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Abstract: The neutral dinuclear complexes [(η
5
-C5Me5)2Rh2(μ-dhnq)Cl2] (1) and  

[(η
5
-C5Me5)2Ir2(μ-dhnq)Cl2] (2) (dhnqH2 = 5,8-dihydroxy-1,4-naphthoquinone) were 

obtained from the reaction of [(η
5
-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with dhnqH2 in the 

presence of CH3COONa. Treatment of 1 or 2 in methanol with linear ditopic ligands L  

(L = pyrazine, 4,4′-bipyridine or 1,2-bis(4-pyridyl)ethylene), in the presence of AgCF3SO3, 

affords the corresponding tetranuclear metalla-rectangles [(η
5
-C5Me5)4M4(μ-dhnq)2(μ-L)2]

4+
 

(L = pyrazine, M = Rh, 3; M = Ir, 4; L = 4,4′-bipyridine, M = Rh, 5; M = Ir, 6;  

L = 1,2-bis(4-pyridyl)ethylene, M = Rh, 7; M = Ir, 8). All complexes were isolated as their 

triflate salts and were fully characterized by infrared, 
1
H and 

13
C NMR spectroscopy, and 

some representative complexes by single-crystal X-ray structure analysis. The X-ray 

structures of 3, 5 and 6 confirm the formation of the tetranuclear metalla-cycles, and 

suggest that complexes 5 and 6 possess a cavity of sufficient size to encapsulate small 

guest molecules. In addition, the antiproliferative activity of the metalla-cycles 3–8 was 

evaluated against the human ovarian A2780 (cisplatin sensitive) and A2780cisR (cisplatin 

resistant) cancer cell lines and on non-tumorigenic human embryonic kidney HEK293 

cells. All cationic tetranuclear metalla-rectangles were found to be highly cytotoxic, with 

IC50 values in the low micromolar range. 
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1. Introduction 

The biological application of coordination-driven arene ruthenium metalla-materials is a flourishing 

area of research [1–6]. The tetranuclear assemblies have been found to possess good anticancer  

activity [7–12], to strongly interact with DNA [13,14], and to efficiently detect biologically relevant 

analytes [15–17]. Their DNA binding can occur through non-covalent interactions, novel modes of 

action also observed for di- and trinuclear organometallics [18–20], although fragmentation inside 

cells followed by coordination of the metal ion to DNA and/or other biomolecules cannot be excluded. 

Following the promising studies of arene ruthenium metalla-materials, a series of cationic arene osmium 

metalla-rectangles were recently reported [21]. These arene osmium derivatives display comparable 

cytotoxicity to the ruthenium-based analogues, suggesting that the biological applications of arene 

ruthenium metalla-rectangles can be extended to other transition metals. 

It is well known that the chemistry of arene ruthenium and arene osmium complexes is similar to 

that of half-sandwich rhodium and iridium complexes [22–25] and that several organometallic 

compounds of these metals with promising anticancer activity have been reported [26–29]. Moreover, 

several pentamethylcyclopentadienyl rhodium and iridium metalla-rectangles have been synthesized 

and structurally characterized by the group of Jin [30–32]. These metalla-rectangles show comparable 

structural and physico-chemical properties to the arene ruthenium analogues. However, the biological 

activity of these tetranuclear assemblies has not yet been explored. Therefore, to evaluate the 

anticancer properties of pentamethylcyclopentadienyl rhodium and iridium metalla-rectangles, a series 

of cationic tetranuclear complexes incorporating 5,8-dioxido-1,4-naphthoquinonato (dhnq) bridges and 

ditopic N-ligands [pyrazine, 4,4′-bipyridine and 1,2-bis(4-pyridyl)ethylene] has been prepared and 

their antiproliferative activity evaluated in vitro on human ovarian cancer cell lines (A2780 and 

A2780cisR) and on non-tumorigenic cells (HEK293). The anticancer activity of these 

pentamethylcyclopentadienyl rhodium and iridium metalla-rectangles was compared to that of  

[(η
6
-p-Pr

i
C6H4Me)4Ru4(μ-dhnq)2(μ-4,4′-bipyridine)2](CF3SO3)4 (Figure 1) [9]. 

Figure 1. Molecular structure of [(η
6
-p-Pr

i
C6H4Me)4Ru4(μ-dhnq)2(μ-4,4′-bipyridine)2](CF3SO3)4. 
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2. Results and Discussion 

The reaction of the dinuclear pentamethylcyclopentadienyl complexes [(η
5
-C5Me5)M(μ-Cl)Cl]2  

(M = Rh and Ir) with dhnqH2 (dhnqH2 = 5,8-dihydroxy-1,4-naphthoquinone) in methanol in the 

presence of CH3COONa leads to the formation of the neutral complexes [(η
5
-C5Me5)2Rh2(μ-dhnq)Cl2] 

(1) and [(η
5
-C5Me5)2Ir2(μ-dhnq)Cl2] (2). Addition of AgCF3SO3 to 1 and 2, followed by addition of 

linear ditopic ligands L [L = pyrazine, 4,4′-bipyridine or 1,2-bis(4-pyridyl)ethylene], affords the 

cationic tetranuclear metalla-rectangles of the general formula [(η
5
-C5Me5)4M4(μ-dhnq)2(μ-L)2]

4+
  

(L = pyrazine, M = Rh, 3; M = Ir, 4; L = 4,4′-bipyridine, M = Rh, 5; M = Ir, 6;  

L = 1,2-bis(4-pyridyl)ethylene, M = Rh, 7; M = Ir, 8), see Scheme 1. The rectangular cations 3–8 are 

isolated as triflate salts. All complexes are non-hygroscopic and stable in air and have been fully 

characterized by analytical and spectroscopic techniques. The compounds are soluble in polar solvents 

and are insoluble in non-polar solvents. In addition, all the metalla-rectangles are soluble and stable in 

water and DMSO (dimethyl sulfoxide). Interestingly, the metalla-rectangles are stable for weeks in 

water, while in DMSO, new species only start to appear after 3–4 h in solution [determined by nuclear 

magnetic resonance (NMR)]. 

Scheme 1. Synthesis of tetranuclear metalla-rectangles 3–8 from 1 and 2. 

 

The 
1
H NMR spectra of the complexes were recorded in CD2Cl2 at 25 °C and the chemical shifts of 

the different protons are listed in the experimental section. The 
1
H NMR spectra of 1–8 contain a 

singlet resonance between 7.0 and 7.4 ppm that can be attributed to the protons of the dhnq bridges. 

Upon formation of the metalla-rectangles, the signals associated to the dhnq protons are shifted 

downfield relative to those of the neutral dinuclear complexes 1 (δ = 7.01 ppm) and 2 (δ = 7.09 ppm), 

see Figure 2. Similarly, the singlet of the pyrazine ligands is shifted downfield after formation of 

metalla-rectangles 3 and 4. In contrast, the proton signals derived from the 4,4′-bipyridine and  

1,2-bis(4-pyridyl)ethylene derivatives show a different trend after coordination, the Hα of the pyridyl 

groups are shifted upfield whereas the Hβ protons are shifted downfield, see Figure 2. The observed 

chemical shifts are consistent with the formation of the expected metalla-rectangles. 
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Figure 2. 
1
H NMR spectra (aromatic region) of free pyrazine, 4,4′-bipyridine and  

1,2-bis(4-pyridyl)ethylene, as well as the dinuclear complexes 1–2 and the metalla-rectangles 

3–8 in CD2Cl2 (25 °C). 

 

2.1. Molecular structures of 3, 5 and 6 

Dark green crystals of the metalla-rectangles [3](CF3SO3)4, [5](CF3SO3)4 and [6](CF3SO3)4, 

suitable for single-crystal X-ray structure analysis were obtained by addition of toluene to a 

dichloromethane solution of the respective complexes. All metalla-rectangles crystallize with solvent 

molecules and four triflate anions. The molecular structures of 3, 5 and 6 are presented in Figures 3–5, 

respectively. Selected bond lengths and angles are listed in Table 1 and the crystallographic details are 

given in Table 2. 

As expected, metalla-rectangle 3 is composed of two dinuclear [(η
5
-C5Me5)2Rh2(μ-dhnq)]

2+ 
clips 

connected by two pyrazine ligands (Figure 3). The Rh-Rh distances are 6.9773(5) Å through the 

pyrazine units and 8.3831(5) Å through the dhnq bridges. In metalla-rectangles 5 and 6, the dinuclear 

[(η
5
-C5Me5)2M2(μ-dhnq)]

2+ 
clips are connected with 4,4′-bipyridine units, thus providing a much 

longer rectangle with metal-metal distances through the 4,4′-bipyridine ligands of 11.106(1) and 

11.2437(7) Å for 5 and 6, respectively. The metal-metal distances observed in these metalla-rectangles 

are comparable to those found in analogous half-sandwich metalla-assemblies incorporating either 

pyrazine, 4,4′-bipyridine or dhnq building blocks [33–35]. 

The cavity size of metalla-rectangles 5 and 6 is approximately 8 × 11 Å
2
, while for metalla-rectangle 

3 the cavity is 8 × 7 Å
2
 (Table 1). Therefore, considering the size of the hydrophobic cavity and the 

presence of aromatic rings in the multiple components of the metalla-rectangles, the hydrophobic 

cavities of the larger metalla-rectangles 5–8 can potentially provide a site for the inclusion of small guest 

molecules. The p-cymene ruthenium analogues, [(η
6
-p-Pr

i
C6H4Me)4Ru4(μ-dhnq)2(μ-4,4′-bipyridine)2]

4+
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and [(η
6
-p-Pr

i
C6H4Me)4Ru4(μ-dhnq)2(μ-1,2-bis(4-pyridyl)ethylene)2]

4+
, have been shown to encapsulate 

pyrene and other planar aromatic molecules in solution [36,37]. 

Table 1. Selected bond lengths and angles for [3](CF3SO3)4·4CH2Cl2; [5](CF3SO3)4·2CH2Cl2 

and [6](CF3SO3)4·solvent. 

 [3](CF3SO3)4·4CH2Cl2 [5](CF3SO3)4·2CH2Cl2 [6](CF3SO3)4·solvent 

Interatomic distances (Å) 

M1-O1 2.065(3) 2.030(4) 2.073(5) 

M1-O2 2.053(3) 2.028(5) 2.073(5) 

M2-O3 2.061(3) 2.034(5) 2.069(5) 

M2-O4 2.061(3) 2.035(4) 2.064(5) 

M1-N1 2.150(3) 2.099(5) 2.116(6) 

M2-N2 2.129(3) 2.094(5) 2.116(6) 

M1-M2 (μ-dhnq) 8.3831(5) 8.283(1) 8.4075(6) 

M1-M2 (μ-N-ligand) 6.9773(5) 11.106(1) 11.2437(7) 

Angles (°) 

O1-M1-O2 87.2(1) 87.5(2) 87.4(2) 

O3-M2-O4 87.4(1) 87.1(2) 87.3(2) 

N1-M1-O1 84.6(1) 86.8(2) 83.1(2) 

N1-M1-O2 85.7(1) 84.0(2) 83.5(2) 

N2-M2-O3 84.5(1) 85.6(2) 82.9(2) 

N2-M2-O4 85.7(1) 84.5(2) 84.8(2) 

Figure 3. Molecular structure of metalla-rectangle 3 at 50% probability level ellipsoids 

with hydrogen atoms, dichloromethane molecules and triflate anions omitted for clarity. 

 



Materials 2013, 6 5357 

 

Table 2. Crystallographic and structure refinement parameters for metalla-rectangles  

[3](CF3SO3)4·4CH2Cl2; [5](CF3SO3)4·2CH2Cl2; and [6](CF3SO3)4·solvent. 

Parameter [3](CF3SO3)4·4CH2Cl2 [5](CF3SO3)4·2CH2Cl2 [6](CF3SO3)4·solvent 

Chemical formula C76H84Cl8F12N4O20Rh4S4 C86H88Cl4F12N4O20Rh4S4 C84H84F12Ir4N4O20S4 

Formula weight 2424.95 2407.28 2594.59 

Crystal system Monoclinic Triclinic Triclinic 

Space group P 21/c (no. 14) P-1 (no. 2) P-1 (no. 2) 

Crystal color and shape yellow block green block grey block 

Crystal size 0.22 × 0.18 × 0.17 0.16 × 0.15 × 0.13 0.21 × 0.20 × 0.16 

a (Å) 12.3640(4) 12.8157(9) 12.5846(6) 

b (Å) 23.6046(6) 14.8016(10) 15.2071(7) 

c (Å) 16.8800(6) 15.0871(10) 15.4594(7) 

α (°) – 90.206(5) 89.590(4) 

β (°) 104.176(3) 100.106(5) 80.133(4) 

γ (°) – 106.634(5) 73.386(4) 

V (Å3) 4776.4(3) 2695.2(3) 2790.4(2) 

Z 2 1 1 

T (K) 173(2) 173(2) 173(2) 

Dc (g·cm−3) 1.686 1.483 1.544 

μ (mm−1) 1.080 0.860 4.906 

Scan range (°) 1.70 ˂  ˂ 29.23 1.69 ˂  ˂ 29.30 1.72 ˂  ˂ 29.22 

Unique reflections 12909 14597 14976 

Reflections used [I > 2(I)] 9875 9188 10306 

Rint 0.0908 0.1407 0.0623 

Final R indices [I > 2 (I)]* 0.0587, wR2 0.1202 0.0881, wR2 0.2094 0.0532, wR2 0.1163 

R indices (all data) 0.0836, wR2 0.1299 0.1412, wR2 0.2423 0.0915, wR2 0.1274 

Goodness-of-fit 1.039 1.103 1.001 

Max, Min Δρ (e Å−3) 1.079, −1.341 1.775, −1.254 1.925, −2.579 
*
 Structures were refined on F0

2: wR2 = [Σ[w (F0
2 − Fc

2)2]/Σw (F0
2)2]1/2, where w−1 = [Σ(F0

2) + (aP)2 + bP] and 

P = [max(F0
2,0) + Fc

2]/3 

As previously mentioned, in the crystal packing of 3, 5 and 6 the solvent molecules and triflate 

anions are either situated at the periphery of the metalla-rectangles or positioned in the hydrophobic 

cavity. Despite possessing the smallest cavity, in metalla-rectangle 3 two molecules of 

dichloromethane sit on both sides of the metalla-cycle, see Figure 6. The shorter Cl∙∙∙Cl separation 

between the two solvent molecules is 3.265(4) Å. In 5 and 6, the cavity of the metalla-rectangles is 

more spacious and accordingly the guest molecules have more freedom, thus they are not as well 

ordered as in the crystal packing of 3, and were not refined (see experimental part). Nevertheless, these 

metalla-materials can act as host compounds with appropriate guest molecules, an interesting property 

for biological applications [1–6]. 
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Figure 4. Molecular structure of metalla-rectangle 5 at 50% probability level ellipsoids 

with hydrogen atoms, dichloromethane molecules and triflate anions omitted for clarity. 

 

Figure 5. Molecular structure of metalla-rectangle 6 at 50% probability level ellipsoids 

with hydrogen atoms, solvent molecules and triflate anions omitted for clarity. 
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Figure 6. Space-filling (a) and ball-and-stick models (b) of metalla-rectangle 3 showing 

the two molecules of dichloromethane sitting on both sides of the cavity. 

 

(a) (b) 

2.2. Antiproliferative Activity 

The cytotoxicity of 3–8 and a Ru-analogue (Figure 1) was evaluated against human A2780 

(cisplatin sensitive) and A2780cisR (cisplatin resistant) ovarian cancer cells, as well as against the 

non-tumorigenic HEK293 human embryonic kidney cells. The IC50 values after 72 h are listed in Table 

3. Regarding the neutral dinuclear complexes 1 and 2, their solubility in water was too low to allow a 

biological evaluation, and in DMSO the chlorido ligands were exchanged with solvent molecules. 

Table 3. IC50 values of metalla-rectangles 3–8 and the Ru-analogue  

[(η
6
-p-Pr

i
C6H4Me)4Ru4(μ-dhnq)2(μ-4,4′-bipyridine)2](CF3SO3)4, toward human ovarian 

cancer cells A2780 and A2780cisR and healthy cells HEK293 after 72 h exposure. 

IC50 (μM) 

Compound A2780 A2780cisR HEK293 

cisplatin 1.26 ± 0.17 19.7 ± 3.00 6.55 ± 1.00 

3 0.06 ± 0.01 0.19 ± 0.01 0.17 ± 0.01 

4 0.07 ± 0.01 0.25 ± 0.05 0.09 ± 0.02 

5 0.08 ± 0.01 0.20 ± 0.01 0.09 ± 0.02 

6 0.13 ± 0.02 0.31 ± 0.04 0.11 ± 0.02 

7 0.06 ± 0.01 0.18 ± 0.01 0.10 ± 0.01 

8 0.17 ± 0.01 0.29 ± 0.03 0.10 ± 0.02 

Ru-analogue 1.49 ± 0.11 1.94 ± 0.07 0.77 ± 0.03 

All the metalla-rectangles 3–8 are highly cytotoxic towards the three cell lines tested (0.06–0.31 μM), 

and are significantly more cytotoxic than the ruthenium analogue and cisplatin in all cases. One 

observable trend is that all the compounds were less active against the A2780cisR cell line compared 

to the A2780 cell line, indicative of a certain level of susceptibility of these compounds to the acquired 

cisplatin resistance mechanisms operating in the former, albeit with notably lower resistance factors 

(1.3–3.6) relative to cisplatin (15.6). The IC50 values of the compounds in the HEK293 cell line are 

comparable to the corresponding IC50 values for the A2780 cell line, with the exception of 3 which is 
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almost three-fold more active in the A2780 cell line (0.06 μM) compared to the HEK293 cell line  

(0.17 μM), indicative of a moderate level of selectivity. For compounds 3–8 the cytotoxicity appears to 

be independent of the choice of metal (Rh or Ir) or the ditopic nitrogen ligand present, exemplified by 

the similarity in IC50 values determined for 3–8 within the three cell lines. In contrast, the activity of 

the Ru-analogue is significantly lower than its Rh and Ir analogues, 5 and 6, in all three cell lines, 

indicating, in this case, the choice of metal (Rh and Ir versus Ru) is significant with respect to the level 

of cytotoxicity observed. Given these results it is tempting to speculate that compounds 3–8 exert their 

cytotoxic activity through a similar mechanism of action. Evidently on switching metal to yield the 

Ru-analogue the activity of the complex diminishes and is likely related to a fundamental difference in 

reactivity of this metalla-rectangle in vitro. 

3. Experimental Section 

3.1. General 

The starting materials [(η
5
-C5Me5)Rh(μ-Cl)Cl]2 and [(η

5
-C5Me5)Ir(μ-Cl)Cl]2 were prepared 

according to published methods [38,39]. All other reagents were purchased and used without further 

purification. The 
1
H and 

13
C{

1
H} NMR spectra were recorded with a Bruker Avance II 500 or a 

Bruker Avance II 400 MHz spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) using the 

residual protonated solvent as an internal reference. Infrared spectra were recorded as KBr pellets with 

a Perkin-Elmer FTIR 1720 X spectrometer (PerkinElmer: Waltham, MA, USA). Microanalyses were 

carried out by the Mikroelementaranalytisches Laboratorium, ETH Zürich (Switzerland). 

3.2. Synthesis of [(η
5
-C5Me5)2Rh2(μ-dhnq)Cl2] (1) 

5,8-Dihydroxy-1,4-naphthoquinone (dhnqH2) (30.8 mg, 0.162 mmol) was added to a solution of 

CH3COONa (27 mg, 0.324 mmol) in methanol (30 mL). The mixture was stirred for 1 h and  

[(η
5
-C5Me5)2Rh2(µ-Cl)2Cl2] (100 mg, 0.162 mmol) was added and stirred at room temperature. After 

stirring overnight the solvent was removed under reduced pressure and the solid was washed with 

water and dried under vacuum to give a yellow color compound. Yield 93 mg (78%). Calcd for 

C30H34Cl2O4Rh2: C, 49.00; H, 4.66. Found: C, 48.28; H, 4.36. IR (KBr pellets, cm
−1

): ν = 1532 s, 1418 m. 
1
H NMR (400 MHz, CD2Cl2): δ = 7.01 (s, 4H, dhnq), 1.60 (s, 30H, C5Me5) ppm. 

13
C{

1
H} NMR  

(100 MHz, CD2Cl2): δ = 8.63, 92.87, 112.75, 138.66 and 171.59 ppm. 

3.3. Synthesis of [(η
5
-C5Me5)2Ir2(μ-dhnq)Cl2] (2) 

5,8-Dihydroxy-1,4-naphthoquinone (dhnqH2) (24 mg, 0.125 mmol) was added to a solution of 

CH3COONa (20.6 mg, 0.250 mmol) in methanol (30 mL). The mixture was stirred for 1 h and  

[(η
5
-C5Me5)2Ir2(µ-Cl)2Cl2] (100 mg, 0.125 mmol) was added and stirred at room temperature. After 

stirring overnight the solvent was removed under reduced pressure and the solid was washed with 

water and dried under vacuum to give a grey color compound. Yield 79 mg (69%). Calcd for 

C30H34Cl2O4Ir2: C, 39.43; H, 3.75. Found: C, 38.72; H, 3.83. IR (KBr pellets, cm
−1

): ν = 1531 s, 1417 s. 
1
H NMR (400 MHz, CD2Cl2): δ = 7.09 (s, 4H, dhnq), 1.58 (s, 30H, C5Me5) ppm. 

13
C{

1
H} NMR  

(100 MHz, CD2Cl2): δ = 8.80, 84.74, 110.39, 138.48 and 168.21 ppm. 
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3.4. Synthesis of [(η
5
-C5Me5)4Rh4(μ-dhnq)2(μ-pyrazine)2](CF3SO3)4 {[3](CF3SO3)4} 

A mixture of 1 (60 mg, 0.081 mmol) and AgCF3SO3 (42 mg, 0.163 mmol) in methanol (25 mL) was 

stirred at room temperature for 4 h and then filtered to remove the AgCl salt formed. Pyrazine (6.5 mg, 

0.081 mmol) was added to the filtrate and the solution was stirred overnight at room temperature. The 

solvent was removed under reduced pressure and dichloromethane (3 mL) was added. Addition of 

diethyl ether to the dichloromethane solution precipitated the desired product as a green powder. The 

powder was removed by filtration and dried under vacuum. Yield: 41 mg (49%). Calcd for 

[C68H76N4O8Rh4] (CF3SO3)4: C, 41.47; H, 3.67; N, 2.69. Found: C, 41.47; H, 3.88; N, 2.64. IR (KBr 

pellets, cm
−1

): ν = 1535 s, 1418 m, 1271 s, 1158 m, 1031 s, 639 s. 
1
H NMR (400 MHz, CD2Cl2):  

δ = 8.81 (s, 8H, pyrazine), 7.20 (s, 8H, dhnq), 1.61 (s, 60H, C5Me5) ppm.
 13

C{
1
H} NMR (100 MHz, 

CD2Cl2): δ = 8.34, 96.30, 111.65, 139.15, 148.96 and 171.61 ppm. 

3.5. Synthesis of [(η
5
-C5Me5)4Ir4(μ-dhnq)2(μ-pyrazine)2](CF3SO3)4 {[4](CF3SO3)4} 

A mixture of 2 (60 mg, 0.066 mmol) and AgCF3SO3 (34 mg, 0.132 mmol) in methanol (25 mL) was 

stirred at room temperature for 4 h and then filtered to remove the AgCl salt formed. Pyrazine (5.3 mg, 

0.066 mmol) was added to the filtrate and the solution was stirred overnight at room temperature. The 

solvent was removed under reduced pressure and dichloromethane (3 mL) was added. Addition of 

diethyl ether to the dichloromethane solution gave the desired product as a grey powder. The powder 

was removed by filtration and dried under vacuum. Yield: 43 mg (54%). Calcd for 

[C68H76N4O8Ir4](CF3SO3)4: C, 35.41; H, 3.14; N, 2.29. Found: C, 36.21; H, 3.48; N, 2.33. IR (KBr 

pellets, cm
−1

): ν = 1533 s, 1427 s, 1275 s, 1155 s, 1030 s, 637 s. 
1
H NMR (400 MHz, CD2Cl2):  

δ = 8.88 (s, 8H, pyrazine), 7.38 (s, 8H, dhnq), 1.57 (s, 60H, C5Me5) ppm.
 13

C{
1
H} NMR (100 MHz, 

CD2Cl2): δ = 8.28, 88.51, 113.75, 139.24, 149.28 and 168.71 ppm. 

3.6. Synthesis of [(η
5
-C5Me5)4Rh4(μ-dhnq)2(μ-4,4′-bipyridine)2](CF3SO3)4 {[5](CF3SO3)4} 

The metalla-rectangle 5 was obtained from 1 (60 mg, 0.081 mmol), AgCF3SO3 (42 mg, 0.163 mmol) 

and 4,4′-bipyridine (12.8 mg, 0.081 mmol) following the procedure described for [3](CF3SO3)4. Yield: 

70 mg (77%). Calcd for [C80H84N4O8Rh4](CF3SO3)4: C, 45.09; H, 3.78; N, 2.50. Found: C, 44.77; H, 

3.58; N, 2.34. IR (KBr pellets, cm
−1

): ν = 1535 s, 1414 m, 1271 s, 1157 m, 1031 s, 639 s. 
1
H NMR 

(400 MHz, CD2Cl2): δ = 8.36 (d, 8H, 
3
J = 8 Hz, bipyridine), 7.87 (d, 8H, 

3
J = 8 Hz, bipyridine),  

7.08 (s, 8H, dhnq), 1.47 (s, 60H, C5Me5) ppm.
 13

C{
1
H} NMR (100 MHz, CD2Cl2): δ = 8.42, 95.38, 

111.94, 124.63, 139.16, 145.62, 151.68 and 171.58 ppm. 

3.7. Synthesis of [(η
5
-C5Me5)4Ir4(μ-dhnq)2(μ-4,4′-bipyridine)2](CF3SO3)4 {[6](CF3SO3)4} 

The metalla-rectangle 6 was obtained from 2 (60 mg, 0.066 mmol), AgCF3SO3 (34 mg, 0.132 mmol) 

and 4,4′-bipyridine (10.3 mg, 0.066 mmol) following the procedure described for [4](CF3SO3)4. Yield: 

53 mg (72%). Calcd for [C80H84N4O8Ir4](CF3SO3)4·6 H2O: C, 37.33; H, 3.58; N, 2.07. Found: C, 

36.79; H, 3.58; N, 2.82. IR (KBr pellets, cm
−1

): ν = 1533 s, 1427 m, 1276 s, 1156 m, 1031 s, 639 s.  
1
H NMR (400 MHz, CD2Cl2): δ = 8.47 (d, 8H, 

3
J = 8 Hz, bipyridine), 8.05 (d, 8H, 

3
J = 8 Hz, 
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bipyridine), 7.31 (s, 8H, dhnq), 1.54 (s, 60H, C5Me5) ppm. 
13

C{
1
H} NMR (100 MHz, CD2Cl2):  

δ = 8.45, 87.41, 13.92, 124.99, 139.18, 145.18, 151.34 and 168.54 ppm. 

3.8. Synthesis of [(η
5
-C5Me5)4Rh4(μ-dhnq)2(μ-1,2-bis(4-pyridyl)ethane)2](CF3SO3)4 {[7](CF3SO3)4} 

The metalla-rectangle 7 was obtained from 1 (60 mg, 0.081 mmol), AgCF3SO3 (42 mg, 0.163 mmol) 

and 1,2-bis(4-pyridyl)ethylene (14.9 mg, 0.081 mmol) following the procedure described for 

[3](CF3SO3)4. Yield: 75 mg (81%). Calcd for [C84H88N4O8Rh4](CF3SO3)4: C, 46.16; H, 3.87; N, 2.45. 

Found: C, 45.66; H, 3.53; N, 2.45. IR (KBr pellets, cm
−1

): ν = 1535 s, 1417 m, 1271 s, 1160 m, 1032 s, 

639 s. 
1
H NMR (400 MHz, CD2Cl2): δ = 8.27 (d, 8H, 

3
J = 8 Hz, pyridyl), 7.70 (d, 8H, 

3
J = 8 Hz, 

pyridyl), 7.42 (s, 4H, CH=CH), 7.16 (s, 8H, dhnq), 1.57 (s, 60H, C5Me5) ppm. 
13

C{
1
H} NMR (100 MHz, 

CD2Cl2): δ = 8.44, 95.26, 111.86, 124.93, 131.77, 139.10, 146.68, 150.71 and 171.50 ppm.  

3.9. Synthesis of [(η
5
-C5Me5)4Ir4(μ-dhnq)2(μ-1,2-bis(4-pyridyl)ethane)2](CF3SO3)4 {[8](CF3SO3)4} 

The metalla-rectangle 8 was obtained from 2 (60 mg, 0.066 mmol), AgCF3SO3 (34 mg, 0.132 mmol) 

and 1,2-bis(4-pyridyl)ethylene (12 mg, 0.066 mmol) following the procedure described for 

[4](CF3SO3)4. Yield: 60 mg (69%). Calcd for [C84H88N4O8Ir4](CF3SO3)4·6 H2O: C, 38.37; H, 3.66; N, 

2.03. Found: C, 38.02; H, 3.58; N, 2.12. IR (KBr pellets, cm
−1

): ν = 1532 s, 1427 m, 1275 s, 1157 m, 

1031 s, 639 s. 
1
H NMR (400 MHz, CD2Cl2): δ = 8.28 (d, 8H, 

3
J = 8 Hz, pyridyl), 7.78 (d, 8H, 

3
J = 8 Hz, 

pyridyl), 7.49 (s, 4H, CH=CH), 7.29 (s, 8H, dhnq), 1.53 (s, 60H, C5Me5) ppm.
 13

C{
1
H} NMR (100 MHz, 

CD2Cl2): δ = 8.48, 87.19, 113.86, 125.30, 131.89, 139.10, 147.08, 150.26 and 168.41 ppm. 

3.10. Cell Culture and Inhibition of Cell Growth 

Human A2780 and A2780cisR ovarian carcinoma cells and HEK293 cells were obtained from the 

European Collection of Cell Cultures (ECACC) (Salisbury, UK). Cells were cultured in either RPMI-1640 

with GlutaMAX (A2780, A2780cisR) or DMEM (Dulbecco’s Modified Eagle Medium) high glucose 

with GlutaMAX (HEK 293) medium containing 10% fetal bovine serum (FBS) and penicillin at 37 °C 

and 5% CO2. Cytotoxicity was determined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide) assay (see below). Cells were seeded in 96 well plates by the addition of 

cells as a suspension in their respective media containing 10% FBS (100 μL per well, approximately 

4300 cells) and pre-incubated for 24 h. 

Fresh stock solutions of the compounds were prepared in DMSO just before injections, then the 

stock solution were diluted by addition to the culture medium [RPMI (Roswell Park Memorial 

Institute medium) or DMEM for A2780 and A2780cisR or HEK 293, respectively]. The stock 

solutions were serially diluted to give compound solutions of the desired concentrations. Complex 

solutions (100 μL) were then added to plate wells (yielding final compound solutions in the range 0 to 

5 μM) and the plates incubated for a further 72 h. 

Subsequently, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) solution 

(20 μL, 5 mg/mL in H2O) was added to each well and the plates incubated for a further 2 h. The 

culture medium was then aspirated and the violet formazan precipitate produced by mitochondrial 

dehydrogenases of living cells was dissolved by the addition of DMSO (100 μL) to each well. The 
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absorbance of the resultant solutions at 590 nm, which is directly proportional to the number of 

surviving cells, was recorded using a multiwell plate reader. The percentage of surviving cells was 

determined by measurement of the absorbance of wells corresponding to untreated control cells. The 

reported IC50 values are based on the mean values from two independent experiments; each 

concentration level per experiment was evaluated in triplicate, and those values are reported in Table 3. 

3.11. Single-Crystal X-ray Structure Analysis 

Crystals of compounds [3](CF3SO3)4, [5](CF3SO3)4 and [6](CF3SO3)4 were mounted on a Stoe 

Image Plate Diffraction system equipped with a  circle goniometer, using Mo-Kα graphite 

monochromatic radiation (λ = 0.71073 Å) with  range 0–200°. The structures were solved by direct 

methods using the program SHELXS-97, while the refinement and all further calculations were carried 

out using SHELXL-97 [40]. The H-atoms were included in calculated positions and treated as riding 

atoms using the SHELXL default parameters. The non-H atoms were refined anisotropically, using 

weighted full-matrix least-square on F
2
. In 6, the solvent molecules were highly disordered and a data set 

corresponding to omission of the missing solvent was generated using the SQUEEZE algorithm [41] and 

the structure was refined to convergence. These missing solvent molecules are probably dichloromethane 

molecules, which fit perfectly with the size of the voids, the electron counts and the crystal packing of 

compound [5](CF3SO3)4, which possesses two molecules of dichloromethane per asymmetric unit. 

Crystallographic details for [3](CF3SO3)4, [5](CF3SO3)4 and [6](CF3SO3)4 are summarized in Table 2. 

Figures 3, 4 and 5 were drawn with ORTEP [42] and Figure 6 was drawn with Mercury [43]. 

CCDC-959397 [3](CF3SO3)4·4CH2Cl2, 959398 [5](CF3SO3)4·2CH2Cl2 and 959399 

[6](CF3SO3)4·solvent contain the supplementary crystallographic data for this paper. These data can be 

obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge 

Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK;  

fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk]. 

4. Conclusions 

The antiproliferative activities of a series of half-sandwich Rh(III) and Ir(III) tetranuclear  

metalla-cycles have been evaluated in vitro against the human ovarian A2780 (cisplatin sensitive) and 

A2780cisR (cisplatin resistant) cancer cell lines and on non-tumorigenic human embryonic kidney 

HEK293 cells. These metalla-rectangles have been found to be highly cytotoxic with IC50 in the low 

micromolar range. The cationic charge, the size, the nature of the metal ion, and the presence of a 

hydrophobic cavity in these metalla-materials, are all plausible factors which can contribute to their 

high biological activity. These results further confirm the great potential of metalla-materials in the 

field of biology [1–6]. 
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