000199214 001__ 199214
000199214 005__ 20181203023514.0
000199214 022__ $$a1932-7447
000199214 02470 $$2ISI$$a000330162800001
000199214 0247_ $$2doi$$a10.1021/jp405291g
000199214 037__ $$aARTICLE
000199214 245__ $$aPhotoelectrochemical Tandem Cells for Solar Water Splitting
000199214 269__ $$a2013
000199214 260__ $$bAmerican Chemical Society$$c2013$$aWashington
000199214 300__ $$a15
000199214 336__ $$aJournal Articles
000199214 520__ $$aIn order to be economically competitive with simple "brute force" (i.e., PV + electrolyzer) strategies or the production of promising solar fuels, like H-2, from fossil fuels, a practical photoelectrochemical device must optimize cost, longevity, and performance. A promising approach that meets these requirements is the combination of stable and inexpensive oxide semiconductor electrodes in a tandem photoelectrochemical device. In this article, we give an overview of the field including an examination of the potential solar-to-fuel conversion efficiency expected in a device with realistic losses. We next discuss recent advances with increasing the performance of promising semiconductor electrode materials and highlight how these advances have led to state-of-the-art solar-to-chemical efficiencies in the 2-3% range in real devices. Challenges for further optimization are further outlined.
000199214 700__ $$aPrévot, Mathieu S.
000199214 700__ $$g178220$$aSivula, Kevin$$0244210
000199214 773__ $$j117$$tJournal Of Physical Chemistry C$$k35$$q17879-17893
000199214 909C0 $$xU12534$$0252414$$pLIMNO
000199214 909CO $$pSB$$particle$$ooai:infoscience.tind.io:199214
000199214 917Z8 $$x178220
000199214 937__ $$aEPFL-ARTICLE-199214
000199214 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000199214 980__ $$aARTICLE