000199207 001__ 199207
000199207 005__ 20190316235920.0
000199207 0247_ $$2doi$$a10.1038/lsa.2013.62
000199207 022__ $$a2047-7538
000199207 02470 $$2ISI$$a000330123200002
000199207 037__ $$aARTICLE
000199207 245__ $$aImproving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell
000199207 269__ $$a2013
000199207 260__ $$bNature Publishing Group$$c2013$$aLondon
000199207 300__ $$a6
000199207 336__ $$aJournal Articles
000199207 500__ $$aIMT-NE Number : 766
000199207 520__ $$aImperfect internal reflectance of near-bandgap light reduces the performance of all solar cells, and becomes increasingly detrimental as absorbers become thinner. We consider light incident on the silicon/dielectric/metal structure at the back of rear-passivated crystalline silicon solar cells with surface textures that are large enough for geometric optics. By calculating the absorbance in the metal as a function of the angle of incidence, we discover three results that are important for understanding and improving rear reflectors in many types of solar cells. First, significant parasitic absorption occurs in the metal layer in two cases: s- and p-polarized propagating modes (near-normal angles of incidence) when the dielectric thickness is adjusted to cause destructive interference of the reflected beams, and p-polarized evanescent modes (angles of incidence above the semiconductor/dielectric critical angle) that excite surface plasmon polaritons at the metal surface. Second, the latter loss dominates; a well-designed rear dielectric passivation layer must suppress the penetration of evanescent waves to the metal. Third, when used as an input in a simple analytical model, the average rear internal reflectance calculated by assuming a Lambertian angular distribution of light accurately predicts the total reflectance and absorbance of a solar cell.
000199207 6531_ $$alight trapping
000199207 6531_ $$aphotovoltaics
000199207 6531_ $$aplasmon
000199207 6531_ $$asilicon
000199207 6531_ $$asolar cell
000199207 700__ $$aHolman, Zachary C.
000199207 700__ $$aDe Wolf, Stefaan
000199207 700__ $$g100192$$aBallif, Christophe$$0243401
000199207 773__ $$j2$$tLight-Science & Applications
000199207 8564_ $$uhttps://infoscience.epfl.ch/record/199207/files/paper_766.pdf$$zPublisher's version$$s1316461$$yPublisher's version
000199207 909C0 $$xU11963$$0252194$$pPV-LAB
000199207 909CO $$qGLOBAL_SET$$pSTI$$ooai:infoscience.tind.io:199207$$particle
000199207 917Z8 $$x190055
000199207 937__ $$aEPFL-ARTICLE-199207
000199207 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000199207 980__ $$aARTICLE