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École Politechnique Fédéral de Lausanne
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ABSTRACT

The convex `1-regularized log det divergence criterion has been
shown to produce theoretically consistent graph learning. However,
this objective function is challenging since the `1-regularization is
nonsmooth, the log det objective is not globally Lipschitz gradient
function, and the problem is high-dimensional. Using the self-
concordant property of the objective, we propose a new adaptive
step size selection and present the (F)PS ((F)ast Proximal algo-
rithms for Self-concordant functions) algorithmic framework which
has linear convergence and exhibits superior empirical results as
compared to state-of-the-art first order methods.

Index Terms— Sparse inverse covariance estimation, self-
concordance, step size selection

1. INTRODUCTION

Problem setup: Let X “ tX1, X2, . . . , Xnu be a set of variables
with joint Gaussian distribution fpX1, X2, . . . , Xnq „ N pµ,Σq
where µ P Rn is assumed known and Σ P Rnˆn,Σ ą 0 de-
notes the unknown covariance matrix. In this setting, assume we
only have access to the underlying model through a set of inde-
pendent and identically distributed (iid) samples txjupj“1 such that
xj „ N pµ,Σq, @j. Given txjupj“1, we are interested in infer-
ring any conditional dependencies among X by estimating Σ´1.
A non-robust estimate of Σ´1 is through the sample covariance
pΣ “ 1

p

řp
j“1pxj ´ pµqpxj ´ pµqT where pµ “ 1

p

řp
j“1 xj . Unfortu-

nately, in many cases, we cannot afford to acquire adequate samples
for accurate Σ´1 estimation via pΣ; for p ! n, pΣ is rank-deficient
and the use of sophisticated estimation procedures is imperative.
Graphical models interpretation: In undirected graphical models,
each variable Xi corresponds to a node in a Gaussian Markov ran-
dom field (GMRF). Moreover, let E “ tpi, jq : Xi M Xj | Xk
is observed @k ‰ i, ju be the set of edges in the graph. Under this
setting, we desire to infer the graph structure given a set of observa-
tions. Due to the Gaussianity assumption, Σ´1

ij “ 0ô pi, jq R E.
Optimization criteria: [1] shows that the maximum likelihood es-
timation pΣ˚q´1

“ argmaxΣ´1ą0

śp
j“1 fpxjq is equivalent to:

Θ˚
“ argmin

Θą0

!

´ log detpΘq ` trpΘpΣq
)

, (1)

where Θ˚
“ pΣ˚q´1. Based on (1), developments in random ma-

trix theory [2] divulge the poor performance of Θ˚ without regu-
larization: the solution to (1) is usually fully dense and no inference
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about the graph structure is possible. Moreover, when p ! n, the ab-
sence of a regularization term leads to non-robust estimates of Σ´1.

In practice though, parsimonious solutions that adequately ex-
plain the data, increase the interpretability of the results even if they
lead to worse-valued loss objective values. Using `1-norm to regu-
larize the objective, (1) can be well-approximated by:

Θ˚
“ argmin

Θą0
tF pΘq :“ fpΘq ` gpΘqu , (2)

where fpΘq :“ ´ log detpΘq` trppΣΘq and gpΘq :“ ρ}vecpΘq}1
with ρ ą 0 that defines the sparsity of the graph selection.
Challenges: Within this context, the main challenges in (2) are:

• High-dimensional problems have become the norm in data analy-
sis; thus, time- and memory-efficient schemes are crucial.

• Apart from its computational challenge, (2) is a non-trivial convex
problem: fpΘq is a strictly convex but not globally Lipschitz-
continuous gradient function; moreover, gpΘq is a nonsmooth
regularizer. Even in simple gradient descent schemes, Lipschitz-
based optimal step size calculation becomes infeasible and heuris-
tics lead to slowly convergent, state-of-the-art algorithms [3].
Moreover, (2) is constrained over the set of positive-definite ma-
trices and the choice of regularization parameter ρ is crucial [4].

Prior work: Being a special case of semidefinite programming, (2)
can be solved using off-the-shelf interior point approaches [5, 6].
Though, the resulting per iteration complexity for existing interior
point methods isOpn6

q [7]. This has led to the development of mul-
tifarious works, which can be roughly categorized into five camps:
piq first-order gradient methods [7, 8, 9], piiq second order (Newton-
based) gradient methods [10, 11], piiiq interior point-based schemes
[12], pivq Lagrangian [13, 3] and piiiq greedy approaches [14].

While many of the first-order approaches are slowly convergent
and require numerous parameters to be set apriori (reducing their
universality), recent developments on second-order methods have re-
sulted in very fast solvers. Though, to achieve this fast performance,
these approaches “sacrifice” their universality for faster implemen-
tation: one can envision complicated examples (e.g., non-modular
regularization) where second-order approaches fail to use their “ar-
senal” (e.g., greedy heuristics) for computational superiority.

Contributions: Our contributions can be summarized as follows:

• We introduce a new adaptive step size for first-order methods to
solve (2), based on the self-concordance property. This technique
can be incorporated in mane other minimization problems with
the same property. Moreover, this tool can be subsumed in many
existing schemes [3] with a wide range of diverse regularization
terms, decreasing their time-complexity.
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• To illustrate the substance of the step size selection, we pro-
pose the (F)PS ((F)ast Proximal algorithms for Self-concordant
functions) framework and show its computational- and memory-
efficiency. The resulting schemes have fast convergence and
require the minimum number of input parameters.

2. PRELIMINARIES

Notation: We reserve lower-case and bold lower-case letters for
scalar and vector representation, respectively. Upper-case letters de-
note matrices. The inner product between matrices A,B P Rmˆn is
denoted as trpATBq, where trp¨q is the trace operator. Given a ma-
trix A P Rnˆn, we reserve diag pAq P Rnˆn to denote the diagonal
matrix with entries taken from the diagonal of A.

We reserve R`` to denote the set of positive scalars. Let Sn``
denote the set of positive definite nˆnmatrices. For ppXq : Sn`` Ñ
R, the gradient is denoted as ∇ppXq; for hpxq : R Ñ R, we use
h1pxq, h2pxq, h3pxq to denote the first, second and, third derivative.

Definition 1 (Bregman divergence). Let p : Sn`` Ñ R Y t`8u
be a continuously differentiable and strictly convex function. Given
Θ1,Θ2 P Rnˆn, the Bregman divergence Dpp¨ ‖ ¨q is given by:

DppΘ1 ‖ Θ2q “ ppΘ1q ´ ppΘ2q ´ trp∇ppΘ2qpΘ1 ´Θ2qq.

Definition 2 (Convexity bounds in gradient methods). Let p :
Sn`` Ñ R be a strongly convex function with continuous Lipschitz
gradient ∇ppXq for X P Sn``. Then, there exist µ, L ą 0 such
that, for any Θ1,Θ2 P Sn``: µ

2
ď

DppΘ1‖Θ2q

}Θ1´Θ2}
2
F
ď L

2
.

Proposition 1 (Step size selection for strongly convex gradient de-
scent schemes). For strongly convex (unconstrained) minimization
problems minX qpXq where q : Rnˆn Ñ R, τ˚ :“ 2{pµ ` Lq
is the optimal step size in the gradient descent scheme Xi`1 “

Xi ´ τ
˚∇qpXiq [15].

Definition 3 (Second order expansion of a function). [16] Let h :
R Ñ R be a twice differentiable over an open sphere S. Then, for
x, y P S, there exists an constant α P r0, 1s such that:

hpx` yq “ hpxq ` h1pxq ¨ y `
1

2
y2 ¨ h2px` αyq. (3)

Definition 4 (Self-concordant functions). [17] A convex function h :
R Ñ R is self-concordant if |h3pxq| ď 2h2pxq3{2, @x P R. Given
two self-concordant functions h1, h2, h1 ` h2 is self-concordant.

Lemma 1 (Upper and lower bounds on second derivatives for self-
-concordant functions). [17] Let h : R Ñ R be a strictly convex,
self-concordant function. Then, h2ptq satisfies:

h2p0q
´

1` t
a

h2p0q
¯2 ď h2ptq ď

h2p0q
´

1´ t
a

h2p0q
¯2 ,

where both bounds are valid for 0 ď t ă 1{
a

h2p0q.

3. GRAPH SELECTION VIA PROXIMAL METHODS

Given that F pΘq :“ fpΘq ` gpΘq is strictly convex and provided
a putative solution Θi P Sn``, an iterative descent scheme follows:

Θi`1 “ Θi ` τ
˚
i ∆,

where ∆ P Rnˆn is a descent direction such that F pΘi`1q ă

F pΘiq for τ˚i ą 0. To compute t∆, τ˚i u, we can form the fol-
lowing optimization problem:
t∆, τ˚i u “ argmin

∆PRnˆn,τą0

tF pΘi ` τ∆q : Θi ` τ∆ ą 0u . (4)

While (4) is the proper way to compute a direction ∆ and a cor-
responding step size τ˚i , in this paper we present an approximation
scheme to (4) that introduces the notion of self-concordance in step
size selection and performs extremelly well in practice; we reserve
the detailed convergence analysis for an extended version.

To this end, the proposed algorithm iteratively computes a puta-
tive solution by forming a quadratic surrogate only for fpΘq at Θi P

Sn``, i.e., fpΘq ď UpΘ,Θiq :“ fpΘiq ` tr p∆ ¨ pΘ´Θiqq `
1

2τ˚i
}Θ ´ Θi}

2
F , for a carefully selected τ˚i ą 0 and a direction

satisfying ∆ :“ ´∇fpΘiq, depending only on fp¨q, i.e., we ignore
the presence of gp¨q in F p¨q. Then, instead of minimizing (2), we
iteratively solve the following problem:

Θi`1 “ argmin
Θą0

!

UpΘ,Θiq ` gpΘq
)

, (5)

which can be equivalently stated in proximity operator form [18] as:

Θi`1 “ argmin
Θą0

! 1

2τ˚i
}Θ´

`

Θi ` τ
˚
i ∆

˘

}2F ` gpΘq
)

. (6)

The recursive relation in (6) proposes an optimization recipe : given
a step size τ˚i , we perform a gradient descent step Θi` τ

˚
i ∆ where

∆ :“ ´∇fpΘiq followed by a soft-thresholding operation Θi`1 “

Soft
`

Xi, τ
˚
i ρ

˘

with threshold τ˚i ρ as the closed-form solution the
the proximity operator in (6). Finally, we perform a projection onto
the positive definite cone using eigenvalue decomposition.

4. τ˚i SELECTION FOR SELF-CONCORDANT
FUNCTIONS

Given ∆ :“ ´∇fpΘiq, we perform a gradient descent step Xi “

Θi´τ
˚
i ∇fpΘiqwhere τ˚i ą 0 and∇fpΘiq :“ ´Θ´1

i ` pΣ. Since
τ˚i is unknown, for clarity let Xi “ Θi ´ τ∇fpΘiq where τ is the
unknown variable step size. Then, for Θ1 :“ Xi and Θ2 :“ Θi in
Bregman divergence, we define function φpτq as:

φpτq :“ Df pXi ‖ Θiq “ ´ log det pXiq ` log det pΘiq

` trpΘ´1
i pXi ´Θiqq

“ ´ log det pΘi ´ τ∇fpΘiqq ` log det pΘiq

´ τ ¨ trpΘ´1
i ∇fpΘiqq. (7)

In (7), we can rewrite the first log detp¨q term as [17]:

´ log det pΘi ´ τ∇fpΘiqq “ ´ log det pΘiq ´

n
ÿ

j“1

logp1´ τλjq,

where λj are the eigenvalues of Θ
´1{2
i ∇fpΘiqΘ

´1{2
i . Then:

φpτq “ ´
n
ÿ

j“1

logp1´ τλjq ´ τ ¨ trpΘ´1
i ∇fpΘiqq, (8)

which is a self-concordant function as the superposition of a self-
concordant and a linear (thus self-concordant) function.

Remark 1. In (8), we assume 1 ´ τλj ě 0, @j by the definition
of the logarithm function. Subsequently, we show that our step size
selection always satisfies these conditions, @j.
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We observe that (8) is strictly convex as a function of τ . Apply-
ing the second order expansion (Definition 3) on φpτq, we have:

Lemma 2. The function φpτq satisfies: φpτq “ 1
2
¨ τ2 ¨ φ2pτ̂q, for

τ̂ P r0, τ s and φ2pτ̂q “
řn
j“1

λ2
j

p1´τ̂λjq
2 .

Proof. For y :“ τ , x :“ 0 and α ¨y :“ τ̂ in Definition 3, the second
order expansion of φpτq satisfies according to (3):

φpτq “ φp0q ` φ1p0q ¨ τ `
1

2
¨ τ2 ¨ φ2pτ̂q.

It is easy to verify the following: piq φp0q “ 0, piiq φ2pτ̂q “
řn
j“1

λ2
j

p1´τ̂λjq
2 . Moreover, φ1p0q “

řn
j“1 λj ´ trpΘ´1

i ∇fpΘiqq.

But
řn
j“1 λj “ tr

`

Θ´1
i ∇fpΘiq

˘

. Therefore, φ1p0q “ 0.

Let ξpτq :“ φ2p0q
´

1`τ
?
φ2p0q

¯2 . Since φp¨q is self-concordant and

strictly convex, the following inequalities hold true for τ̂ P p0, τ s:

ξpτq ď ξpτ̂q ď φ2pτ̂q ď ξp´τ̂q ď ξp´τq. (9)

From Lemma 2, φ2p0q “
řn
j“1 λ

2
j . We know that trpAk

q “
řn
j“1 ξ

k
j for A P Rnˆn where ξj are the eigenvalues of A. Thus,

φ2p0q “
řn
j“1 λ

2
j “ tr

`

pΘ´1
i ∇fpΘiqq

2
˘

.
Given (7), Lemma 2 and }Xi ´Θi}

2
F “ τ2}∇fpYiq}

2
F :

Df pXi ‖ Θiq “
1

2
¨ τ2 ¨ φ2pτ̂q ñ

Df pXi ‖ Θiq

}∇fpΘiq}
2
F

“
φ2pτ̂q

2}∇fpΘiq}
2
F

Combining the above equation with (9), we locally have:

rµ

2
ď
Df pXi||Θiq

}Xi ´Θi}
2
F

ď
rL

2
(10)

where rL “ δ

p1´τ
?
δq

2
ε

and rµ “ δ

p1`τ
?
δq

2
ε

for δ :“ φ2p0q and

ε :“ }∇fpΘiq}
2
F .

By Definition 2, a safe step size selection at the i-th iteration
satisfies τ˚i :“ τ “ 2{prµ` rLq which leads to the following lemma:

Lemma 3. At the i-th iteration, the step size τ˚i “ 2{prµ ` rLq is

determined as τ˚i “
1
2

´

´ 1
ε
˘

b

1
ε2
` 4

δ

¯

. Moreover, τ˚i is guar-

anteed to satisfy 0 ď τ˚i ă
a

φ2p0q, @i.

Proof. For τ˚i :“ τ “ 2{prµ` rLq we obtain:

τ “
2

δ

p1`τ
?
δqε
` δ

p1´τ
?
δqε

ñ τ2 `
1

ε
τ ´

1

δ
“ 0 (11)

with roots τmin,max “ 1
2

´

´ 1
ε
˘

b

1
ε2
` 4

δ

¯

. To use the upper

bound in (9), the solution τ must satisfy 0 ď τ ă 1{
?
δ. We eas-

ily observe that τmin ď 0. For τmax “
1
2

´

´ 1
ε
`

b

1
ε2
` 4

δ

¯

, we

have: τmax ě 0 and τmax ď
1
2

´

´ 1
ε
`

b

1
ε2
`

b

4
δ

¯

“ 1?
δ
. since

1
ε2
` 4

δ
ą 0. Thus, τ˚i :“ τmax such that τ˚i “ 2{prµ ` rLq and

0 ď τ˚i ă
1?
φ2p0q

.

Remark 2. An alternative step size selection is computed as the
minimum root of τ˚i “ 1{rL. While this scheme performs well, it
does not exploit the strong convexity of the smooth term.

Algorithm 1 Proximal algorithm for Self-concordant functions

Input: pΣ ľ 0, ρ, MaxIter, tol
Initialize: Θ0 “ diagppΣq´1

repeat
1. tτ˚i , ∇fpΘiqu “ compute_tau(pΣ,Θi) Opn3

q

2. Xi “ Θi ´ τ
˚
i ∇fpΘiq Opn2

q

3. Θi`1 “ Soft
`

Xi, τ
˚
i ρ

˘

Opn2
q

4. If Θi`1 ą 0 then continue Op1q
5. else repeat steps 2-3 with τ˚i :“ τ˚i {2. Opn3

q

until MaxIter is reached or }Θi`1´Θi}F

}Θi`1}F
ď tol

Proposition 2. The step size selection proposed in Lemma 3 satisfies
1´ τ˚i λj ě 0, @j in (8).

Proof. By construction, we observe that τ˚i ă 1{
a

φ2p0q “
1

p
ř

j λ
2
jq

1{2 “ 1{}λ}2 where λ :“ rλ1, . . . , λns. Then,

1´ τ˚i λj

$

’

&

’

%

ě 0 @j such that λj ď 0 since τ˚i ě 0,

ě 0
@j such that λj ą 0 since

1´ τ˚i λj ě 1´
λj

}λ}2
ě 1´ }λ}8

}λ}2
ě 0.

5. BASIC PROXIMAL ALGORITHM

Algorithm 1 shows the Proximal algorithm for Self-concordant
functions (PS) in detail. The per iteration complexity is Opn3

q. The
step size selection is dominated by the calculation of the gradient
∇fpΘiq “ ´Θ´1

i `
pΣ; an efficient way to compute Θ´1

i is through
Cholesky factorization with Opn3

q complexity. Given∇fpΘiq and
Θ´1
i , the time-complexity for δ :“ tr

`

pΘ´1
i ∇fpΘiqq

2
˘

and ε :“
}∇fpΘiq}

2
F isOpn2

q while for the quadratic form root-finding step
we need Op1q operations. The soft-thresholding operation requires
Opn2

q complexity.
According to (6), we require Θi ą 0, @i. The best projection

of an arbitrary matrix onto the set of positive definite n ˆ n matri-
ces requires an eigenvalue decomposition with Opn3

q complexity; a
prohibitive time-complexity that does not scale well for many appli-
cations. In practice though, the projection onto Sn`` can be avoided
with a backtrack line search over τ˚i . After soft-thresholding, we can
check Θi`1 ą 0 via its Cholesky factorization. In case Θi`1 č 0,
we decrease the step size τ˚i :“ τ˚i {2 and repeat steps 2 and 3 with
complexityOpn2

q. Otherwise, we can reuse the Cholesky factoriza-
tion of Θi`1 to compute Θ´1

i`1 and∇fpΘi`1q in the next iteration.
In practice though, we rarely need this additional operation.

6. FAST PROXIMAL ALGORITHM

To gain momentum in convergence, we can use memory in esti-
mates as proposed by Nesterov for strongly convex functions [15];
the same acceleration technique has been integrated in other convex
approaches and problems such as [11, 19]. Moreover, to overcome
the oscillatory behaviour in the trace of the objective value due to
the momentum update, we can use adaptive “restart” techniques; c.f.
[20]. Algorithm 2 summarizes the FPS scheme; the main difference
with Algorithm 1 is that, at each iteration, we no longer operate on
the previous estimate Θi´1 but rather on Yi which simulates an
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Algorithm 2 Fast Proximal algorithm for Self-concordant functions

Input: pΣ ľ 0, ρ, MaxIter, tol
Initialize: Θ0 “ diagppΣq´1, Y1 “ Θ0, α1 “ 1.
repeat

1. tτ˚i ,∇fpYiq, rµ, rLu “ compute_tau(pΣ,Yi) Opn3
q

2. Xi “ Yi ´ τ
˚
i ∇fpYiq Opn2

q

3. Θi “ Soft
`

Xi, τ
˚
i ρ

˘

Opn2
q

4. Yi`1 “ Θi ` γi pΘi ´Θi´1q for γi ą 0 Opn2
q

5. If Yi`1 ą 0 then continue Op1q
6. else repeat steps 2-4 with τ˚i :“ τ˚i {2. Opn3

q

until MaxIter is reached or }Yi`1´Yi}F

}Yi`1}F
ď tol

additional (rough) gradient descent step using the previous two es-
timates Θi and Θi´1. To compute ∇fpYiq at each iteration, Yi’s
shall satisfy the positive definiteness constraint.

We suggest two schemes for γi [15]: (A): γi “
´

αi´1
αi`1

¯

where

αi`1 “
1`
?

1`4α2
i

2
and α1 “ 1 and, (B): γi “

1´
b

rµ¨τ˚i

1`
b

rµ¨τ˚i

. We iden-

tified that both strategies perform well in practice where scheme (A)
is more stable when pΣ is rank-deficient (non-strictly convex case).

Since we operate on Yi, we have to guarantee the positive def-
initeness of both Θi and Yi per iteration, leading to an additional
Cholesky factorization calculation per iteration. A key lemma for an
effcient implementation of Algorithm 2 is the following:

Lemma 4. Given Θ0 ą 0, Yi`1 ą 0 implies Θi ą 0, @i.

Proof. If Yi`1 ą 0, then: Θi ` γi pΘi ´Θi´1q ą 0 ñ

Θi p1` γiq ą γiΘi´1 ñ Θi ą βiΘi´1, where βi :“ γi
1`γi

ą

0, @i. Unfolding the recursion, we have:

Θi ą pmintβi, βi´1, . . . , β1uq
i´1

loooooooooooooooomoooooooooooooooon

ą0

Θ0 ą 0, @i, ˝

By Lemma 4, we can check the positive definiteness of Θi

through the Cholesky factorization of Yi`1.

7. EXPERIMENTS

Experimental configuration: we synthetically generate sparse in-
verse covariance matrices Σ´1, according to the simple model:

Σ´1
“ I`Ω, such that Σ´1

ą 0 and }Σ´1
}0 “ κ, (12)

where Ω P Rnˆn contains random iid off-diagonal entries „
N p0, 1q. Given Σ´1, we draw txjupj“1 „ N p0,Σq and calculate
pΣ. Given the above, we consider two test settings:
piq n “ 1000, p “ n{2 and, κ “ 2 ¨ 10´3

¨ n2. To observe
interpretable results, we set ρ “ 5 ¨ 10´2.

piiq n “ 3000, p “ 5n and, κ “ 10´3
¨ n2. To observe inter-

pretable results, we set ρ “ 4 ¨ 10´2.

Linear convergence: We empirically illustrate the convergence rate
of the proposed schemes towrads a high-accuracy solution Θ˚ of
(2); we retain a convergence analysis for an extended version. Let
n “ 700, p “ 5n, ρ “ 2 ¨ 10´2, κ “ 0.01n2. Figure 1 depicts the
linear convergence rate of the proposed schemes and their variants;
FPSa uses an adaptive restart scheme [20]. In practice, we observe
that the choice of ρ heavily affects the condition number of the prob-
lem and thus the convergence rate of first-order schemes.
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Fig. 1: Convergence rates
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Fig. 2: Comparison plot

Setting piq ALM PS FPS FPSa
}Θ˚´Σ´1}F
}Σ´1}F

0.44 0.414 0.413 0.413
Correct 1705 1893 1893 1893
Missed 291 103 103 103
Extra 365 232 228 228

Iterations 400 379 129 114
#Inversions 400 379 129 114
Setting piiq ALM PS FPS FPSa
}Θ˚´Σ´1}F
}Σ´1}F

- 0.444 0.43 0.43
Correct - 8710 8725 8724
Missed - 290 275 276
Extra - 4 4 4

Iterations - 300 100 92
#Inversions - 300 100 92

Table 1: “Correct”, “Missed” and “Extra” stand for the edges cor-
rectly identified, missed or added in the true graph, respectively.
MaxIter = 400 and tol. “ 10´8. “-” depicts no results due to time
overhead.

List of algorithms: We compare our scheme against ALM [3], cur-
rent state-of-the-art first-order gradient method to illustrate the ef-
fect of the step size selection. All codes are exclusively written in
MATLAB.
Convergence comparison: Figure 2 summarizes the convergence
performance of the aforementioned schemes. We simulate test set-
ting piq. Here, “ALM - τ˚i “

2

rµ` rL
”’ corresponds to ALM [3] using

τ˚i in both steps of the algorithm, thus illustrating the universality of
our step size selection. All algorithms use τ˚i “

2

rµ` rL
and γi Ñ (B).

Sparsity pattern recovery performance: For each test setting, we
record the median values over 50 Monte-Carlo realizations. Table 1
summarizes the results.

8. CONCLUSIONS

Many state-of-the-art gradient approaches for sparse inverse covari-
ance estimation in GMRFs use heuristics to compute a step size
which introduce additional “computational losses” due to matrix in-
version recalculations or slow convergence. In this work, we present
a first-order proximal method which, at its core, utilizes a novel
adaptive step size selection procedure based on the self-concordance
property of the objective value. Numerical results indicate that our
methods overcome state-of-the-art first order methods. Moreover,
our framework extends straightforwardly to many convex regulariz-
ers; following a simplistic avenue to solve the problem is valuable
for the universal application of the algorithm to diverse problems.

6588



9. REFERENCES

[1] J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance
selection for nonchordal graphs via chordal embedding. Opti-
mization Methods & Software, 23(4):501–520, 2008.

[2] I.M. Johnstone. On the distribution of the largest eigen-
value in principal components analysis.(english. Ann. Statist,
29(2):295–327, 2001.

[3] K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse co-
variance selection via alternating linearization methods. arXiv
preprint arXiv:1011.0097, 2010.
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