However, such an approach does not
support open class hierarchies, where new subclasses can be added
in additional compilation units.

To support open class hierarchies, the generation of type class
instances for open classes adds a dispatch step. For a class like
person in Figure 7, a dynamic dispatch is generated to select a
specific type class instance based on the runtime classtype of the
object that the type class is applied to (visitee):’

implicit object PersonInst extends Show[Person] {
def show(visitee: Person): String =
visitee match {
case vl: Employee =>
implicitly[Show[Employee]].show(v1l)
case v2: Firefighter =>
implicitly[Show[Firefighter]].show(v2)

5.1.2 Separate Compilation

To support subtyping polymorphism not only across different com-
pilation units, but also across separately-compiled modules,® self-
assembly provides dynamic instance registries. In the case of
separately-compiled modules, subclasses for which we would like
to generate instances are in general only discovered at link time.
To be able to discover such subclasses, self-assembly allows reg-
istering generated instances with an instance registry at runtime.
A reference to such an instance registry can then be shared across
separately-compiled modules.
For example, module A could create a registry and populate it
with a number of instances:
implicit val reg = new SimpleRegistry[Show]
reg.register(classOf[Employee],
implicitly[Show[Employee]])
reg.register(classOf[Firefighter],
implicitly[Show[Firefighter]])

Note that the registry reg is defined as an implicit value; as we
explain in the following, this is required to enable registry look-ups
when dispatching to type class instances based on runtime types.

With the instance registry set up in this way, another separately-
compiled module B is then able to dispatch to instances registered
by module A:

implicit val localReg = getRegistryFrom(moduleA)
localReg.register(classOf[Judge],
implicitly[Show[Judge]])

Importantly, when module B invokes the show method of an instance
instP of type Show[Person], passing an object with dynamic type
Employee, the generated instance instP dispatches to the correct type
class instance of type Show[Employee] through a look-up in registry
localReg.

5 Simplified; handling of null values is omitted for simplicity.
© The Scala ecosystem distributes modules in separate “JAR files” typically.

2014/6/3



Generation To enable registry look-ups, we augment the dispatch
logic with a default case:’
case _ => {
val reg$l = implicitly[Registry[Show]]
val lookup$2: Option[Show[_]] = reg$l.get(clazz)
lookup$2.get.asInstanceOf[Show[Person]]
.show(visitee)
}

5.2 Object Identity

In object-oriented languages like Scala, it is important to take object
identity into account. Simple datatypes such as case classes already
permit cycles in object graphs via re-assignable fields (using the var
modifier). It is therefore important to keep track of objects that have
already been visited to avoid infinite recursion.

To enable the detection of cycles in object graphs, we keep track
of all “visited” objects during the object graph traversal performed
by a type class instance. However, it is not sufficient to maintain a
single, global set of visited objects, since implementations of one
type class might depend on other type classes; different type class
instances could therefore interfere with each other when accessing
the same global set (yielding nonsensical results). Thus, it is prefer-
able to pass this set of visited objects on the call stack. With the
mechanics introduced so far, this is not possible.

To enable passing an additional context (the set of visited ob-
jects) on the call stack, we require type classes to extend
Queryable[T, R]:

trait Queryable[T, R] {
def apply(visitee: T, visited: Set[Any]): R

The Queryable[T, R] trait declares an apply method with an addi-
tional visited parameter (compared to the trait of the type class),
which is passed the set of visited objects. This extra method al-
lows us to distinguish between top-level invocations of type class
methods and inner invocations (of apply). The only downside is that
custom type class instances are slightly more verbose to define, al-
though the implementation of apply can typically be a trivial for-
warder.

For example, consider the show[T] type class, now extending
Queryable[T, String]:

trait Show[T] extends Queryable[T, String] {

def show(visitee: T): String

}

A type class instance for integers can be implemented as follows:

implicit val intHasShow = new Show[Int] {

def show(visitee: Int): String = "" + x
def apply(visitee: Int, visited: Set[Any]) =
show(visitee)

}
Note that the implementation of apply is trivial.

Generation To enable the detection of cycles in object graphs it
is necessary to adapt the implementation of the implicit object as
follows.
implicit object CShowInstance extends Show[C] {
def show(visitee: C): String =
apply(visitee, Set[Any]())
def apply(visitee: C, visited: Set[Any]) =

}

Note that an invocation of show is treated as a fop-level invocation
forwarding to apply passing an empty set of visited objects. Cru-
cially, when applying the type class instances for the class parame-

7 Minimally simplified; the actual code also keeps track of object identities
as discussed further below.

ters of ¢, instead of invoking show directly, we invoke apply passing
the visited set extended with the current object (visitee).

var result: String =
if (!visited(visitee.p_1)) {
val inst_1 = implicitly[Show[D_1]]
result = result +
inst_1.apply(visitee.p_1, visited + visitee)

}

if (!visited(visitee.p_n)) {
val inst_n = implicitly[Show[D_n]]
result = result +
inst_n.apply(visitee.p_n, visited + visitee)

6. Transformations

The library provides a set of traits for expressing generic functions
that are either (a) queries or (b) transformations. Basically, a query
generates type class instances that traverse an object graph and re-
turn a single result of a possibly different type. In contrast, a trans-
formation generates type class instances that perform a deep copy
of an object graph, applying transformations to objects of selected
types. While Sections 4-5 were focussed on generic queries, this
section provides an overview of generic transformations.

Example Suppose we would like to express a generic transforma-
tion, which clones object graphs, except for subobjects of a certain
type, which are transformed. An example for such a transforma-
tion is a generic “scale” function that scales all integers in an object
graph by a given factor. The self-assembly library lets us write
the “scale” function in two steps: first, the definition of a suitable
type class; second, the implementation of a subclass of the library-
provided Transform class. A suitable type class is easily defined:

trait Scale[T] extends Queryable[T, T] {

def scale(visitee: T): T

}
Note that the input and output types of Queryable are the same in
this case, since scale transforms any input object into an object of
the same type. The actual transformation is defined as follows:

object Scale extends Transform {
def mkTrees[C <: SContext](c: C) = new Trees(c)

class Trees[C <: SContext](override val c: C)
extends super.Trees(c)

implicit def generate[T]: Scale[T] =
macro genTransform[T, this.type]
}

This transformation is not very interesting yet: it simply creates a

deep clone of the input object. To specify how, in our case, integers

are scaled, it is necessary to define a custom type class instance:
def intScale(factor: Int) = new Scale[Int] {

def scale(x: Int) = x * factor
def apply(x: Int, visited: Set[Any]) = scale(x)

implicit val intInst = intScale(myFactor)
For convenience, we can introduce a generic gscale function:
def gscale[T](obj: T)(implicit inst: Scale[T]): T =
inst.scale(obj)
gscale is then invoked as follows:

implicit val inst = intScale(190)
val scaled = gscale(obj)

Transformations in self-assembly — The genTransform macro is
based on traversals similar to those of generic queries. However,
the crucial difference is that the macro generates code to clone
visited objects (based on techniques used in Scala/Pickling [21]).
Interestingly, the implementations of queries and transformations
share a substantial number of generic building blocks.

2014/6/3



7. Generic Properties: Lightweight Pluggable
Type System Extensions

In this section we show how our approach supports the definition
of lightweight pluggable type system extensions that go beyond
object-oriented DGP as discussed in the previous sections. In partic-
ular, the self-assembly library allows defining generic type-based
properties that can be checked by the existing Scala type checker.

The key to support both object-oriented DGP and type proper-
ties is the fact that our approach is based on generic programming at
compile time. In addition to having access to query and transforma-
tion facilities provided by the library, users also have (a) access to
full static type information and (b) Scala’s meta-programming API,
enabling one to generatively define such generic type properties.

The enabled language extensions are lightweight in the sense
that they cannot extend the existing syntax or change Scala’s ex-
isting type-checking. Instead, they can be thought of as pluggable
type system extensions [4] in that without changing the existing
typechecker, additional properties can be checked. As a result, our
approach supports extensions such as (transitive) type-based im-
mutability checking, which goes beyond standard DGP.

In the following Section 7.1, we first provide a more precise
definition of the supported generic properties. Section 7.2 presents
a complete example of a non-trivial generic property, immutable
types. Finally, in Section 7.3, we discuss key aspects of our imple-
mentation in the self-assembly library.

7.1 Generic Properties: Definition

The generic properties supported in self-assembly are unary type
relations. Oliveira et al. [26] show how to define custom type rela-
tions in Scala using implicits (see Section 2.1). However, unary type
relations defined using implicits are incapable of expressing prop-
erties that depend on structural type information that’s inaccessible
through simple type bounds. Our approach builds on Oliveira etal.’s
foundation, and extends it to deep structural type information using
type-safe meta-programming.

In the following, we summarize the definition of type relations
using implicits and present a high-level overview of our exten-
sions. We then show how self-assembly is augmented with meta-
programming facilities in order to enable the definition of deeper
structural properties.

Defining Unary Type Relations via Type Classes Using implicits
a unary type relation can be defined in Scala using an arbitrary
generic type constructor, say, TC. A type T can be declared to be
an element of this relation, by defining an implicit of type TC[T]:

implicit val tct = new TC[T] {}

This way, an arbitrary bounded unary type relation can be defined.
The membership of a type U in the relation Tc can be checked by
requiring evidence for it using an implicit parameter:

def m[U](implicit ev: TC[U]):
(Classes, and thereby constructors, can also have such implicit pa-
rameters.) Only if there exists an implicit value of type TC[U] can
an invocation of method m[u] be type-checked.

Polymorphic implicit methods allow defining a certain class of
unbounded type relations by returning values of type Tc[v] for an
arbitrary type Vv that satisfies given type bounds. For example, the
following implicit method declares all types that are equal to or
subtypes of type Person to be elements of relation TC:

implicit def belowPerson[S <: Person]: TC[S] =
new TC[S] {}
However, without meta-programming the domain of the relation
can only be restricted using type bounds; this is not enough for rich
properties such as immutability since it requires deep checking to
determine whether fields are re-assignable or not.

More Powerful Type Relations via Type-Safe Meta-Programming
We extend the above-described type class-based approach so as to
be able to define relations that take deep structural type informa-
tion into account. Our approach provides the following benefits for
library authors defining new type relations (such as the immutable
property):

1. Library authors are provided with a safe, read-only view of the
static type info corresponding to types we test for membership
in the relation. The provided type information is not restricted
to subtyping tests, rather, all functionality for analyzing type
information is provided by Scala’s meta-programming API.

2. Boilerplate for library authors is minimized using the generation
approach that we outlined in Section 4.2.2. Analogous to queries
and transformations, the self-assembly library provides a set of
reusable abstractions, in turn making the generation mechanism
easily accessible to library authors.

Safety Static meta-programming has a reputation for being ad-
hoc, untyped, and “anything-goes.” However, in our approach the
use of macros is fairly restricted. First, we restrict ourselves to a
type-safe subset of Scala’s macro system (except for a small trusted
core), and macro implementations are guaranteed to conform to
their type signatures. As a result, these macros are easy to reason
about and are well-behaved citizens in the tooling ecosystem. Sec-
ond, and perhaps most importantly, the self-assembly library en-
capsulates all code generation capabilities internally; library authors
defining new generic properties are provided with only a very re-
stricted API. The API is limited to a read-only view of static type
information and the possibility to define a predicate on this infor-
mation controlling type class instance generation.

7.2 Example: Immutable Types

This section presents a complete example of a generic property as
defined by a library author using self-assembly: a type property for
deep immutability. The implementation of this property is shown in
Figure 8.

The goal of the defined generic property is to traverse the full
structure of a given type, and to ensure (a) that there are no re-
assignable fields and (b) that all field types satisfy this property
recursively. Therefore, the property is guaranteed transitively (all
reachable objects are immutable). To guard against subclasses with
re-assignable fields, the implementation assumes references of non-
final class type potentially refer to mutable objects.

Elements like trait Property and the genQuery macro are provided
by the library. The idea is that when the genQuery macro derives an
instance of Immutable[T] it (a) creates an instance of class Trees at
compile time, and (b) uses this to check that type 7' (accessible at
compile time as tpe) does not contain re-assignable fields (vars) and
it is possible to derive Immutable instances for all its fields (in turn
guaranteeing that they are all deeply immutable).

The example also shows that it is possible to add custom type
class instances manually (in the example, for types Int and String).
In general, this means that the checks of the generic property can
be overridden for specific types. While providing an escape hatch
(e.g., in situations where lightweight static checking is not powerful
enough to prove a desired property for some type), this capability
can also be used to subvert the checking of the generic property,
of course. However, existing type checking of the Scala compiler
remains unaffected in all cases.

7.3 Generic Properties as Implemented in self-assembly

The self-assembly library implements generic properties as exten-
sions of generic queries. Note that library authors defining new type
properties are not exposed to the implementation discussed in the
following.

2014/6/3



trait Immutable[T] {}

object Immutable extends Property[Unit] {
def mkTrees[C <: Context with Singleton](c: C) =
new Trees(c)

class Trees[C <: Context with Singleton]
(override val c: C) extends super.Trees(c) {
def check(tpe: c.Type): Unit = {
import c.universe._

if (tpe.typeSymbol.isClass &&
Itpe.typeSymbol.asClass.isFinal &&
Itpe.typeSymbol.asClass.isCaseClass) {
c.abort(c.enclosingPosition, """instances
of non-final or non-case class not
guaranteed to be immutable""")
} else {
// i1f tpe has var, abort
val allAccessors =
tpe.decls collect {
case sym: MethodSymbol
if sym.isAccessor ||
sym.isParamAccessor => sym }
val varGetters =

allAccessors collect {

case sym if sym.isGetter &&
sym.accessed != NoSymbol &&

sym.accessed.asTerm.isVar => sym }
if (varGetters.nonEmpty)
c.abort(c.enclosingPosition,
"not immutable")
¥
}
}

implicit def generate[T]: Immutable[T] =
macro genQuery[T, this.type]

implicit val intIsImm: Immutable[Int] =
new Immutable[Int] {}

implicit val stringIsImm: Immutable[String] =
new Immutable[String] {}
}

Figure 8. Deep immutability checking using self-assembly

Let us consider a sketch of self-assembly’s implementation of
the simple generic Property trait used in the previous example:
trait Property[R] extends AcyclicQuery[R] {
abstract class Trees[C <: SContext]
(override val c: C) extends super.Trees(c) {
def check(tpe: c.Type): Unit
override def delimit(tpe: c.Type) = {
check(tpe)
(reify({}), reify({}), reify({}))

)

The trait introduces a new abstract check method that must be im-
plemented by the library author who wishes to define concrete prop-
erties such as Immutable[T] above. Moreover, the delimit method
that the generic query invokes for all types encountered in a traver-
sal is overridden to invoke the user-defined check method. Other-
wise, delimit only returns trivial expression trees, since they are
(essentially) unused.

8. Implementation and Case Study

We have implemented our approach in the self-assembly Scala li-
brary.® The library has been developed and tested using the current
stable release of Scala version 2.11. No extension of the Scala lan-
guage or compiler is required by the library. The library is com-
prised of ~ 1, 150 LOC.

8 See https://github.com/phaller/selfassembly

Case Study: Scala Pickling To evaluate both expressivity and
performance, we have ported an industrial- strength serialization
framework, called Scala/Pickling [21], to self-assembly’.

Scala/Pickling is a popular open-source project; on the so-
cial code hosting platform GitHub, the project has more than 360
“stars”. To achieve its high performance, Scala/Pickling leverages
macros for compile-time code generation. Our port of Scala/Pick-
ling to self-assembly supports already about 90% of the features
of the original; notably, subtyping, object identity, separate com-
pilation, and pluggable pickle formats. Currently, the port lacks
picklers based on run-time reflection.

Framework LOC reduction
Scala/Pickling <1% 56%

Performance Change

Table 1. Results of porting Scala/Pickling to self-assembly

In terms of efficiency, self-assembly compares favorably to the
original library: execution time of the “Evactor” benchmark [21]
remains within 1% of Scala/Pickling. At the same time, the self-
assembly-based code is significantly simpler, shorter, and more
maintainable. The use of self-assembly reduced the code size for
macro-based type class instance generation by about 56%.

9. Related Work

DGPin Functional Languages The idea of DGP originated in the
Functional Programming community. There are several approaches
for writing datatype-generic programs. Early approaches were
based on programming languages with built-in support for DGP.
These approaches include PolyP [16], and Generic Haskell [9].
Later approaches were based on small language extensions for gen-
eral purpose languages like Haskell. Examples include Scrap Your
Boilerplate [18], Template Haskell [31] and Generic Clean [2].

More recently, researchers have realized that by using advanced
type system features DGP could be implemented directly as li-
braries. Extensive surveys of various approaches to DGP in Haskell
(mostly focused on libraries) document various approaches [15, 29].
A large majority of these library based approaches use run-time
type representations, as well as, isomorphisms that convert between
specific datatypes and generic type representations. Without fur-
ther optimizations this has a significant impact on performance.
To improve performance several approaches use techniques such as
partial-evaluation [3] or inlining [20]. Approaches based on partial-
evaluation require language support, which makes them more diffi-
cult to adopt. Inlining is simpler to adopt since it is readily available
in many compilers. Good results optimizing some generic functions
have been reported in the GHC compiler. However inlining is not
very predictable and some generic functions do not optimize well.

Approaches that use meta-programming techniques like Tem-
plate Haskell (TH) [1] to do DGP are closest to our work. The use
of TH is very often motivated by performance considerations, to
avoid the costs of run-time type representations. However, pub-
lished proposals using TH are based on its untyped macro system.
(TH itself has recently been upgraded to allow type-safe macros.)
Although type errors are still detected at compile time even using
the untyped system, they are given in terms of the generated code
instead of the macro code. In self-assembly we do notneed to make
such a trade-off, because we only use the type-safe subset of Scala’s
macros (apart from a small, internal trusted core, as is common in
DGP approaches).

In contrast to self-assembly none of the functional DGP ap-
proaches deal with OO features like subtyping or object identity.

9https://github.com/pha1ler‘/selfassembly/tr‘ee/master‘/sr‘c/main/
scala/selfassembly/examples/pickling

2014/6/3



DGPin OO0 Languages Adaptive Object-Oriented Programming
(AOOP) [19] can be considered a DGP approach. In AOOP there
is a domain-specific language for selecting parts of a structure that
should be visited. This is useful to do traversals on complex struc-
tures and focus only on the interesting parts of the structure relevant
for computing the final output. DJ is an implementation of AOOP
for Java using reflection [27]. More recently, inspired by AOOP,
DemeterF [7] improved on previous approaches by providing sup-
port for safe traversals, generics and data-generic function genera-
tion. Compared to self-assembly most AOOP approaches are not
type-safe. Only in DemeterF a custom type system was designed
to ensure type-safety of generic functions. However DemeterF re-
quires a new language and it is unclear wether issues like object
identity are considered, since they take a more functional approach
than other AOOP approaches. DemeterF is a language approach to
DGP (much like Generic Haskell, for example); whereas we view
self-assembly as a library based approach.

There has also been some work porting existing functional DGP
approaches to Scala. Moors et al. [22] did a port of “origami”-based
DGP [14]. Oliveira and Gibbons [25] picked up on this line of work
and have shown how several other DGP approaches can be ported
and improved in Scala. In particular they have shown some ap-
proaches that for doing DGP with type classes, which has a similar
flavour to self-assembly. However none of these ports attempt to
deal with OO features like subtyping or object identity. Moreover
all approaches are based on run-time type representations, which is
in contrast to our compile-time approach.

Pluggable Type Systems and Language Extensions There are
several approaches for providing pluggable type system extensions
for statically-typed OO languages [8, 10, 28], but unlike self-
assembly, they do not provide DGP capabilities. Furthermore, self-
assembly provides LLEs, which can cannot extend program syntax
(like, e.g., SugarJ [12]) or change Scala’s built-in type checking.

Our approach is in some sense complementary to staging for
embedded DSLs (e.g., , LMS [30]): however, rather than providing
staged expressions that are type-checked by the host language, we
piggy-back on a macro system for the definition of new type rela-
tions. Implicit macros generate type class instances, which, in turn,
refine type-checking of unstaged programs in the host language.
Furthermore, self-assembly doesn’t require any extensions to the
host language.

10. Conclusion

This paper shows a general mechanism, called self-assembly, for
lightweight language extensions. This mechanism has the extensi-
bility and customization advantages of type classes; and it has the
automatic implementation advantages of mechanisms like Java’s
serialization mechanism. The key idea is to provide automatic im-
plementations of type classes using type-safe macros. This allows
programmers to define their own generic functionality, such as se-
rialization, pretty printing, or equality; and it also allows the defini-
tion of generic properties such as immutability checking. To demon-
strate the usefulness of self-assembly in practice, we implemented
an industry-ready serialization framework for Scala.

References

[1] M. D. Adams and T. M. DuBuisson. Template your boilerplate: Using
Template Haskell for efficient generic programming. In Haskell’12,
2012.

[2] A. Alimarine and M. J. Plasmeijer. A generic programming extension
for clean. In IFL 02, 2002.

[3] A. Alimarine and S. Smetsers. Efficient generic functional program-
ming. Technical report NIII-R0425, Nijmegen Institute for Computing
and Information Sciences, University of Nijmegen, 2004.

[4] G.Bracha. Pluggable type systems. In OOPSLA Workshop on Revival
of Dynamic Languages, 2004.
[5] E. Burmako. Scala macros: Let our powers combine!: On how rich

syntax and static types work with metaprogramming. In Scala’l3,
2013.

[6] E.Burmako and M. Odersky. Scala macros, a technical report. In Third
International Valentin Turchin Workshop on Metacomputation, 2012.

[7] B. Chadwick and K. Lieberherr. Weaving generic programming and
traversal performance. In AOSD 10, 2010.

[8] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In
PLDI’05, pages 85-95, 2005.

[9] D. Clarke and A. Loh. Generic haskell, specifically. In J. Gibbons and
J. Jeuring, editors, Generic Programming, IFIP, pages 21-47. Kluwer
Academic Publishers, 2003.

[10] W.Dietl, S. Dietzel, M. D. Ernst, K. Muslu, and T. W. Schiller. Building
and using pluggable type-checkers. In /CSE 11, pages 681-690, 2011.

[11] B. Emir, M. Odersky, and J. Williams. Matching objects with patterns.
In ECOOP’07,2007.

[12] S. Erdweg, T. Rendel, C. Kistner, and K. Ostermann. SugarJ: Library-
based syntactic language extensibility. In OOSPLA’11, 2011.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison Wesly, Reading, MA, 1995.

[14] J. Gibbons. Design patterns as higher-order datatype-generic pro-
grams. In WGP 06, 2006.

[15] R. Hinze, J. Jeuring, and A. Loeh. Comparing approaches to generic
programming in Haskell. In Datatype-Generic Programming, volume
4719. Springer Berlin/Heidelberg, 2007.

[16] P. Jansson and J. Jeuring. Polyp - a polytypic programming language
extension. In POPL 97, 1997.

[17] R.Ldammel and K. Ostermann. Software extension and integration with
type classes. In GPCE 06, 2006.

[18] R. Lammel and S. Peyton Jones. Scrap your boilerplate: A practical
design pattern for generic programming. In 7LDI’03, 2003.

[19] K. J. Lieberherr. Adaptive Object Oriented Sofiware: The Demeter
Method with Propagation Patterns. PWS Publishing, 1996.

[20] J. P. Magalhdes, S. Holdermans, J. Jeuring, and A. Loh. Optimizing
generics is easy! In PEPM °10, 2010.

[21] H. Miller, P. Haller, E. Burmako, and M. Odersky. Instant pickles:
Generating object-oriented pickler combinators for fast and extensible
serialization. In OOPSLA’13,2013.

[22] A.Moors, F. Piessens, and W. Joosen. An object-oriented approach to
datatype-generic programming. In WGP ’06, 2006.

[23] D. R. Musser and A. A. Stepanov. Generic programming. In ISAAC
’88, 1989.

[24] M. Odersky and A. Moors. Fighting bit rot with types (experience
report: Scala collections). In JARCS 09, 2009.

[25] B. C. d. S. Oliveira and J. Gibbons. Scala for generic programmers.
Journal of Functional Programming, 20(3,4):303-352, 2010.

[26] B. C.d.S. Oliveira, A. Moors, and M. Odersky. Type classes as objects
and implicits. In OOPSLA’10, 2010.

[27] D. Orleans and K. J. Lieberherr. DJ: Dynamic adaptive programming
in Java. Springer-Verlag, 2001.

[28] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D. Ernst.
Practical pluggable types for Java. In ISSTA’08, 2008.

[29] A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and
B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. In Haskell 08, 2008.

[30] T. Rompfand M. Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled DSLs. Commun.
ACM, 55(6), 2012.

[31] T. Sheard and S. Peyton Jones.
Haskell. In Haskell 02, 2002.

[32] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. Theor. Comput. Sci, 248(1-2):211-242, 2000.

[33] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In POPL 89, 1989.

Template metaprogramming for

2014/6/3



