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Abstract
The importance of renewable energy sources for the electrical power supply has grown rapidly

in the past decades. Their often unpredictable nature however poses a threat to the stability

of the existing electric grid. Hydroelectric powerplants play an important role in regulating

the integration of renewable energy sources into the network by supplying on-demand load

balancing as well as primary and secondary power network control. Therefore, the operating

ranges of hydraulic machines has to be continuously extended, which potentially produces

undesirable flow phenomena involving cavitation. An example is the formation of a gaseous

volume in the swirling flow leaving a Francis turbine runner at off-design operating conditions.

At high load, this so called vortex rope is shaped axisymmetrically and may enter a self-excited

oscillation, measurable through significant fluctuations of the pressure throughout the system

and the mechanical torque transferred to the generator. The main objective of the present

work is the identification of the physical mechanisms governing this self-sustained, unstable

behavior by measurement. Furthermore, the key parameters of numerical approaches using

one-dimensional hydroacoustic flow models or CFD require experimental validation. For this

purpose, the measurements provide a comprehensive data base of various flow and system

parameters at varying operating conditions.

Two test cases are studied, a small scale hydraulic circuit with a micro-turbine as well as a

reduced scale physical model of an existing Francis turbine. On the first test case, the study of

the flow rate fluctuations up- and downstream of the oscillating vortex rope in the draft tube,

together with the volume of the cavity, revealed the destabilizing effect of the flow swirl in the

draft tube inlet. The second test case accurately simulates the behavior of an actual hydraulic

power plant. Investigations range from a local study of the flow field in the draft tube cone

by means of LDV, PIV, high speed visualization and wall pressure measurements to a global

analysis, considering the response of the hydraulic and mechanical system to the excitation

by the vortex rope oscillation. Among the main observations is a periodical variation of the

flow swirl in the draft tube, synchronized with the pressure oscillations. This is likely to be

caused by a cyclically appearing volume of cavitation on the runner blades, modifying the

relative flow angle at the outlet. The interaction of the blade cavitation and the vortex rope

oscillation via the flow swirl is found to play a crucial role in the occurrence of self-excited

pressure oscillations in Francis turbines.

Keywords: Francis turbine, full load, pressure fluctuations, cavitation, vortex rope, swirl,

self-oscillation, experimental investigation.
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Résumé
Les centrales hydroélectriques jouent un rôle important dans l’intégration des sources d’éner-

gie renouvelables dans le réseau électrique existant en garantissant sa stabilité. L’accomplisse-

ment de cette fonction nécessite une extension continue du domaine de fonctionnement des

machines hydrauliques. Les régimes en dehors du point de meilleur rendement sont cepen-

dant caractérisés par des champs de vitesse et de pression inhomogènes dans le diffuseur en

sortie de roue, avec une forte composante tournante. La naissance d’écoulements cavitants

est ainsi souvent observée. A forte charge, cette cavitation prend la forme d’un volume de

vapeur axisymétrique attaché au moyeu de la roue et, selon les conditions de fonctionne-

ment, la cavité peut se mettre à pulser et entrer en auto-oscillation avec le système. Cette

instabilité est accompagnée par de fortes pulsations de pression et de couple sur l’arbre de la

roue, ce qui peut mettre en péril la stabilité de la machine et du réseau électrique auquel elle

est connectée. Les mécanismes physiques liés à ce comportement instable ne sont, à cette

date, pas entièrement connus. Ce travail consiste en l’établissement d’une base de données

expérimentales permettant dans un premier temps de décrire le phénomène de manière

quantitative. Les cas d’étude choisis sont un modèle réduit d’une turbine Francis ainsi qu’un

cas-test simplifié avec une micro-turbine. Les résultats des mesures sur la micro-turbine

permettent de suivre le comportement des paramètres hydroacoustiques nécessaires aux

modèles monodimensionnels usuels pour simuler l’écoulement dans le diffuseur et valider

certaines approches de modélisation. Sur le modèle réduit, le champ de vitesse en sortie de

roue est décrit en détail avec des mesures locales de LDV, PIV et de pression aux parois. Dans

une approche plus globale, la réponse du système hydraulique et mécanique à l’excitation

créée par l’écoulement diphasique pulsant est étudiée. Une importante variation du flux du

moment angulaire est mise en évidence, accompagnée de l’apparition et du collapse pério-

dique des poches de cavitation sur l’extrados des aubes de la turbine. L’interaction entre cette

cavitation sur les aubes et l’auto-oscillation de la cavité dans le cône du diffuseur est identifiée

comme mécanisme clé dans l’apparition et le maintien de l’instabilité.

Mots-clés : Turbine Francis, forte charge, fluctuations de pression, cavitation, swirl, auto-

oscillation, expérimental.
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Acronyms

BEP Best Efficiency Point
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DTFT Discrete-Time Fourier Transform

EPFL École polytechnique fédérale de Lausanne

FFT Fast Fourier Transform

fps frames per second

LDA Laser Doppler Anemometry

HA Hydroacoustic

LDV Laser Doppler Velocimetry

NRE New and Renewable Energy

OP Operating Point

PCI Peripheral Component Interconnect

PIV Particle Image Velocimetry

PXI PCI eXtensions for Instrumentation

ROI Region of Interest

rpm revolutions per minute

std standard deviation

TTL Transistor-Transistor Logic

Subscripts

1 runner inlet reference section

1̄ runner outlet reference section

c cavity (vortex rope)

I power unit high pressure reference section

Ī power unit low pressure reference section

B̄ tail water reservoir reference section

m mechanical

p prototype

ref power unit reference level (horizontal spiral case symmetry plane)
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Latin letters

Cm axial (meridional) velocity component (m s−1)

Cu tangential velocity component (m s−1)

Cr radial velocity component (m s−1)

CQ mean discharge speed (m s−1)

g gravitational acceleration (m s−2)

h piezometric head; h = z +p/(ρg ) (m)

n runner rotational frequency (Hz)

z elevation (m)

Cc cavitation compliance; Cc = ∂Vc /∂h (m2)

D diameter (m)

E specific Energy; E = g ·H =∆
(

p
ρ + g z

)
I−Ī

+ 1
2Q̄2 1

A2
I −A2

Ī

(J kg−1)

f frequency (Hz)

Hs zref − zB (m)

L angular momentum (J s)

N runner speed (min−1)

NPSE net Positive Suction Energy; NPSE=(pb −pv )/ρ− g Hs + 1
2C 2

Ī
(J kg−1)

NPSH net Positive Suction Head; NPSH=NPSE/g (m)

pb downstream reservoir pressure (Pa)

pv vapor pressure (Pa)

Q volumetric discharge or flow rate (m3 s−1)

R radius (m)

S swirl number (-)

T torque (Nm)

U peripheral velocity (m s−1)

V volume (m3)

Greek letters

β relative flow angle (deg)

ρ density (kg m−3)

ω angular velocity (rad s−1)

χ mass flow gain factor; χ= ∂Vc /∂Q (s)

Non-dimensional variables

cp pressure factor; cp = (p −p)/(ρE) (-)

Fr Froude number; Fr =√
H/D 1̄ (-)

nED speed factor; nED = (n ·D)/
p

E (-)

QED discharge factor; QED =Q/(D2
p

E) (-)
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ϕ flow coefficient; ϕ=Q/(πωR3) (-)

ψ energy coefficient; ψ= 2E/(ω2R2) (-)

ν specific speed; ν=p
ϕ/ψ−(3/4) (-)

σ Thoma number or cavitation number; σ= NPSE/E (-)
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Introduction

0.1 Research context

Hydraulic powerplants provided 58.7% of Switzerland’s total electricity production in 2012

[20]. Globally speaking, in 2012, an estimated 16.5% of the worldwide electricity production is

attributed to hydropower. A share of 5.2% originated from other renewable energy sources

and 78.3% came from fossil fuel and nuclear powerplants [21]. This distribution is subject

to constant change, motivated by environmental concerns as well as shifting geological,

economical and geopolitical realities. As a consequence, the installed renewable power

capacity is on a constant rise, as documented in Table 2. Main technologies include solar

and wind power, biomass & waste-to-energy, biofuels, geothermal and ocean energy. This

development is often given a political frame through the definition of energy policies on a

national and supranational level. To name one example, the European Union has recently

defined a set of objectives under the name of the 2020 climate and energy package. The

latter targets a 20% reduction of the greenhouse gas emissions from 1990 levels, a raise of the

renewable energy resources’ share in the electricity consumption to 20% and an improvement

of the energy efficiency of 20% [51]. In a similar effort, the Swiss government has defined the

Energy Perspectives 2050 [19], following the decision of the Federal Council from May 25, 2011,

to gradually phase out nuclear energy as part of its new energy strategy.

Table 2: Selected indicators of renewable energy sources development from [21]

Year 2010 2011 2012
Renewable power capacity (without hydro) GW 315 395 480
Hydropower capacity GW 935 960 990
Total renewable power capacity GW 1’250 1’355 1’470
Countries with policy targets # 109 118 138
Annual investment in new renewable capacity billion USD 227 279 244

In order to support and accelerate the development of renewable energy resources (NRE), their

smooth integration into the existing power network has to be guaranteed. In the past, energy

sources characterized by an unsteady, unpredictable output have been known to critically

challenge the stability of the electrical grid. Typical examples are solar or wind power, which

depend heavily on the weather conditions. Hydropower plants contribute decisively to the
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mitigation of this issue by providing the necessary storage capacity needed for load balancing

as well as primary and secondary frequency regulation capabilities. This goes however along

with a continuous extension of the operating range of the hydraulic machines, causing the

kind of undesired flow instabilities addressed in this work.

The present investigation concentrates on the high load or overload behavior of Francis

turbines. The corresponding operating range is defined by flow rates which are higher than

the value producing the highest efficiency of the turbine, called the Best Efficiency Point. Due

to their adaptability to a wide range of site conditions in terms of head and discharge, Francis

turbines cover the largest part of the installed hydropower capacity in the world. Owing

their name to the British-American engineer James B. Francis in the 1840s, the most recent

milestone in their development is the delivery of a 812 MW runner to the Xianjiaba Dam

spanning the Jinsha river in China, representing the world’s largest single unit output.

0.2 Off-design operation of hydraulic machines

At off-design operating conditions, the velocity field of the flow leaving the runner has, in

addition to the axial component Cm in the main flow direction, also a tangential or swirling

component Cu. This is illustrated in Figure 1 and Figure 2, defining the relative and absolute

flow velocity vectors ~W1̄ and ~C1̄ at the runner outlet as well as the peripheral velocity ~U1̄. The

direction of the relative flow vector ~W1̄ is set by the geometry of the runner blades. Depending

on the load case, the tangential flow either rotates in the same or in the opposite direction of

the runner. This swirl leads to an inhomogeneous pressure distribution in the draft tube cone,

due to the fact that the fluid mass is being pushed towards the walls under the influence of

centrifugal forces. When the pressure in the center of the cone reaches the vapor pressure pv ,

the water locally evaporates and a cavitating vortex rope is formed.

At part load, the vortex rope is shaped like a corkscrew, wrapped around a recirculation zone

in the center [45, 60]. At full load on the other hand, the cavity has a nearly axisymmetric

shape along the draft tube centerline. Figure 3 shows a waterfall diagram with power spectral

densities of the wall pressure fluctuations in the draft tube over a broad load range for the

test case described in Section 1.1.1. The BEP is located at a discharge factor of QED = 0.2,

surrounded by a cavitation-free zone. The dominant contribution in the wall pressure signal

comes from a periodic, forced precession movement of the vortex rope, which acts as an exter-

nal excitation source. The resonance observed at QED = 0.166, or at 82% of the discharge at the

BEP, occurs when the frequency of the vortex rope precession matches the first hydroacoustic

eigenfrequency of the system, as reported by Favrel et al. [18]. The pressure oscillations

at full load are of self-excited nature, implying an independence from a periodic external

excitation. Self-excited oscillations are also known as "self-oscillations", "auto-oscillations" or

"self-sustained" and "self-induced" oscillations and arise from an interaction between the

oscillator’s motion and the attached power source, causing negative damping and feeding

energy into the oscillation [31].
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Figure 1: Definition of the velocity triangles at the outlet of a Francis turbine runner.
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Figure 2: Velocity triangles in the draft tube for partial load, BEP and full load operation.

0.3 State of the art

Cavitation is a long known and well-studied phenomenon, occurring in a large variety of

applications [22, 68]. Among the problems caused by its appearance in fluid machinery is the

dynamic interaction with the surrounding system. In Francis turbines, a violent instability

is observed at full load, exhibiting an oscillating vortex rope volume in the draft tube cone,

alongside with self-excited pressure oscillations in the entire system. Extensive experimental

investigations of this phenomenon, often referred to as pressure surge, were performed on

reduced scale physical models by Prénat and Jacob between 1986 and 1996 [28, 29, 30, 52].

First reports of power swings in hydroelectric plants due to draft tube surges date however as

far back as 1912, and the topic increasingly received attention from the 1930s onwards [53].

Efforts to develop analytical and numerical descriptions of the unsteady two-phase flow in

industrial applications have their origin in the early 1960s, when a critical instability, called the

POGO effect, was observed in several vehicles used for space flight, arising from the interaction

of longitudinal structural vibration with the liquid propulsion system. The most important

transient parameters for the dynamic modelling of the propulsion system were identified
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Figure 3: Power spectral densities of the pressure fluctuations in the draft tube cone of a
Francis turbine at σ= 0.11 over a load range of 30% to 137%.

by Rubin [54], such as the compliance, describing the oscillatory source/sink behaviour

of the pump due to the fluctuating cavity volume. Analytical solutions for the flow in the

inducer and resulting values of the local and overall compliance are presented by Brennen

and Acosta in 1973 [11], using quasi-steady free streamline cascade theory. In 1976, the same

authors introduced a second parameter, called the mass flow gain factor χ, as part of a transfer

function, relating the fluctuating pressure and mass flow rates at the inlet of a turbo pump

to the same quantities at the outlet [10, 12]. This quantity, representing the change in the

cavity volume with respect to the change in mass flow, was not only proven to be non-zero

as previously assumed, but was attributed a major dynamic effect. In 1980 Braisted and

Brennen [7] experimentally investigate the character of the excitation of the auto-oscillation

by the cavitation in turbo pumps. They assessed the influence of the cavitation number σ

and the flow coefficient ϕ, among other flow parameters at the inducer and the outlet, on the

onset point and the dominant frequency of the auto-oscillation, reaching the conclusion that

the auto-oscillation is a system instability which is primarily caused by the active dynamic

characteristics of the turbo pump. The dominant role played by the mass flow gain factor as

part of the transfer function in the onset of the instability is reconfirmed. A stability analysis

based on the models developed to describe the POGO effect and further interpretations of the

transfer matrix were added by Oppenheim and Rubin [46, 55]. Tsujimoto et al. report that a

positive mass flow gain factor causes rotating cavitation as a result of a linear, quasi-steady

analysis [61]. The solutions are presented in a plane limited by the compliance and mass flow

gain factor axes for different values of the cavitation number σ, identifying the stable and

unstable operating ranges. The predicted modes are identified experimentally with pressure

fluctuation measurements [63]. A nonlinear calculation of rotating cavitation preceded the

measurements by the same authors [62]. Koutnik and Pulpitel applied a transfer matrix model

to Francis turbines in 1996 for the purpose of a stability analysis [34], using the discharge

and pressure values downstream of the cavity for their calculation. They presented a similar

mapping of stable and unstable operating ranges as Tsujimoto et al. in a compliance - mass
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flow gain factor plane. Chen et al. presented in 2008 a further developed stability analysis,

using both the up- and downstream pressure and mass flow variations to account for the

destabilizing effects of the swirling flow and the conical shape of the diffuser [13]. The transfer

matrix method was recently validated experimentally by Yamamoto et al. [66] on a simplified

test configuration for several values of the flow resistance, inertance and compliance.

Further developments of mathematical models of the two-phase flow in Francis turbines

were recently proposed by Kuibin et al. [35, 36] and Resiga et al. [59]. One-dimensional

approaches based on electrical analogies are introduced by several authors (the reader may

refer to Nicolet [44] and Dörfler et al. [15, 16]). The hydroacoustic parameters of such models

may be determined by means of CFD calculations with the ultimate goal of identifying the

underlying causes leading to full load surge. Alligné et al. [2, 3] reproduced the unstable

behavior observed on a reduced scale model by introducing an additional thermodynamic

damping parameter to the hydroacoustic model. Dörfler et al. identifies the runner outlet

swirl as the main destabilizing variable [17]. Chirkov et al. [14] managed to reproduce the

self-excited pressure oscillations at full load with a 1D-3D hybrid approach. Rudolf et al.

identified the eigenmodes in the swirling draft tube flow by Proper Orthogonal Decomposition

[56]. Landry et al. extended the 1-D model to include the unsteady friction in the draft tube

[38]. The most recent contribution by Alligné et al. includes the convective terms in the

momentum equation and finds the divergent draft tube geometry to be the destabilizing

parameter, ultimately inducing the self-oscillation of the flow [4].

0.4 Thesis objective

The primary aim of this research project is the determination of the underlying physical

mechanisms leading to self-excited pressure oscillations in hydraulic turbines by performing a

series of measurements on a reduced scale physical model of a Francis turbine as well as on a

small scale test facility with a micro-turbine. It is achieved by studying the unsteady, two-phase

flow in the the draft tube of the turbine with state of the art measurement techniques, such as

LDV, PIV and high-speed visualization, and by developing the appropriate post-processing

tools for the analysis. Furthermore, an important aspect is to quantify how the instability

interacts with its surrounding system, for instance by measuring the fluctuations of the torque

and the runner frequency.

The different existing one-dimensional modeling approaches are aimed to be evaluated by

studying the behavior of the hydroacoustic draft tube parameters on a simplified test case

with a micro-turbine. This is reached by the measurement of the instant flow rate fluctuations

with pressure transducers and the estimation of the instant vortex rope volume.

Finally, the data obtained from the various measurements at a large set of operating conditions

shall form a comprehensive data base for the validation and further development of analytical

and numerical flow models.
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0.5 Document structure

Chapter 1 treats the external aspects of overload pressure surge and is a qualitative introduc-

tion to the phenomenon at hand. It describes how the instability manifests itself throughout

the hydraulic system and displays its tangible facets, such as the pressure pulsations at differ-

ent locations and the two-phase flow with the oscillating vortex rope that can be observed in

the draft tube cone.

Chapter 2 describes the investigations on a simplified test case with a micro-turbine and a

conical diffuser. Important physical insights are gained by reproducing the instability and by

measuring the temporal discharge and vortex rope volume variations in the upstream and

downstream flow during self-sustained pressure oscillations. The behavior of the hydroacous-

tic draft tube parameters is analyzed.

Chapter 3 includes a detailed description of the draft tube flow observed on a 1:16 reduced

scale physical model of a Francis turbine. Velocity components are measured by means of

LDV and fluorescent PIV, synchronized with pressure fluctuation measurements. The result is

a comprehensive characterization of the flow during self-excited pressure oscillations under

various operating conditions. Chapter 3 also contains a description of the measurement

techniques and post-processing tools used for the analysis of the result.

Chapter 4 finally contains the calculation of the draft tube swirl based on the velocity mea-

surements presented in the foregoing Chapter 3. It also describes the interaction between the

vortex rope and the blade cavitation, as well as the instant variations of the runner frequency

and the torque.

Throughout the document, experimental methods and results are documented for several

operating conditions. For the reduced scale model tests in chapters 3 and 4, the operating

conditions are summarized in Table B.1 of Appendix B. They are mainly divided into two levels

of the speed factor, nED = 0.273 and nED = 0.288. The latter is the specified value at the BEP

of the model machine. As shown in the following analysis, the appearance in terms of the

vortex rope shape or the amplitudes of the pressure fluctuations changes significantly between

the two nED -values. Different discharge levels are exploited, and systematical variations of

the discharge factor QED are performed in some cases. The reference value for the draft tube

pressure level is expressed by a cavitation number of σ= 0.11, corresponding to the nominal

value of the prototype machine. Systematic variations of this parameter are also performed.

For the tests on the simplified test configuration with a micro-turbine, the operating conditions

are summarized in Table C.1 in Appendix C.
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1 Characterization of self-excited pres-
sure oscillations in Francis turbines

1.1 Experimental observations

1.1.1 Test setup

A test setup with a 1:16 reduced scale physical model of a Francis turbine with a specific speed

of ν = 0.27 is installed on the EPFL test rig PF3 of the Laboratory for Hydraulic Machines,

shown in Figure 1.1. It offers the possibility of a highly accurate simulation of an actual

prototype according to IEC standards [27]. The real generating unit, featuring a rated power

of 444 MW, is located in a power plant in the Canadian province of British Columbia and

experiences serious overload pressure surge. Figure 1.2 displays a close view of the model

geometry with its inlet pipe and diffuser, including the location of the wall pressure sensors.

Figure 1.1: Reduced scale model of the Francis turbine on the EPFL test rig PF3.

The test rig is operated in a closed loop configuration, driven by two axial double-volute

pumps. A generator regulates the rotating speed of the runner. The pressure level in the

draft tube, characterized by the cavitation number σ, is set by adjusting the pressure in the

downstream reservoir with a vacuum pump. The hydraulic head is adjusted via the pump

speed and the discharge is controlled by the guide vane opening.
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P3P2P1

D1

E1

E2

A-A

D6

Section 2

Section 1

(a) Cut through Section A-A

A

A

D2

D5

D4

D3

P3P2P1

(b) Top view

Figure 1.2: Close view of the reduced scale model with diffuser in two branches, elbow, draft
tube cone, spiral case and inlet pipe. Pressure sensors are numbered D1-D6 in the diffuser,
E1-E2 in the elbow and P1-P3 in the inlet pipe.

The wall pressure in the draft tube cone is measured at two streamwise levels, referred to as

Section 1 and Section 2, situated 0.39×D 1̄ and 1.0×D 1̄ below the runner exit, as illustrated

in Figure 1.2a. Two different Plexiglas versions of the cone are manufactured for the various

measurement purposes, a first one accommodating 2×4 pressure sensors and a second one

with 2×2 sensors. The horizontal measurement sections 1 and 2 are shown for both cones in

Figure 1.3. The second cone in Figure 1.3b is furthermore equipped with a water filled window

attached to its outer surface. This so called waterbox with a flat vertical cover minimizes the

optical distortion effects when using cameras for flow visualization or PIV measurements.

1.1.2 Vortex rope and pressure oscillations

The self-excited regime of the vortex rope oscillation in the draft tube is illustrated in Figure

1.4 for the operating conditions OP#1 at 131% of the nominal discharge. The sequence of

5×4 photos covers a single cycle and shows the different stages of the oscillation. The period

of the oscillation is T = 0.358 s and the time increment between the photos is ∆t = 18.8 ms.

Counting from the top left, the first 9 pictures show the growing phase of the cavity. Next,

the introduction of bubbles into the surrounding flow from above is indicated by a change in
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C1N
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C2NC2E
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(a) Basic measurement configuration

y

x

C1Sb

C1Nb

y

x

C2Sb

C2Nb

(b) Configuration for flow visualizations and PIV measurements

Figure 1.3: Horizontal wall pressure measurement planes in the draft tube cone at 0.39×D Ī
(left) and 1.0×D Ī (right) below the runner exit with absolute frame of reference (x and y axes).

luminance. As shown in a later section of this work, these bubbles originate from cavitation

on the blades of the turbine runner. After the main body of the cavity seemingly stretches in

streamwise direction in pictures 10 to 12, the vortex rope collapses back upon itself, starting

from the node at the lower end of its main body. This is illustrated by the cavity becoming

increasingly non-transparent from the bottom to the top in pictures 13 to 16. Finally, pictures

17 to 20 show the terminal stage of the collapse and the beginning of the comeback, which

coincides with expulsion of the remaining bubbles in the surrounding flow.
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Figure 1.4: High-speed visualization of the cavitating vortex rope at OP#1.
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The above described cycle is manifestly coupled with significant pressure pulsations through-

out the circuit. Typical wall pressure signals at various locations of the reduced scale model are

shown in Figure 1.5. For this particular operating point, the pressure peaks seem to correspond

to the collapse of the vortex rope, whereas the pressure minima are reached when the cavity is

at its maximum volume. This is however not generally valid, as shown in Section 3.4. Since

the pressure is made non-dimensional with ρE , it follows that the amplitude of the oscillation

reaches up to 15% of the specific energy at the given operating point in the draft tube cone.

The amplitudes remain on a high level in the inlet pipe and the elbow before being damped in

the diffuser pipe.

The collapse of the cavity is initiated shortly after a cycles’s global wall pressure minimum.

This phase is characterized by a local pressure bump before the global rise in the lower section

of the draft tube cone, the inlet pipe, the elbow and in the diffuser entry (see Figures 1.5a, 1.5b,

1.5d, 1.5e, 1.5f and 1.5g), while only a highly fluctuating signal is observed at the same time in

the wall pressure closest to the runner exit in the draft tube cone (see Figure 1.5c).

The regularity of the self-excited pressure fluctuations is confirmed in the frequency domain.

Figure 1.6 displays the power spectral density of the wall pressure factor at four locations,

namely in the inlet pipe, the draft tube cone and the diffuser. The spectra are estimated with

the Welch’s method [64], taking into account three windows of 215 data points each, with an

overlap of 50%. The synchronous nature of the pressure fluctuations throughout the draft

tube, confirming the existence of a standing plane wave, was already confirmed by Alligné in

2011 [2] for the same test case. The fundamental frequency in this case is located at 2.76 Hz

and the vortex rope oscillates hence at 25% of the runner frequency. Its amplitude is higher in

the upstream inlet pipe than in the draft tube cone and rapidly decreasing towards the diffuser.

A synchronous contribution corresponding to the runner frequency is not detected.
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(c) Draft tube cone (C1Nb)

t × n (-)

cp (-)

−0.05

0

0.05

0.10

0.15

0.20

8 16 24 320

(d) Draft tube cone (C2Nb)

t × n (-)

cp (-)

−0.05

0

0.05

0.10

0.15

0.20

8 16 24 320

(e) Elbow, upper side (E2)

t × n (-)

cp (-)

−0.05

0

0.05

0.10

0.15

0.20

8 16 24 320

(f) Diffuser inlet, left branch (D4)
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(h) Diffuser, right branch (D1)

Figure 1.5: Fluctuation of the pressure factor cp throughout the reduced scale model as a
function of the number of runner revolutions at OP#1. The measurement locations are marked
in Figures 1.2 and 1.3.
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Figure 1.6: Power spectral densities of the wall pressure factor cp in the inlet pipe, the draft
tube cone and the diffuser inlet.

1.1.3 Effects of a change in the discharge and draft tube pressure level

Among the perceivable properties of the vortex rope oscillation are the frequency at which the

pressure fluctuations occur as well as the shape and volume of the cavity. These properties are

strongly influenced by the pressure level in the draft tube, expressed by the cavitation number

σ, and the load level, represented by the discharge factor QED . In the following, systematic

variations of σ and QED are performed around two different reference points and the influence

on the dominant frequency of the oscillation in the draft tube cone as well as the cavity shape

is investigated.

The evolution of the dominant surge frequency for a variation of the draft tube pressure level at

OP#6 is shown in Figure 1.7. Ten different cavitation numbers between σ= 0.10 and σ= 0.163

are investigated, while keeping the remaining variables defining the operating conditions

constant. The power spectral densities for each measuring point are displayed in the waterfall

diagram of Figure 1.7a and the behavior of the fundamental frequency and amplitude are

displayed in Figure 1.7b and Figure 1.7c, respectively. The surge frequency, normalized by the

mean runner frequency, increases linearly with a growing σ in a least square sense. So does

the corresponding amplitude, oscillating around the linear approximation.

As mentioned beforehand, it can be expected that a variation of the draft tube pressure level
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Figure 1.7: Power spectral density of cp in the draft tube cone (sensor C1Nb) and evolution of
the dominant frequency and amplitude for different σ-values around OP#6.

has an impact on the cavity volume. This is illustrated in Figure 1.8, showing one snapshot of

the vortex rope at each of the investigated σ-values. The pictures are taken at the half time

of the given cycle, the latter being defined as the period between two peaks of the cone wall

pressure signal (sensor C1Nb). As a side note, that same definition of a complete cycle is

used in Figure 1.4. In a first observation, the tendency of the vortex rope volume to increase

with a decreasing cavitation number σ seems confirmed. This is however to be taken with

caution, as the shape and constitution of the cavity as well as the concentration of bubbles

in the surrounding flow clearly suggest that the time t = 0.5×T does not consistently define

the same stage of the vortex rope oscillation. In other words, the duration of the growing and

collapsing phase are not proportional to the relative period between two pressure peaks. A

further discussion requires an estimation of the vortex rope volume, which is presented in

Chapter 3.
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(a) σ= 0.163 (b) σ= 0.147 (c) σ= 0.137 (d) σ= 0.131 (e) σ= 0.126

(f) σ= 0.119 (g) σ= 0.115 (h) σ= 0.110 (i) σ= 0.105 (j) σ= 0.100

Figure 1.8: Vortex rope shape at t = 0.5×T for different values of σ around OP#6.

The effect of a variation of the discharge factor QED around OP#1 is shown in Figure 1.9. While

the dominant surge frequency in Figure 1.9b decreases linearly with an increasing load, no

such conclusion can be supported by the available data for the amplitude in Figure 1.9c. A

snapshot of the vortex rope at mid-cycle (t = 0.5×T ) is shown for each value of the discharge

factor QED in Figure 1.10. The same remarks as stated in case of the σ-variation apply to the

present case. While the vortex rope collapse is already being initiated in Figure 1.10a, it has

barely reached its maximum volume at the lower end of the tested QED -range in Figure 1.10e.

1.1.4 Notions of instability

The notion of instability or unstable operation of Francis turbines commonly refers to the

self-excited character of the pressure oscillations in the machine. As already reported in [2]

for the same test case, the corresponding flow parameters fundamentally differ from a stable

configuration. At a so called stable operating point, for instance, the pressure fluctuations

have a significantly lower amplitude and a more random appearance. Furthermore, if the

pressure level in the draft tube favors cavitation, a stable vortex rope fluctuates around a

mean volume, whereas it completely disappears and reappears again at unstable conditions

as shown previously. These aspects are further discussed in Section 2.5.3.
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Figure 1.9: Power spectral density of cp in the draft tube cone (sensor C1Nb) and evolution of
the dominant frequency and amplitude for different QED -values around OP#1.

(a) QED = 0.2703 (b) QED = 0.2680 (c) QED = 0.2651 (d) QED = 0.2623 (e) QED = 0.2590

Figure 1.10: Vortex rope shape at t = 0.5×T for different values of QED around OP#1.
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1.2 Introduction to an analytical and numerical description

1.2.1 Mass balance in the draft tube

The presence of a gaseous volume in the draft tube cone significantly changes the physics of

the local flow. For instance the local speed of sound, which depends essentially on the volume

of the cavity and is determining the Eigenfrequencies of the hydraulic system. Another issue

is the impact of the pulsating vortex rope on the local mass balance. In the following, these

effects are addressed by analysing the flow across a control volume whose limits completely

incorporate the vortex rope. Such a control volume is illustrated in Figure 1.11.

Figure 1.11: Control volume in the draft tube containing the volume Vc of the vortex rope.

In Figure 1.11, the flow rates Q1̄ and Q2̄ enter and exit the control volume, respectively. The

remaining area is a material surface, representing the inner draft tube cone wall. In order to

respect the conservation of mass, the difference of the two flow rates must correspond to the

total change in the vortex rope volume, expressed as

Q1̄ −Q2̄ =
dVc

dt
. (1.1)

Furthermore, it is assumed that cavity volume is a function of the inlet and outlet flow rates,

as well as the pressure level in the draft tube. Hence,

Vc = f
(
Q1̄,Q2̄,h1̄+ 1

2

)
, (1.2)

where h1̄+ 1
2

is the piezometric head in the middle of the draft tube cone, between the nodes 1̄
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and 2̄. The development of the total derivative in eq. (1.1) then yields

dVc

dt
= ∂Vc

∂Q1̄

∣∣∣∣
Q2̄,h︸ ︷︷ ︸

−χ1̄

·dQ1̄

dt
+ ∂Vc

∂Q2̄

∣∣∣∣
Q1̄,h︸ ︷︷ ︸

−χ2̄

·dQ2̄

dt
+ ∂Vc

∂h

∣∣∣∣
Q1̄,Q2̄︸ ︷︷ ︸

−Cc

·dh

dt
, (1.3)

where the partial derivatives of the vortex rope volume with respect to the flow rates and the

piezometric head are defined as the hydroacoustic parameters of the draft tube flow. Namely,

they are

• χ1̄ Upstream mass flow gain factor

• χ2̄ Downstream mass flow gain factor

• Cc Cavitation compliance

Similar formalisms are used by many authors for the hydroacoustic modelling and stability

analysis [2, 4, 15, 33]. As clarified later, several one-dimensional model exist, based on a

diverging significance attributed to the individual hydroacoustic flow parameters. One of the

present work’s goals is to provide an experimental data set allowing to assess the physical

accuracy of the different modelling approaches.

1.2.2 Calculation of the hydroacoustic draft tube flow parameters

The two mass flow gain factors χ1̄ and χ2̄ may be determined by measuring the instantaneous

vortex rope volume and the upstream and downstream flow rate fluctuations. In order to

simplify the calculation of the vortex rope compliance Cc based on measurement, the piezo-

metric head h can be expressed as a function of the the cavitation number σ as follows. The

net positive suction energy (NPSE) is defined as

NPSE = g HĪ − g Zref −
pv

ρ
, (1.4)

where g HĪ is the specific hydraulic energy at the power unit low pressure reference section,

Zref the elevation of the power unit reference level, pv the vapor pressure and ρ the water

density. The hydraulic energy at an arbitrary point x̄ in the diffuser can be expressed as the

sum of the specific hydraulic energy g HĪ and the losses between the two points. This translates
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to

g HĪ = g Hx̄ − g Hr x̄÷Ī
←→ HĪ =

p x̄

g ·ρ +Zx̄︸ ︷︷ ︸
hx̄

+C x̄

2g

︸ ︷︷ ︸
Hx̄

−Hr x̄÷Ī
, (1.5)

where g Hr x̄÷Ī
are the hydraulic energy losses between the points x̄ and Ī , and hx̄ is the piezo-

metric head at the arbitrary point x̄. Finally, using eq. (1.5) in eq. (1.4), the NPSE becomes

NPSE = g hx̄ + C x̄

2
− g Hr x̄÷Ī

− g Zref −
pv

ρ
. (1.6)

Differentiating the vortex rope volume Vc with respect to the NPSE instead of the piezometric

head entails the change in variables

∂Vc

∂h
= ∂Vc

∂(NPSE)
· ∂(NPSE)

∂h
. (1.7)

In eq. (1.6) only one term depends on h. Taking into account the definition of the cavitation

number, σ= NPSE/E , the derivative therefore simply becomes

∂Vc

∂h
= ∂Vc

∂(NPSE)
· g = ∂Vc

∂
(
·NPSE

g

) = ∂Vc

∂
(

E
g ·σ

) = ∂Vc

∂
( 1

H ·σ) , (1.8)

where H is the head of the machine. Assuming that H is constant at a given operating point, it

can be taken out of the derivative and the cavitation compliance is finally defined as

Cc = 1

H

∂Vc

∂σ
. (1.9)
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1.3 Summary and discussion

Chapter 1 contains a qualitative description of the self-sustained pressure oscillations in a re-

duced scale physical model of a Francis turbine. Several characteristic aspects are introduced,

such as the regularity and the synchronous nature of the wall pressure fluctuations throughout

the system, as well as the growth and almost total collapse of the vortex rope during one cycle

of the pressure oscillation. Furthermore, a periodically changing concentration of bubbles in

the surrounding flow is observed.

The dominant frequency of the pressure oscillation varies linearly with the cavitation number

σ and the discharge factor QED . The same can be said for the corresponding amplitude as

a function of σ. The relative duration of the different phases of the vortex rope oscillation

with respect to the period between two pressure peaks is not constant. A decreasing sigma

appears to decelerate the vortex rope growth, where the cavity almost seems more inert with

its increased mean volume. The same effect has an increase of the discharge factor QED .

Finally, the analytical background of currently available one-dimensional models to describe

the two-phase flow in the draft tube is introduced and the main hydroacoustic parameters are

defined.

20



2 Simplified test case

2.1 Motivation and context

In order to develop a deeper understanding of how the the main flow parameters behave

during self-sustained pressure oscillations, measurements are performed on a small scale

hydraulic circuit featuring a micro-turbine and a horizontal conical diffuser. The simplified

configuration bears the advantage of a rather straight forward access to the relevant system

variables by measurement, such as the flow rate fluctuations upstream and downstream of the

turbine as well as the vortex rope volume. These quantities, necessary for the calculation of

the hydroacoustic draft tube model parameters, are not easily obtained on a reduced scale

physical model, which remains of considerable size and complexity.

In a first step, the properties of the self-excited pressure oscillation discussed in Chapter 1 are

compared to their counterparts on the simplified test configuration, in order to verify that the

two flow regimes are equal. Based on the measurements of the flow rates and an estimation

of the vortex rope volume from high-speed flow visualizations, the behavior of the mass flow

gain factor and the cavitation compliance is discussed for several operating conditions.

2.2 Experimental setup

The test rig is shown in Figure 2.1 is part of the experimental facilities of the Graduate School

for Engineering Sciences at the University of Osaka in Japan. It consists of a closed loop

hydraulic circuit driven by a centrifugal pump, featuring a micro-turbine with a horizontal

conical diffuser. The latter is followed by a sudden expansion with vortex fences to reduce

the swirl before the pressure measurements for the discharge determination. The flow rate is

set via the pump speed and the runner speed is controlled with a small AC servo motor. The

cavitation number is changed with a vacuum pump connected to the downstream reservoir.
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pIpI

Figure 2.1: Small scale test facility simulating a hydropower power plant from [67].

Six absolute wall pressure signals are measured at three streamwise locations of the conical

diffuser, using piezoresistive sensors with a 1 MPa range. The corresponding locations are

shown in Figure 2.2. Three sensors are mounted vertically on the top of the cone, the other

three sensors horizontally. The inlet and outlet diameter D
1̄

and Dcone of the conical diffuser

are 3.1 ·10−2 m and 5.7 ·10−2 m, respectively. The dimensions of L1 and L2 are 5.8 ·10−2 m

and 18.6 ·10−2 m. The unsteady upstream and downstream flow rate is calculated based on

the wall pressure signals p A & pB and pC & pD with the method presented in Section 2.3.2.

The corresponding measuring locations are specified in Figure 2.1 and the used pressure

transducers are of piezoresistive differential type with a range of 10 kPa and an accuracy of

0.04 %. The vortex rope oscillation is recorded with a high speed camera.

The test rig also contains two flow exciters in form of an oscillating piston and a siren valve at

positions upstream of the micro-turbine and downstream of the conical diffuser, respectively

(items 2 and 4 in Figure 2.1. They may be used to establish the dynamic transfer functions

of the pressure and the discharge. This is not further discussed in the present work and the

reader may refer to [66].
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Figure 2.2: Simplified vertical cut of the circular turbine outlet, the conical draft tube with
pressure sensor locations p1 - p6 and the sudden expansion with vortex fences.

2.3 Methodology

2.3.1 Definition of operational parameters

The operating conditions for the measurements are summarized in Table C.1. For the determi-

nation of the cavitation number σ as well as the speed and discharge factors nED and QED , the

specific energy is defined as

E =∆
(

p

ρ
+ g z

)
I−Ī

+∆1

2
C 2 = p I −p

Ī

ρ
+ 1

2

(
Q̄2

A2
I − A2

Ī

)
, (2.1)

where Q̄ is the mean discharge measured by an electromagnetic flow meter, AI the upstream

reference section area at the turbine inlet and A Ī the downstream reference section area at

p
Ī

in Figure 2.1; p I −p
Ī

is the pressure difference between these two reference sections. The

cavitation number is then calculated according to

σ= 1

E

(
pb −pv

ρ
− g Hs + 1

2

Q̄2

A2
Ī

)
, (2.2)

where pb is the pressure in the downstream reservoir, pv the vapor pressure, and Hs stands

for the difference in altitude between the water level in the downstream reservoir and the

horizontal symmetry axis of the draft tube.
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2.3.2 Flow rate estimation through differential pressure measurement

The following procedure is the result of a projection of the equation of momentum conserva-

tion for inviscid, irrotational and incompressible pipe flow, assuming uniform distributions of

the pressure p, the density ρ and the velocity C in a given cross-section A [44]. The integral

form of the momentum equation is given by

∫
V

ρ
DC

Dt
dV =

∫
V

∂

∂t

(
ρ · ~C)

dV +
∫
∂V

ρ~C
(
~C −~u) ·~n dA =Σ~F , (2.3)

where ~u represents the velocity vector of the pipe displacement and Σ~F the sum of external

forces acting on a given control volume. Neglecting the displacement and the friction in the

pipe and considering only pressure and gravitational forces, the projection of eq. (2.3) on the

x-axis is simplified to

1

ρ

∂p

∂x
+ ∂C

∂t
+C

∂C

∂x
+ g sinα= 0, (2.4)

where α stands for the inclination angle. Due to the horizontal configuration the term sinα

vanishes and the integration of eq. (2.4) between two arbitrary points a and b in the pipe yields

b∫
a

1

ρ

∂p

∂x
dx+

b∫
a

∂C

∂t
dx+

b∫
a

C
∂C

∂x
dx = 1

ρ

(
pb −pa

)+ 1

A

∂Q

∂t
(xb −xa︸ ︷︷ ︸

L

)+ 1

2

(
C 2

b −C 2
a

)= 0. (2.5)

Since Ca and Cb are equal, eq. (2.5) finally becomes

∂Q

∂t
= A

ρL

(
pa −pb

)
. (2.6)

The pressure and the discharge variables can be represented as the sum of their mean and

fluctuating parts, p = p̄ + p̃ and Q = Q̄ +Q̃. The mean discharge vanishes in the derivative of

eq. (2.6) and, assuming pa = pb in absence of losses, the fluctuating part of the discharge Q is
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obtained by calculating the integral

Q̃(t ) = A

ρL

∫ (
p̃a − p̃b

)
dt . (2.7)

The accuracy of the method is discussed in [32]. It is stressed that the mean discharge value

may not be obtained by this method and the corresponding value from the electromagnetic

flow meter is used for the following development.

2.3.3 Estimation of the vortex rope volume

As presented in Section 1.2.2, the vortex rope volume Vc is necessary for the calculation of the

hydroacoustic draft tube parameters. In this section, a method to estimate Vc in the horizontal

draft tube cone shown in Figure 2.2 is introduced, based on comparing consecutive images

from a high-speed visualization, such as the one shown in Figure 2.7 .

A video consists of N f grayscale images and the following process is applied to each individual

frame. A given image is first converted to a black and white (binary) form with an ideal

threshold value according to [48]. The result is then inverted, so that the area of the vortex

rope appears in white (pixel value = 1). A region of interest (ROI) is defined by the vertices of a

polygon around the area corresponding to the turbine outlet and the draft tube cone, hence

the inner surface of the section shown in Figure 2.2. The ROI is displayed in Figure 2.3a for

a single frame of the visualization at OP#A. It is used to define a binary mask in the form of

an image of the same size as the processed image, where all the pixels inside the ROI are set

to 1 and the rest to 0. This mask is then applied to the inverted binary images from the high

speed camera. The end result are 256×512 matrices Ibi n , their dimension being equal to the

resolution of the original image, where all the pixels which are either outside the ROI or of

black color are represented by a zero. Consequently, the ones (pixel value = 1) in the matrices

stand for white pixels inside the ROI. This is illustrated in Figure 2.3b.

(a) ROI (b) Binary mask

Figure 2.3: Left: Region of interest (dashed line) with vertices (white circles). Right: Result of
the inversion of the binary image and application of the mask.
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Chapter 2. Simplified test case

In order to the calculate the growth or the diminution of the cavity, the matrices representing

two consecutive frames at tn and tn+1, respectively, are subtracted. The sum of the non-zero

elements of the resulting differential matrix brings forth a change ∆Ac in the area of the

projected vortex rope, calculated according to

∆Ibi n,n = Ibi n,n+1 − Ibi n,n (2.8)

∆Ac,n =
Nc∑
j=1

(
Nr∑

i=1
∆Ibi n,n (i , j )

)
, (2.9)

where Nc and Nr designate respectively the number of columns and rows of an image matrix.

The total area occupied by the cavity at a time t = tn is finally calculated by summing up the

surface changes ∆Ac between a reference time tr e f , for which the area Acr e f is calculated, and

the time tn . Hence,

Ac,n = Acr e f +
n∑

i=n
r e f

∆Ac,i , (2.10)

where nr e f is the frame number at t = tr e f , n = ((
tn − tr e f

)× fs −1
)

and fs is the frame rate at

which the video is taken. The reference surface Acr e f is evaluated by a pixel count in a manually

defined ROI around the cavity in the relevant video frame. Hence, the reference time tr e f is

arbitrary, but often chosen to correspond to a situation where the rope is easily distinguished

from its environment, in other words where there is no overlapping with the pressure sensors

in the background. The total cone surface Acone is obtained by summing up the non-zero

elements in the binary masked based on the ROI in Figure 2.3a. If the vortex rope is centered

and axisymmetric, the ratio of the projected surface occupied by the cavity (Ac ) and the total

surface occupied by the cone
(

Acone

)
is equal to the ratio of the vortex rope volume (Vc ) and

the volume of the draft tube cone
(
Vcone

)
. The latter is known from the test rig geometry and

the vortex rope volume hence becomes

Vc,n =
(

Ac,n

Acone

)2

·Vcone . (2.11)
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2.4. Periodic oscillations in the hydraulic system

2.4 Periodic oscillations in the hydraulic system

2.4.1 Pressure and flow rate

For the operating conditions at OP#A, an auto-oscillation of the hydraulic system is observed.

This unstable behavior is revealed by the characteristic repetitive collapse and growth of the

vortex rope, accompanied by periodic draft tube pressure fluctuations of significant amplitude.

Figure 2.4 shows the raw and low pass filtered wall pressure factor for p2 (see Figure 2.4a),

together with the power spectral density of the filtered signal (see Figure 2.4b). For the analysis

in the frequency domain and the calculation of the discharge using eq. (2.7), the filtered

wall pressure factor is used, due to the high noise content of the raw signal. The pressure

fluctuations reach up to 10% of the specific energy at OP#A and the dominant surge frequency

peak is situated at 10% of the runner frequency.

0 16 32 48 64

-0.1

0.0

0.1

0.2

t × n (-)

cp (-) filtered cp (-)

(a) Wall pressure cp

0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0
Pxx × 102 (Hz-1)

f / n (-)

(b) Power spectral density Pxx

Figure 2.4: Wall pressure signal as a function of the number of runner revolutions together
with corresponding power spectral density of the filtered signal for OP#A.

A systematic variation of the draft tube pressure level is performed at OP#A. Figure 2.5 shows

the behavior of the dominant surge frequency and amplitude for ten differentσ-values. Similar

to the observations made during the reduced scale model testing, documented in Section

1.1.3, the frequency changes linearly with the cavitation number. The amplitude appears

again to oscillate around the first order fit (dashed line). The vortex rope oscillates however at

a lower fraction of the runner frequency compared to the reduced scale model.

The upstream and downstream flow rate fluctuations are calculated by using the pressure

differentials p A−B and pC−D for Q1 and Q2, respectively, with the method introduced in Section

2.3.2 (see Figure 2.1 for the measurement locations of p A , pB , pC and pD ). Figure 2.6 shows

the results for six different values of the cavitation number σ around OP#A, together with the

wall pressure factor for p2. As mentioned earlier, the mean value of the discharge cannot be

obtained with this method. Hence, the fluctuating parts of Q1 and Q2 are plotted around an

arbitrary reference value, which is chosen to be the mean discharge in the test rig measured

by the electromagnetic flow meter. The integration of eq. (2.7) is performed numerically by

applying the Simpson’s rule [57]. For all presented cases, the downstream flow rate fluctuation

Q2 is significantly higher than the upstream equivalent Q1. The peak-to-peak amplitude of Q2
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(a) Waterfall diagram
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Figure 2.5: Power spectral densities of cp at p2 and evolution of the dominant surge frequency
and amplitude for different σ-values.

is furthermore decreasing with an increasing σ, that is to say for a growing draft tube pressure

level and hence a declining volume of the vortex rope.

2.4.2 Vortex rope volume

Figure 2.7 shows snapshots of the flow visualization at OP#A with a high speed camera in

the draft tube cone. It is observed that the vortex rope almost completely disappears and

reappears during each cycle, as observed on the reduced scale physical model in Chapter

1. Also, the collapse of the cavity is rather sudden and short compared to its longer lasting

growing phase. The illustrated cycle is situated between the second and third peak of the wall

pressure signal in Figure 2.4a.
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Figure 2.6: Fluctuation of Q1 (◦-markers) and Q2 (solid lines) together with cp at p2 (dashed
lines) as a function of the number of runner revolutions.
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(a) t = 0 (b) t = 0.11 ·T

(c) t = 0.22 ·T (d) t = 0.33 ·T

(e) t = 0.44 ·T (f) t = 0.55 ·T

(g) t = 0.66 ·T (h) t = 0.77 ·T

(i) t = 0.88 ·T (j) t = T

Figure 2.7: Draft tube flow visualization at OP#A.
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2.4. Periodic oscillations in the hydraulic system

With the method presented in Section 2.3.3, the change in the area occupied by the vortex

rope ∆Ac is calculated for the visualization at OP#A shown in Figure 2.7. Figure 2.8 shows

the raw data and a low pass filtered version. The instant, raw ∆Ac in Figure 2.8a is highly

fluctuating and the maximum amplitudes of the low pass filtered data in Figure 2.8b are more

than four times lower. However, the qualitative behavior seems to be well reproduced and the

periodicity is respected. This is confirmed by an inspection of the video material, showing

that the zeros of the low pass filtered curve on a rising and falling edge accurately define the

stages where the vortex rope volume reaches its minimum and maximum, respectively.

0 16 32 48 64

−400

0

400

800
dAc (pixel)

t × n (-)
−800

(a) Raw and filtered ∆Ac
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−100
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100

200
dAc (pixel)

t × n (-)
−200

(b) Filtered ∆Ac

Figure 2.8: Left: Raw (· markers) and low passed filtered (solid line) ∆Ac for OP#A. Right:
Rescaled low pass filtered ∆Ac .

Based on eq. (2.11), the instantaneous vortex rope volume may now be estimated. Figure 2.9

shows the evolution of the vortex rope volume Vc together with the wall pressure factor at p2

for six values of the cavitation number σ. The volume is made non dimensional by the total

volume of the draft tube cone Vcone . A first inspection reveals a very regular phase relationship

with the pressure signal. The volume of the cavity reaches its maximum when the pressure is

at its minimum, whereas the vortex rope collapse is matched by the position of the pressure

peaks. The volume Vc in Figure 2.9a fluctuates between 20% and 50% of the total volume of

the cone, which appears realistic in view of the corresponding flow visualization presented in

Figure 2.7. However, the minimum volume seems to be slightly overestimated.

A few drawbacks and potential sources of error of the presented method for the estimation

of the vortex rope volume have to be discussed. First of all, the volume is generally underes-

timated due to the fact that the first segment of the straight part of the diffuser in Figure 2.2

consists of a nontransparent metal flange, hiding a fraction of the vortex rope. Secondly, a peri-

odic error is introduced when the cavity overlaps with the pressure sensors in the background

of the picture frames. For the visualization performed at OP#A, this is the case, for instance, in

Figure 2.10a and Figure 2.10b, where the vortex rope partly covers the pressure sensors p4 and

p5, respectively. The corresponding masked binary images are shown in Figure 2.10. When

calculating the difference with respect to the adjacent frames, the entire permanently white

area corresponding to the pressure sensors in the background is subtracted. Consequently, the

proportion of the vortex rope volume overlapping with the sensors is ignored in the calculation
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Figure 2.9: Fluctuation of Vc (solid lines) together with cp at p2 (dashed lines) as a function of
the number of runner revolutions for different σ-values.

of the differential surface ∆Ac . Furthermore, as can be observed in Figure 2.3b, reflections

of the ambient light on the surface of the cavity occasionally transform into black pixels and

therefore falsify the count. Finally, the mean value of the volume Vc depends essentially on

Acr e f . This surface is estimated by counting the pixel inside a polygon around the edge of the

cavity, for which the vertices are defined manually in the corresponding image at tr e f . This is

potentially limiting the precision of the method.
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2.5. Hydroacoustic characterization of the test rig

(a) t = 0 (b) t = 0.77 ·T

Figure 2.10: Masked binary images of two instances where the vortex rope overlaps with the
pressure sensors p4 and p5 from Figure 2.7.

2.5 Hydroacoustic characterization of the test rig

The possibility of instantaneously following the vortex rope volume, the upstream and down-

stream flow rates and the cavitation number, enables the estimation of the hydroacoustic

draft tube flow parameters according to Section 1.2.2. It has to be mentioned that an exact

calculation is not possible, since the partial derivatives in eq. (1.3) with respect to a given state

variable are performed by keeping the remaining two variables constant. These conditions are

evidently not met on the test rig.

In a first step, the flow rate and the cavitation number, as well as the calculated vortex rope vol-

ume, are averaged with respect to the dominant wall pressure phase. This offers an additional

physical insight by revealing how the vortex rope volume Vc changes as a function of Q1, Q2

and σ during one period of the pressure oscillation. The HA parameters are finally deduced

from the slope of these curves.

2.5.1 Mean phase averaged flow variables

The term mean phase average refers to a characteristic mean variation of a periodic signal by

calculating the average over all its recorded cycles. This requires the definition of an instant

phase, allowing to identify the individual cycles and to split up the raw signal accordingly in

order to determine its average. The method is described in detail in Section 3.3.4 and has

been used by several researchers in the past for similar applications [5, 8, 50]. For illustration

purposes, the length of the signal in Figure 2.11a is limited to 64 runner revolutions. However,

the total amount of cycles taken into account for the calculation of the mean phase average in

Figure 2.11b is 97.

Figure 2.12 shows the mean phase averaged vortex rope volume Vc , the flow rates Q1 and

Q2 as well as the cavitation number σ for OP#A. All the corresponding signals were divided

into their individual cycles with respect to the same instant phase from the wall pressure,

represented in Figure 2.11a by the dashed line. It is noted that the number of cycles taken into
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Figure 2.11: Mean phase average of the filtered cp at p2 for OP#A. The dashed line represents
the instant phase of the wall pressure signal and the vertical error bars the standard deviation.

account varies significantly between the calculation of Vc based on the high speed visualization

(total acquisition time 5 s) and the calculation of Q and σ based on the analogue data (total

acquisition time of 60 s). Since all the signals are averaged with respect to the same pressure

reference signal, the resulting phase relationships may directly be compared to each other.

The volume is made non-dimensional with the volume of the draft tube cone and the flow

rates are made non-dimensional with the mean discharge measured in the test rig.
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Figure 2.12: Pressure phase averaged Vc , Q1, Q2 and σ for OP#A.
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2.5.2 Calculation of the HA parameters

Vortex rope evolution as a function of the flow rate and the cavitation number

In order to visualize the behavior of the hydroacoustic parameters χ1, χ2 and Cc , the vortex

rope volume Vc is first plotted against the upstream and downstream flow rates Q1 and Q2

in Figure 2.13a, as well as against the cavitation number σ in Figure 2.13b. The graph Vc (Q2)

approximately forms an ellipse, with its major and minor axis being defined by the peak-

to-peak amplitudes of the downstream flow rate and the vortex rope volume oscillation,

respectively. On the other hand, the Vc (Q1)-curve is a vertical straight line during most of the

Vc -variation, with only a small tear-shaped deflection when the vortex rope is at its minimum

volume.

The mean phase averaged Vc (σ)-evolution seems to be well approximated by a straight line

with a slightly negative slope. An elevated noise level in the signal of the cavitation number

σ is observed, expressed by higher standard deviation values in Figure 2.12c and large σ

fluctuations in Figure 2.13b. This is due to the fact that the calculation of σ is based on a raw

pressure signal, where as the other quantities on display are based on filtered signals.

The same representation is shown for five other cavitation numbers in Figure 2.14 and Figure

2.15. The variation of the upstream flow rate Q1 seems to increase with an increasing cavitation

numberσ, which is reflected by a more important size of the above described tear-shaped area

attached to the vertical straight section. The contrary is observed for Q2, where the main axes

of the ellipse formed by Vc (Q2) are shortened by an increasing cavitation number σ. The slope

of Vc (σ), representing the cavitation compliance Cc , appears to decrease with a decreasing

mean volume and an increasing σ.
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Figure 2.13: Vortex rope volume as a function of the raw (dotted lines) and pressure phase
averaged (solid lines) upstream and downstream flow rates and cavitation number at OP#A.
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Figure 2.14: Vc as a fct. of the raw (dotted lines) and pressure phase averaged (solid lines)
upstream and downstream flow rates for several cavitation numbers around OP#A.
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Figure 2.15: Vortex rope volume as a function of the raw (grey tone) and pressure phase
averaged (solid lines) cavitation number for several cavitation numbers around OP#A.
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Approximation of χ1, χ2 and Cc

The shape of the functions Vc (Q1) and Vc (Q2) in Figure2.14 inevitably produces singularities

in their derivatives. This is shown in Figure 2.16, plotting the pressure phase averaged up and

downstream flow gain factors against a dimensionless time, normalized by the mean period

over all the Vc -cycles. Quantitative statements about the value, the sign or the trend of χ1

and χ2 are therefore of limited worth. This is underlined by the corresponding mean values

obtained by time-wise integration of the pressure averaged curves, reported in Table 2.1.
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Figure 2.16: Pressure phase averaged mass flow gain factors at OP#A.

As mentioned earlier, the variation of the vortex rope volume with respect to the cavitation

number in Figure 2.15 seems fairly linear, and so a first order fit of the pressure phase averaged

Vc (σ)-curves in a least square sense is performed. According to eq. (1.9), the slope of the

resulting straight line divided by the hydraulic head H is equal to the cavitation compliance

Cc . Furthermore, Cc may be linked to the speed of sound in the draft tube through classical

pipe flow theory [65, 44], stating that

Cc = g · A · l

a2 , (2.12)

where A and l are the area and the length of a reference pipe section. The values for both

the compliance and the sound velocity are included in Table 2.1. Similar to the quasi-static

(QS) approach performed by the author [41], the cavitation compliance may be estimated

over the tested σ-range with the mean vortex rope volumes, shown in Figure 2.17. The first

and the last values being far off the general trend, they are not considered for the calculation

of the linear approximation (dashed line). The results are documented in the last column of

Table 2.1. The values obtained by the instantaneous and the quasi-static approach display a

substantial difference.
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Figure 2.17: Mean vortex rope volumes for several σ-values (cross markers) with linear fit
(dashed line) around OP#A.

Table 2.1: Hydroacoustic parameters of a simplified test rig with a micro-turbine for OP#A.

σ 0.131 0.141 0.151 0.161 0.170 0.180 QS approach
χ1 (s) -0.217 -12.09 0.319 -0.034 0.082 -0.145 -
χ2 (s) -0.132 -0.021 0.002 0.039 -0.001 -0.020 -

|Cc |×103 (m2) 6.486 3.664 3.082 2.277 1.608 2.379 0.411
a (m · s−1) 4.587 6.103 6.650 7.741 9.212 7.574 18.21

2.5.3 Passage from stable to unstable configuration

As explained in Section 1.1.4, a minor variation of the operating conditions may have a

considerable impact on the flow parameters at the limits of the stability domain. Given the

critical role of the sound velocity on the onset of pressure surge, the switch from one state

to the other can be provoked by changing the cavitation number σ and hence the fraction

of vapor in the draft tube. This transition can be for instance be observed by increasing the

cavitation number beyond the range displayed in Figure 2.5. A first indication is found during

the study of the vortex rope volume as a function of the flow rate, where the behavior for

the highest σ-value in Figure 2.14f diverges from the lower values. The inspection of the

corresponding pressure fluctuations in Figure 2.18a reveals the reason. The oscillation loses

its self-excited character twice, dropping to significantly lower peak-to-peak amplitudes. A

further increase of the cavitation brings forth a completely stable configuration, as shown in

Figure 2.18b. A graphic study of the hydroacoustic parameters similar to the one in Figure 2.14

and Figure 2.15 with a mean phase average becomes harder to implement, since the instant

pressure phase used to isolate the single cycles does not produce clearly distinguishable

periods anymore, due to the loss of regularity in the signal.
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Figure 2.18: Wall pressure factor cp from the sensor p2, plotted against the number of runner
revolutions.

The evolution of the vortex rope volume and the upstream and downstream flow rates at the

stable configuration of σ= 0.19 is presented in Figure 2.19. Unsurprisingly, it is observed that

both the volume and flow rate fluctuations are marginal compared to the ones in Figure 2.6

and Figure 2.9 for an unstable flow configuration.
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Figure 2.19: Vortex rope volume and upstream (◦-markers) respectively downstream (solid
line) flow rate as a function of the runner revolutions at OP#A-12 (σ= 0.19).
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2.6 Summary and discussion

A self-sustained pressure oscillation similar to the one observed on a reduced scale physical

model in Chapter 1 is reproduced on a simplified test configuration featuring a micro-turbine

and a horizontal conical diffuser. The main characteristics in terms of the wall pressure and

vortex rope fluctuation are comparable. As for the previous case, the dominant pressure

fluctuation frequency and the corresponding amplitude is found to vary linearly with the

cavitation number.

A method for estimating the instant vortex rope volume based on high speed flow visualization

is introduced and successfully applied. Together with the upstream and downstream flow

rates obtained from differential pressure measurements, the temporal variations of Vc , Q1

and Q2 are obtained. The upstream discharge varies significantly less than its downstream

counterpart. The phase relationships between pressure, volume and discharge are constant

throughout the total period of the data acquisition.

Together with an instantaneous record of the cavitation number, the functions Vc (Q1), Vc (Q2)

and Vc (σ) are drawn up. Their graphical representation clarifies how the mass flow gain factors

and the cavitation compliance vary over one period of the pressure oscillation. While Cc is

fairly well approximated by a constant value, χ1 and χ2 feature several singularities due to the

partly circular shape of Vc (Q1) and Vc (Q2). This highlights the difficulty of representing the

mass flow gain factors by a constant value in a one-dimensional model. Numerical values

calculated for Cc at several cavitation numbers confirm the steady decrease of the sound

velocity with an increasing mean vortex rope volume.

Studying the shape of Vc (Q1), it is observed that nearly the entire span of the vortex rope

volume is crossed during a very small variation of the corresponding flow rate Q1. This

suggests that minor swirl variations at the runner outlet, being directly linked to the upstream

discharge through the velocity triangles, may have a decisive destabilizing effect on the draft

tube flow. It is however to be expected that the characteristic shape of the Vc (Q) and Vc (σ)

curves as well as the discharge ratio Q1/Q2 depend on the design of the hydraulic circuit.

Based on the collected data it cannot be determined if the results are similar for a different

relative position of the turbine within the circuit, for instance, or for a different runner size.

The results are therefore not directly transposable to another test case.
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3 Draft tube flow investigation

3.1 Introduction

The flow in the draft tube of a hydraulic machine during self-sustained pressure oscillations

at full load is characterized by its complex, unsteady and two-phase nature. This chapter

aims at providing a detailed description of the flow field in terms of the axial (meridional) and

tangential velocity components Cm and Cu. This is achieved by performing Laser Doppler

Velocimetry (LDV) as well as 2-D fluorescent Particle Image Velocimetry (PIV) measurements

in the draft tube cone. The LDV offers a local simultaneous measure of the axial and tangen-

tial velocity components, whereas the PIV provides the axial and radial velocity field over a

predefined target area in a resolution depending on various parameters. Measurements are

performed in cavitation-free conditions as well as in presence of an oscillating vortex rope.

The resulting velocity profiles at several streamwise locations are used to establish the mass

and angular momentum balance in the draft tube. Finally, the instantaneous volume of the

vortex rope is estimated based on high speed visualizations. The test case is identical to the

one in Chapter 1 and the setup of the reduced scale physical model of a Francis turbine on the

EPFL test rig PF3 at the Laboratory of Hydraulic Machines is shown in Figure 1.1.

3.2 Experimental setup

3.2.1 Laser Doppler Velocimetry

The local variation of the tangential and axial velocity components is measured with a state

of the art LDV system shown in Figure 3.1. The Laser probe is set up in two different configu-

rations, respectively parallel and perpendicular to the inlet pipe, as shown in Figure 3.3. In

order to ensure an ideal optical access and to facilitate the calculation of the position of the

measurement volume in the draft tube cone, circular optical windows with an anti-reflection

coating adapted to the wavelength of the Laser are installed. A remotely controlled traversing

system is used for the vertical and radial displacement of the Laser.

43



Chapter 3. Draft tube flow investigation

Figure 3.1: Photo of the measurement setup around the draft tube cone with LED backlight
panel to the left, LDV probe to the right and high speed camera in the back.

Table 3.1: Technical specifications of the LDV equipment

Optical head
Model Dantec FlowExplorer
Type 2 component factory-aligned probe
Wavelength 660 nm (Ch. 1) & 785 nm (Ch. 2)
Energy 35 mW per channel
Beam diameter 2.5 mm
Focal length 500 mm
Control volume in air 0.1684×0.1681×2.806 mm (Ch. 1)

0.2003×0.1999×3.338 mm (Ch. 2)
Signal processor

Model Dantec F60 FlowProcessor
Type Burst Spectrum Analyzer

The measurements are performed at two streamwise positions, referred to as Section 1 and

Section 2 in Figure 3.2. The corresponding horizontal cross-sections of the draft tube cone,

both including four equally spaced wall pressure sensors mounted on the circumference, are

shown in Figure 1.3a.

The measurement setup and the chain of acquisition is schematized in Figure 3.3. An external

trigger from the BSA is used to set off the wall pressure measurements, assuring a perfect

synchronization. The water is seeded with 10 µm hollow glass sphere particles at a fairly

low density, since various impurities and bubbles present in the flow already produce a

considerable number of valid bursts in the measurement volume at the intersection of the

Laser beams.
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3.2. Experimental setup

A A

Section 1

Section 2

B B

Figure 3.2: Side view of the draft tube cone with optical LDV probe.

3.2.2 Particle Image Velocimetry

Test arrangement

Figure 3.4 shows the setup for the PIV measurements with the upstream feeding pipe, the

spiral case, the Plexiglas draft tube cone, the elbow and the diffuser. A water filled window is

installed between the camera and the target area in the cone center, so as to minimize the

optical distortion effects. The Laser is mounted parallel to the inlet pipe. The technical details

of the PIV equipment are summarized in Table 3.2.

Table 3.2: Technical specifications of the PIV equipment

Laser
Model New Wave Minilase III-15
Type Frequency doubled Q-switched Nd:YAG
Wavelength 532 nm
Energy < 32.5 mJ
Beam diameter 3.5 mm

Camera
Model Dantec FlowSense EO 4M
Resolution 2048 x 2048 pixels
Pixel Size 7.4 µm
Lens 24 mm
Filter long pass (>570 nm)
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(a) Laser parallel on y-axis, parallel to the inlet pipe
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(b) Laser on x-axis perpendicular to the inlet pipe

Figure 3.3: Horizontal cut of the draft tube cone at 0.39×D 1̄ below the runner exit (Section 1)
together with the data acquisition chain for x-axis and y-axis LDV surveys.

Laser and cylindrical lens

Camera

Wall pressure measurement

Figure 3.4: Experimental setup for the PIV measurements in the draft tube cone from [43].
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Calibration

The target area measures roughly 20 cm x 20 cm and is located in a meridional plane of the

draft tube cone, starting 0.464×D 1̄ below the runner exit. For the calibration, an Imaging

Model Fit is performed with a 200×200 mm dotted disk, which is attached to the runner nose.

Seeding material

The use of a Laser device in a two-phase environment is challenging, since the light sheet is

reflected on the surface of the gaseous phase. Possible consequences reach from significant

measurement errors to a damage of the measurement equipment due to the overexposure

of the camera’s image sensors. Therefore, fluorescent seeding material is used together with

a suitable long pass filter for the camera. Since commercially available products tend to be

too expensive in view of the considerable water volume of about 30 m3 in the test rig, an

alternative procedure is introduced to obtain fluorescent particles from common polyamide

particles and Rhodamine-B dye. The method is described in detail by the author in [43] and

led to very satisfying results in terms of the optical properties and the life span of the particles.

Measurement procedure and pressure synchronization

The measurement procedure with the acquisition chain is schematized in Figure 3.5. With the

ultimate goal of establishing the change in the velocity components and the discharge during

a whole period of the vortex rope pulsation, several measurements are taken at different

instants. In order to assign each of these measuring points a stage in the pressure cycle, one of

the wall pressure signals is taken as a reference, since it provides an accurate notion of the

oscillation’s periodicity. The corresponding sensor is connected to an oscilloscope, which

generates a square TTL signal, triggered at a predefined voltage level at each falling edge of the

wall pressure. This is illustrated in Figure 3.6.

The TTL signal from the oscilloscope is then used as a trigger for the PIV system via its timing

box. Since the user interface allows defining a trigger delay value, i.e. a delay between the

trigger and the start of the measurement, an arbitrary amount of measurement points with

different trigger delays can be defined. At each of these measurement points, forty consecutive

image pairs are recorded in order to calculate a mean velocity field. Then, the trigger delay

is set to another value and the procedure is repeated. The time between two acquisitions

forming one pair of images is 100 µs. Based on the tangential velocity components measured

by LDV, it can be assumed that the vast majority of particles remains in the measurement

plane, characterized by a light sheet thickness of approx. 2−3 mm, during this time.
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Figure 3.5: Section of the draft tube cone at 0.39×D 1̄ from the runner outlet, together with
the data acquisition chain for the PIV measurements from [43].
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Figure 3.6: Wall pressure factor cp (C1N) with TTL signal generated by the oscilloscope for
externally triggered PIV measurements.

3.2.3 High speed flow visualization

The Plexiglas cone provides an optical access to the flow in the reduced scale model. This

enables, one one hand, the study of the vortex rope behavior in the draft tube, and on the

other hand the observation of the cavitation formed on the runner blades. For both cases, the

two-phase flow is recorded with a high speed camera. For the visualization of the vortex, a

highly uniform LED screen is installed as a back light. The LED source produces an excellent

contrast between the gaseous and the liquid phase and therefore considerably facilitates the

image processing in 3.3.1. For the blade cavitation, the cone runner outlet is illuminated with

a stroboscope, which is synchronized with the high speed camera so that an image frame is

recorded following each flash of the strobe. The technical specifications of the equipment are

summarized in Table 3.3. The camera and the LED backlight are visible in Figure 3.1.
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Table 3.3: Technical specifications of the flow visualization equipment

High speed camera
Model Fastcam SA1.1
Max. resolution 1024 x 1024 pixels (up to 5’400 fps)
Max. frame rate 675’000 fps
Triggering Selectable positive or negative TTL

LED backlight
Model PHLOX LEDW-BL-550X400-MSLLUB-Q-1R-24V
Dimension 550 x 400 mm
Uniformity 90% (± 10%)
Luminance 7’000 CD/m2

Given the conical shape of the draft tube cone, water filled compartments with a flat surface

are installed perpendicularly to the camera axis. The presence of the same refractive index

on both sides of the curved surface minimizes the optical distortion effects. The setup for

the vortex rope visualization may be imagined from Figure 3.4, since the same rectangular

window is used for the PIV measurements and the camera position is identical. The setup for

the blade cavitation observation with a window along an inclined axis is shown in Figure 3.7.

Figure 3.7: Setup for the visualization of the blade cavitation on the reduced scale model.
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3.3 Signal processing methodology

3.3.1 Estimation of the vortex rope volume

Edge detection

If the estimation of the vortex rope volume is based on its local radius, it is necessary to detect

the edges of the cavity. The same goes for the estimation of the local discharge surface around

the vortex rope. The choice of the appropriate method depends on the measuring equipment

and on the lighting conditions, which should produce a good contrast between the liquid

and gaseous phase in the flow. When the draft tube cone is illuminated with conventional

spotlights, the application of a Laplacian of Gaussian (LoG) type filter is found to yield the most

satisfying results, as described in [41]. The corresponding procedure is illustrated in Figure

3.8. In the original photos from a high speed camera (top row) it is observed that the vortex

rope is often hardly distinguishable from its surroundings, especially during the presence of a

large amount of bubbles in the flow. Furthermore, the reflections of the light on the surface of

the cavity as well as on the Plexiglas cone are conflicting. A mask is defined based on a ROI

around the vortex rope. The filtered version of this ROI is shown in the bottom row of Figure

3.8 and the local radius of the vortex rope can hence be estimated by locating the first and the

last black pixels on a given row.

Figure 3.8: High-speed visualization of the vortex rope (top row) and result of LoG filtering
with inverted black and white pixels (bottom row) from [41].

A much better outcome is obtained with the LED backlight panel described in Section 3.2.3.

This uniform light source produces a sharp contrast between the gaseous and the liquid phase

of the flow, as illustrated for instance in Figure 1.4. The vortex rope edge can therefore simply

be found by identifying the black and white pixels in a binary picture matrix obtained with an

ideal threshold value according to [48]. No filtering or additional image processing is usually
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required. It is however observed that a manual adjustment of the threshold value may be

beneficial in order to isolate the vortex rope from its surrounding flow in the presence of an

increased amount of bubbles.

Finally, the vortex rope edge may also be determined based on PIV measurements, as described

in Section 3.3.2 for the determination of the local discharge area around the cavity.

Calculation of the vortex rope volume

Similar to the method described in Section 2.3.3, a ROI covering the region of the draft tube

cone is defined. With the coordinates of the corresponding polygon’s vertices, a binary mask is

then constructed and applied to the images that have been transformed into black and white

beforehand. This is shown in Figure 3.9.

(a) Raw image with ROI (b) Binary mask based on ROI

Figure 3.9: Image processing of high speed visualization material at OP#2.

The visible fraction of the vortex rope volume may then be estimated with two different

methods. The first one shall be referred to as the differential method, consisting in the

subtraction of two consecutive image frames and using the difference in pixels to estimate the

volume change in between. This method is already described in detail in Section 2.3.3, where

it is applied to a simplified test case with a micro-turbine.

Another possibility to estimate the volume of the vortex rope is to determine its local radius

and to sum up its presumably circular cross-sections. The volume delimited by a surface of

revolution around a central symmetry axis is defined as

V =
2π∫

0

Rx̄∫
0

z2∫
z1

r dθdr dz = 2π

z2∫
z1

1

2
Rx̄ (z)2 dz ≈π

N∑
i=1

(
R2

x̄,i ·∆zi

)
, (3.1)
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where Rx̄ is the local vortex rope radius at an arbitrary streamwise position x̄. The altitudes z1

and z2 represent the limits of the visible portion of the vortex rope in the draft tube cone and

N is the number of pixel rows in a given picture frame between z1 and z2, each row covering a

vertical distance of ∆zi .

The estimation of the vortex rope volume based on the above described visualization tech-

niques has a few weaknesses. Among them are the general underestimation of the cavity’s

volume. Figure 3.9 reveals that only a fraction of the vortex rope can be taken into account

for the calculation of its volume. Indeed, the regions which are not contrasted by the LED

backlight source, below the Plexiglas cone and from the runner hub to the lower spiral case

end, are hardly visible in Figure 3.9a and fall on the dark side of the threshold in the binary

version displayed in Figure 3.9b. A significant, not quantifiable error is therefore introduced,

since a non-negligible portion of the cavity is periodically ignored. As is can be seen in Figure

3.10, the vortex rope continues well beyond the draft tube cone and even the elbow. Figure

3.10a shows a view from above into the draft tube, through the Plexiglas cone. The upper edge

of the photo roughly corresponds to the downstream end of the cone. Its lower half displays

the pier nose where the diffuser separates into two branches. Figure 3.10b shows the tip of the

vortex rope through one of the two circular side windows in the elbow (visible for example in

Figure 3.3).

(a) View from above into the draft tube (b) Rope tip through side window

Figure 3.10: Vortex rope extending into the draft tube elbow.

Finally, both methods regularly fail during the cloudy phases with a significant amount of

bubbles present in the surrounding flow. In concrete terms, said bubbles are regularly but

arbitrarily detected to be part of the gaseous phase in the conversion from the raw to the
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binary form of a picture frame. This depends mainly on the threshold value, which is static and

not adapted to the different phases of the flow oscillation. The integral method is particularly

susceptible to this, since the local vortex rope radius is calculated by detecting the first and

the last white pixel in a given picture row. Two detected one-pixel bubbles might therefore

yield a too large radius or even suggest the presence of a rope where there is none.

3.3.2 Post-processing of the PIV data

The raw images from the PIV equipment are used to obtain two-dimensional velocity fields

in the draft tube by applying an appropriate mathematical correlation method and one or

several flow-specific validation techniques. In addition to that, the camera output may also be

processed in order to find the vortex rope edges and hence the local discharge surfaces. Six

examples of the raw images from the PIV camera are shown in Figure 3.11, where the white

dots represent the fluorescent particles illuminated by the light sheet from the pulsed Laser.

The dash-dotted line marks the cone center and the positions A, B and C correspond to the

streamwise locations where the discharge is calculated later on, at 0.55×D 1̄, 0.70×D 1̄ and

0.84×D 1̄ below the runner exit, respectively.

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

t = 0.50 T t = 0.67 T t = 0.83 T

t = 0                                           t = 0.17 T t = 0.33 T

A
B

C

Figure 3.11: Raw images from the PIV camera during six instants uniformly distributed over
one period of the vortex rope oscillation at OP#2.
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Calculation of the velocity fields

Cross-correlations in interrogation windows of 32 pixels with a 50% overlap are calculated

from the raw image pairs. At a resolution of 2048×2048 pixels, this produces 127×127 velocity

vectors. The obtained cross-correlation maps need however further validation. As shown in

earlier sections, the concentration of bubbles in the draft tube flow varies significantly over one

period of the vortex rope oscillation. When reconstructing the evolution of the velocity field

with pressure synchronized measurement points, it is observed that the number of erroneous

vectors is significant for an increased presence of bubbles prior to the collapse of the vortex

rope. These inaccurate vectors can be eliminated and replaced by post-processing in two

steps. First, a simple range validation is performed, where all the vectors with an amplitude

exceeding 10 m s−1 are discarded. This is followed by a moving average validation, in which

each vector of the cross-correlation map is compared to the average of a surrounding 3 × 3

window and substituted by interpolation if the deviation is larger than 10%. The validation

criteria are based on experience and observation. Once these methods are applied to all the

cross-correlation maps at a given measurement point, the mean vector field can be calculated,

which is finally used to obtain the velocity profiles.

The entire validation process is illustrated in Figure 3.12. The corresponding measurement

point is taken during the decreasing phase of the vortex rope at t = 0.63 T , characterized by

the presence of a significant amount of bubbles in the surrounding flow. The top figure shows

the raw velocity field resulting from one out of the forty measurements at the given instant of

the instability, where all the vectors with a modulus larger then 10 m s−1 detected in the range

validation are drawn with dashed lines. The middle graph shows the result of the moving

range validation on that same raw velocity field. The bottom figure finally shows the mean

velocity field obtained by calculating the average over all the forty validated cross-correlation

maps at this measurement point. Even if the contour of a vortex rope seems still visible in the

averaged velocity field, measurements in the vicinity of the water-vapor interface feature a

larger uncertainty due to the reflection of the light sheet on the surface of the vortex rope, as

shown by [40] for a large collapsing bubble.

Vortex rope edge detection

None of the techniques described in 3.3.1 could be employed in case of the approximation of

the discharge surface in [43], since there was no space for an additional camera or the LED

panel in the experimental setup. Therefore, the picture material obtained with the PIV camera

was used. An algorithm is developed detecting the edge of the vortex rope, based on the

identification of the overexposed area at the surface of the well developed vortex rope. First,

the images are transformed into a binary (black and white) form using an ideal threshold value

according to [48]. Then, on a given row of the picture matrix, the white pixels are counted in

horizontal windows, starting form the left and moving to the right side with a 50% overlap. The

window size, typically between 1×4 pixel and 1×32 pixel, is chosen based on the intensity

of the reflection of the light sheet at the vortex rope surface, which critically depends on the

54



3.3. Signal processing methodology

175 (mm) 125 100 75 50 25 0
C

B

A

175 (mm) 125 100 75 50 25 0
C

B

A

175 (mm) 125 100 75 50 25 0
C

B

A

Figure 3.12: Top: Raw velocity field with invalid vectors after the range validation (dashed
thick lines). Middle: Velocity field after moving average validation. Bottom: Mean velocity field
based on 40 validated velocity fields. The origin of the X-axis is located on the cone centerline.

power of the pulsed Laser. These parameters are determined empirically on a trial and error

basis. The described steps are repeated until the first window containing exclusively white

pixels is found, where the location of the vortex rope edge is set at the given window’s left end.

The results of this algorithm are shown in Section 3.7.1. It is clear that the reliability of this

algorithm depends on the vortex rope shape, producing the best results when the cavity is fully

developed and overestimating its local radius in the phase of the collapse and the following

reformation.
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3.3.3 Flow rate calculation

The calculation of the instantaneous flow rate requires the knowledge of the axial velocity

profile at a given streamwise location and the relevant discharge surface. The former is

directly obtained by the PIV measurements, whereas the latter is estimated using the algorithm

described in Section 3.3.1 or Section 3.3.2. Finally, the discharge Q is written as

Q =
Rw all∫

Red g e

2π∫
0

Cm · r dr dθ = 2π

Rw all∫
Red g e

Cm · r dr, (3.2)

where Red g e and Rw all refer to the local radius of the vortex rope and the inner draft tube cone

wall radius, respectively. The integral in eq. (3.2) is calculated using the Simpson’s rule [57],

assuming an axisymmetric rope shape.

3.3.4 Mean phase averaging

A strong periodicity is observed in the signals of the measured quantities, most notably in the

wall pressure fluctuations. However, small variations from one cycle to another are natural and

the definition of a mean value with respect to one period of the oscillation seems meaningful.

A notion of the instant phase is gained by constructing an analytic signal z(t ), with the ultimate

purpose of isolating the individual periods of a given signal. The analytic signal is expressed as

z(t ) = x(t )+ i ·H [x(t )], (3.3)

where the real part consists of the actual measurement data x(t) and the complex part is

represented by its Hilbert transform [6]. The variable i denotes the imaginary unit defined asp
i =−1. The argument arg(z(t )) is interpreted as the phase of x(t ). In current commercial soft-

wares, the Hilbert transform is often calculated using an FFT algorithm [39]. Other reference

signals may of course be used to split a signal into its different cycles. At partial load conditions

(Q <QBEP) for instance, the vortex rope precession is well adapted, as demonstrated by [5].

Still in the context of hydraulic machines, the runner revolutions are often another suitable

choice.

In order to illustrate the method, the mean phase average of the signal shown in Figure 1.5c is

calculated. In a first step, the analytic signal and its argument are established. The latter is

shown together with the raw wall pressure factor signal in Figure 3.13a for a time window of

4 s. This allows assigning a phase angle value to each pressure data point. One period [0,2π] is

then divided into a suitable number of windows and the mean value of all the pressure data
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points in a given window is calculated. This is illustrated in Figure 3.13b for an angular window

size of 3 deg., where the vertical error bars represent the standard deviation. The use of a low

pass filter is often necessary in order to reject phase changes due to small scale fluctuations.
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(a) Pressure factor cp (solid line) and phase angle θ (dashed line)
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(b) Mean phase averaged pressure factor cp with standard deviation

Figure 3.13: Mean phase averaging of a wall pressure signal in the draft tube cone measured
0.39×D Ī downstream the runner exit. A total number of 137 pressure oscillation cycles were
taken into account for the calculation.

3.3.5 Spectral analysis of randomly sampled data

The statistical analysis of randomly sampled data, for instance from LDV measurements, is

to be performed with care so as to avoid the loss of relevant information and to control the

resulting errors in the frequency domain [24]. Several options exist to calculate the Hilbert

transform of the measured velocity components. For instance, the data can be transformed

into a continuous signal, enabling the use of efficient standard tools such as the Fast Fourier

Transform (FFT). The available reconstruction methods include the sample and hold tech-

nique and a piecewise interpolation of the data. The sample and hold process consists of

holding a sampled velocity value until the arrival of the next particle in the control volume. It
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acts as a low pass filter due to the loss of information during the hold periods and implicates

the presence of a white "step noise" created by the random steps [1]. These effects may be

mitigated by a polygonal interpolation, for instance, as shown in [49]. Alternatively, the LDV

data may be processed directly, taking into account a variable time step. The statistical proper-

ties of the spectral estimates of randomly sampled data using direct transform methods are

described in [25].

For the direct approach, the algorithm proposed by [39] is implemented for a variable time

step. The Discrete-Time Fourier Transform (DTFT) of the velocity data c(t) is calculated

according to [6] for each frequency component fk . This is done by using

C (k) =
N−1∑
i=1

(c(ti ) ·D(ti )) ·∆ti ·e−i ·2π fk ·ti , (3.4)

where N represents the total number of samples, ∆ti are the individual time lags between the

samples, fk the frequency components, ti the arrival times of the particles and D(t ) a suitable

data window. Once the DTFT calculated, the negative half of the spectrum is discarded by

defining the one-sided signal transform

Z (k) =


C (0), for k=0

2 ·C (k), for 1 ≤ k ≤ N
2 −1

0, for N
2 +1 ≤ k ≤ N −1

(3.5)

Finally, the analytic signal is obtained by calculating the inverse DTFT of Z (k), hence

c̃(n) =
N−1∑
k=1

Z (k) ·∆ fk ·e i ·2π fk ·tn . (3.6)

The velocity data acquired during a period T at a given measuring location may be split into a

suitable number M of windows in order to minimize the variability of the spectral estimation

as shown in [25]. Accordingly, each value obtained by eq. (3.4) represents a mean value over

the total number of windows, which is

C (k) = 1

M

M∑
j=1

C j (k) . (3.7)
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3.4. Variation of the vortex rope volume

Alternatively, the raw LDV data can be interpolated with methods available in commercial

software, such as piecewise cubic hermite polynomial functions [23]. The result is a continuous

reconstruction of the velocity signal and the corresponding analytic signal is then easily

obtained by using standard calculation tools, such as for the pressure signal described in

Section 3.3.4. Without providing prove, the obtained spectra for the direct DTFT approach

and the interpolated data are very similar. The computational time is however significantly

lower for the interpolated data.

3.4 Variation of the vortex rope volume

Figure 3.14 shows the approximated dimensionless vortex rope volumes for two different

speed factors at OP#2 and OP#5, obtained by using the differential and integral methods

presented in Section 3.3.1. It is first noticed that the results from the differential analysis and

the integral calculation show a good overall agreement. Furthermore, the values of the void

fractions are realistic by comparing with the visualizations in Appendix A (Figure A.3 and

Figure A.4). The vortex rope at the nominal speed factor of nED = 0.288 is fairly slim compared

two the one at a lower value of nED = 0.273.
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(a) nED = 0.273, OP#2
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(b) nED = 0.288, OP#5

Figure 3.14: Dimensionless Vc as a fct. of the number of runner revolutions at OP#2 and OP#5,
obtained from the differential (solid lines) and integral (◦-markers) method.

The problem of the missing portion of the vortex rope is common to both of the presented

methods. While the differential method seems to capture irregular rope shapes around its

collapse and certain local fluctuations more accurately, it suffers from the error introduced by

the reflection of the light on its surface. Especially around the maximum volume. As shown in

Figure 3.9b, a considerable part of the cavity’s surface is overexposed and transformed into

white pixels during the thresholding. The integral method, based on the estimation of the

local vortex rope radius, on the other hand, has the advantage of being unbiased by said light

reflections. It is however considerably less reliable for the cloudy phases around the cavity’s

collapse, where no clear edges exist. During these instants, single bubbles in the surrounding

flow are often detected and mistaken for the rope edge, introducing an error in the volume

calculation. At OP#2 this is more pronounced, since the bubbles in the surrounding flow are

larger and appear darker in the pictures than at OP#5.
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Chapter 3. Draft tube flow investigation

Figure 3.15 shows the dimensionless vortex rope volume from the differential method together

with the wall pressure factor at Section 1 (C1N). It is reminded that Vc only represents the

visible, contrasted portion of the vortex rope. The results are therefore mainly of qualitative

value. A few interesting insights may however be gained from the presented data. The evolu-

tion of the vortex rope volume at the two operating points displays a different behavior with

respect to the pressure oscillation cycle. For OP#2, the maximum volume roughly corresponds

to the minimum wall pressure and vice-versa. This is not true for OP#5, where the volume is

almost synchronized with the pressure, featuring a significantly steeper growth. A common

thing between the two different operating conditions is that the growth of the vortex rope is

initiated at the end of the highly fluctuating part between two peaks of the pressure signal. A

simultaneous viewing of the high speed videos reveals that this instant corresponds to the

moments where the bubbles in the surrounding flow disappear and the pictures "clear up"

again. Furthermore, both volume curves also display a local "ripple" when said bubbles appear

in the flow, at the beginning of the fluctuating pressure phase. If these bubbles have their

origin in a periodically appearing and subsequent imploding cavitation on the runner blades,

the dynamics of the vortex rope oscillation might be governed by how this blade cavitation

modifies the swirl at the runner exit. This shall be further discussed in Chapter 4.

3.5 Velocity field in cavitation free conditions

The results presented hereafter are obtained by LDV in 2-D, non-coincidence mode and

include the axial and tangential velocity profiles at the BEP and several operating points at

high load. The pressure in the downstream reservoir is set to atmosphere in order to minimize

the formation of cavitation in the draft tube flow. The corresponding σ values in Appendix B.1

are therefore replaced by the acronym atm. Different flow patterns are discussed resulting

from a variation of the flow rate and the swirl in the draft tube.

The wall pressure signals for the BEP and two typical overload operating points at the nominal

speed factor of nED = 0.288 and a lower value of nED = 0.273 are shown in Figure 3.16 in the

time and frequency domain. For the BEP and OP#3, the runner frequency n is the dominant

peak in the frequency domain. At the BEP, a second distinct peak at 0.74×n is present, whereas

a low frequency contribution is observed at 0.1×n at OP#3. For the lower nED value at OP#4,

the runner frequency is still present, but matched in amplitude by various unidentifiable

contributions to the spectrum.

Figure 3.17 and Figure 3.18 show the mean axial and tangential velocity profiles on the two

LDV measurement sections along the x-axis for the BEP. Figure 3.19 and Figure 3.20 displays

the same thing for the overload operating conditions at OP#3. The definition of the axes

corresponds to the coordinate system in Figure 3.3a. The z-axis points in the streamwise

direction and the runner rotates in a clockwise direction. The Cm and Cu components are

made non-dimensional with the mean discharge speed in the given measurement section and

the circumferential runner speed at R1̄, respectively.
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(a) nED = 0.273, OP#2
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Figure 3.15: Temporal evolution of the vortex rope volume and the pressure coefficient at C1N
for different speed factors as a function of the number of runner revolutions.

At the BEP, a significant decrease of the axial velocity component Cm is observed in the center

of the draft tube cone, the flow direction even being inverted at the upper section in Figure

3.17a. This profile shape is known from similar studies on reduced scale models at partial load

around the best efficiency point [58]. The same behavior is described in the theory of swirling

jets, when the forces induced by the adverse pressure gradient created by the swirl breakdown

further downstream overweigh the forward kinetic forces [26]. The opposite is the case for the

Cm profiles in the central region at OP#3, which continue to grow and reach their maximum

on the cone centerline, as shown in Figure 3.19a and Figure 3.19b.

The tangential velocity profiles in Figure 3.18 and Figure 3.20 are typical of a Lamb-Oseen

vortex [37, 47]. The dashed circles around the graphs illustrate the inner cone wall at the

corresponding LDV measurement section as seen from above. The fact that the draft tube flow

at the BEP has a significant swirling component, and that its direction is reversed between the

BEP and OP#3, indicates that the BEP of this particular reduced scale model is situated in the

partial load range. This is unusual, since in theory, the flow at the runner outlet is purely axial
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Figure 3.16: Wall pressure factor cP at C1N (left) plotted against the number of runner
revolutions and power spectral density Pxx (right) for the BEP, OP#3 and OP#4.

at the BEP. For both cases, the change in the Cu-sign past the cone center is well captured. In

general, the measurements in proximity of the cone walls at either side are less reliable for

both velocity components. A possible reason are optical effects such as parasite reflections of

the Laser beams at the Plexiglas interface.
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Figure 3.17: x-axis survey of the mean axial velocity component Cm (solid lines) with standard
deviation values (vertical error bars) at the BEP.
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Figure 3.18: x-axis survey of the mean tangential velocity component Cu (vertical bars) with
standard deviation values (solid lines) at the BEP.
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Figure 3.19: x-axis survey of the mean axial velocity component Cm (solid lines) with standard
deviation values (vertical error bars) at OP#3 (nED = 0.288).
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Figure 3.20: x-axis survey of the mean tangential velocity component Cu (vertical bars) with
standard deviation values (solid lines) at OP#3 (nED = 0.288).
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3.5. Velocity field in cavitation free conditions

In order to asses the influence of the main operational parameters on the shape of the veloc-

ity profiles, additional measurements for several combinations of the speed and discharge

factor are performed. One of the outcomes is, for instance, that both behaviors of the axial

velocity profiles shown in Figure 3.17 and Figure 3.19, respectively, are observed at similar

load conditions. This might suggest the vicinity to a critical swirl number. In order to illustrate

this, a systematic variation of QED and nED is performed around OP#4, keeping one of the two

parameters as well as the specific energy and the Froude number constant. The speed and

discharge factors are modified by changing the runner speed and the guide vane opening,

respectively. The evolution of the operating conditions can be followed in Table 3.4 together

with the swirl numbers.

Table 3.4: Operating conditions for the LDV measurements without cavitation.

Meas. section
nED QED Q N E Fr QED /Q∗

ED
S

(-) (-) (m3 s−1) (min−1) (J kg−1) (-) (-) (-)

1 (upper) 0.273

0.250 0.3288

505.1

116.46

5.8

1.243 0.351
0.252 0.3311 116.48 1.252 0.359
0.254 0.3337 116.55 1.262 0.385
0.256 0.3365 116.54 1.272 0.410
0.258 0.3390 116.41 1.283 0.418
0.260 0.3417 116.31 1.293 0.431

2 (lower) 0.273
0.250 0.3282

505.1
116.20

5.8
1.243 0.387

0.252 0.3312 116.40 1.253 0.406
0.255 0.3337 116.52 1.262 0.425

1 (upper)

0.273

0.250 0.3290

505.1 116.46

5.8 1.243

0.351
0.278 514.7 116.51 0.326
0.283 524.1 116.50 0.299
0.288 533.5 116.63 0.268
0.293 542.5 116.55 0.237
0.298 551.9 116.75 0.202
0.303 560.8 116.47 0.171

2 (lower)
0.273

0.250 0.3290
505.2 116.20

5.8 1.243
0.387

0.288 533.5 116.66 0.310
0.303 560.8 116.48 0.198

Figure 3.21 shows the mean axial velocity profiles at the upper and lower LDV measurement

section for a systematic variation of the speed and discharge factors. The corresponding

tangential velocity profiles are included in Figure 3.22. Increasing the discharge factor QED and

hence the swirl in the flow leaving the runner, the shape of the axial velocity profile in Figure

3.21a and Figure 3.21c switches abruptly from featuring an absolute maximum on the cone

centerline to a local minimum in the central region. This agrees with the above mentioned

theory of swirling jets. Simultaneously, the radial spread of the central vortex region increases,

which is also well displayed in the tangential velocity profiles in Figure 3.22a and Figure 3.22c.
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Chapter 3. Draft tube flow investigation

The reaction to an increase of the speed factor nED is slightly different. Drawing the velocity

triangles at the runner outlet reveals that an increase of the circumferential runner speed U at

a constant discharge Q implicates a reduction of the tangential velocity component Cu and

therefore the swirl. This is evidenced by the Cu-profiles in Figure 3.22b and Figure 3.22d. The

axial velocity component has its peak in the central flow region, which is however continuously

"flattened" and finally slightly inverted for increasing runner frequencies.

It is mentioned that the approach of the critical swirl number during the QED -variation coin-

cides with the appearance of a thin vortex (ø ≈ 10 mm) along the flow center. For QED = 0.254,

this vortex features a breakdown oscillating axially around the measurement section 1, charac-

terized by very large values of standard deviation around the plotted mean value. For larger

values than QED = 0.254, the vortex extends beyond the Plexiglas cone and the LDV samples

vary moderately even across the gaseous phase. Furthermore, due to the flow asymmetry

introduced by the elbow, the vortex is slightly deflected from the geometrical cone centerline

in positive x-direction at the lower measurement section 2. As a consequence, the velocity

profile does not pass though the center of the flow with the setup in Figure 3.3b.
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Figure 3.21: Mean axial velocity profiles Cm along the y-axis for a variation of QED and nED at
the upper and lower LDV measurement sections.
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Figure 3.22: Mean tangential velocity profiles Cu along the y-axis for a variation of QED and
nED at the upper and lower LDV measurement sections.
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3.6 Velocity field in presence of an oscillating vortex rope

3.6.1 Local pressure synchronized velocity variations from LDV

The fluctuating velocity components in presence of an oscillating vortex rope measured by

LDV can be averaged with respect to the wall pressure signal. This was shown in [42] by the

author for a single radial measurement position. The following development is an extension of

this analysis to the entire measurement cross-section at several operating points. To this end,

the mean phase averaged pressure signal is calculated with the method presented in Section

3.3.4. The velocity data is then split accordingly into sub-cycles and averaged, making it thusly

possible to follow the behavior of the axial and tangential velocity components over a single

period of the vortex rope oscillation at a given radial position. This is illustrated presently for

three radial locations on the upper and lower horizontal LDV measurement sections. Figure

3.23 shows six equally spaced instants of the vortex rope oscillation at OP#5, where the crosses

mark the radial measurement positions at a distance of 0.87×R1̄, 0.47×R1̄ and 0.086×R1̄ from

the cone centerline for a) & d), b) & e) and c) & f), respectively.

a) b) c)

d) e) f)

Figure 3.23: High speed visualization of the vortex rope at OP#5 at six equally spaced instants
over one period of the pressure oscillation with radial LDV measurement positions (×).

An example for the raw velocity and pressure signals is given in Figure 3.24. The corresponding

local evolutions of Cm and Cu for OP#5 are shown in Figure 3.25 and Figure 3.26 for sections 1

and 2, respectively. The operating conditions correspond to the model’s nominal speed factor

of nED = 0.288 and the nominal Thoma number of σ= 0.11, at 30% overload.
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Figure 3.24: Raw, synchronized pressure and velocity data as a function of time at OP#5
(nED = 0.288) for position b) on the LDV measurement section 1.

At the upper LDV measurement section 1, three distinctive forms of the axial velocity profile

are observed. While Cm remains practically constant at the radial position a) close to the inner

cone wall, its profile displays a moderate local decrease at the pressure fluctuation peak for

position b) and a local maximum at position c), which is slightly delayed with respect to the

pressure peak. More significant are the variations in the tangential velocity profiles, which

reach their maxima shortly after the pressure peaks. At the lower LDV measurement section,

a periodic change in the Cm values is hardly noticeable and the corresponding profiles are

nearly flat. The behavior of the tangential velocity component Cu is similar to the one on the

upper LDV measurement section, where the maximum values occur however a little later in

the pressure oscillation cycle. This likely corresponds to the propagation time of the swirl
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(a) Axial and tangential velocity, position a) on the upper measurement section
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(b) Axial and tangential velocity, position b) on the upper measurement section
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(c) Axial and tangential velocity, position c) on the upper measurement section

Figure 3.25: Mean phase averaged Cm (left) and Cu (right) at OP#5 (nED = 0.288) together with
cp at C2N (thick line). The x-axis span [0,2π] represents one period of the pressure oscillation.

change from the runner exit, which shall be discussed in a later section. In order to get a more

complete picture of how the velocity field changes during one pressure oscillation cycle, all of

the measured profiles between the cone wall and the cone centerline are displayed in Figure

3.27 for OP#5.

Figure 3.27a can be divided in two areas of roughly the same radial span. The first one, towards

the cone wall, is characterized by a sink, which is formed by the local decrease of the axial

velocity component Cm in the corresponding profiles. This was already observed in the left

sub-plot of Figure 3.25b. The other half, on the contrary, forms a hill shape, characterized

by a local increase in the Cm-profiles. This corresponds to the behavior displayed in the left

sub-plot in Figure 3.25c. The tangential velocity profiles in Figure 3.27b all feature a similar

shape with a maximum shortly after the mid-period of the pressure oscillation. The same

graphs for the lower LDV measurement section are included in Figure 3.28. As mentioned

beforehand, the variations in the axial velocity component Cm are less pronounced and the
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(a) Axial and tangential velocity, position d) on the lower measurement section
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(b) Axial and tangential velocity, position e) on the lower measurement section
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(c) Axial and tangential velocity, position f) on the lower measurement section

Figure 3.26: Mean phase averaged Cm (left) and Cu (right) at OP#5 (nED = 0.288) together with
cp at C2N (thick line). The x-axis span [0,2π] represents one period of the pressure oscillation.

local Cu-maxima occur with a delay. Finally, it is remarkable that presumably valid LDV data

points are obtained even at radial positions towards the centerline, which are partially covered

by the vortex rope. The quality of the measurements is often compromised in the vicinity of

water-vapor interfaces due to optical issues, such as reflections of the Laser beams on the

cavity, or due to a low local density of seeding material.

The same type of analysis is repeated for a lower speed factor of nED = 0.273 at OP#7 in

Figure 3.29 and Figure 3.30 for the upper measurement section 1. In case of the axial velocity

component Cm, the behavior is comparable to the one observed for the nominal nED at OP#5,

with two zones of local decrease and increase towards the draft tube cone wall and its center,

respectively. The corresponding minima and maxima seem to appear at the same location with

respect to the pressure peaks. The tangential velocity components Cu are again characterized

by a significant maximum around the pressure peak. Its location seems however to be more

dependent on the radial position than at OP#5. Moreover, the increase in Cu generally occurs
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Figure 3.27: Non-dimensional, pressure phase averaged Cm and Cu profiles for several radial
positions at the LDV measurement section 1 for OP#5 (nED = 0.288).
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Figure 3.28: Non-dimensional, pressure phase averaged Cm and Cu profiles for several radial
positions at the LDV measurement section 2 for OP#5 (nED = 0.288).

earlier with respect to the pressure cycle. Close to the center at position c), for instance, the Cu-

maximum is reached shortly before the pressure peak, in contrast to the same measurement

location at OP#5, where this happens shortly after the pressure peak.

Due to reasons mentioned beforehand, the quality of the measurements may decrease towards

the center of the draft tube cone in presence of cavitation. This can be seen in Figure 3.30,

where the two profiles close to the center display a higher level of fluctuations at their ends. It

is also mentioned that the flow is not entirely symmetric with respect to the cone centerline.

The center of the vortex is gradually shifted in a positive x-direction with a growing distance

form the runner outlet, towards the abrupt redirection of the flow in the draft tube elbow.
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Figure 3.29: Mean phase averaged Cm (left) and Cu (right) at OP#7 together with cp at C2N
(thick line). The x-axis [0,2π] represents one period of the pressure oscillation.
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Figure 3.30: Non-dimensional, pressure phase averaged Cm and Cu profiles for several radial
positions at the LDV measurement section 1 for OP#7 (nED = 0.273).
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3.6.2 Axial velocity profiles from fluorescent PIV

The results presented in this section as well as in Section 3.7 are part of the research paper [43]

published by the author. The same operating point is chosen for the following analysis, but

with a slightly lower σ in order to assess the influence of a changing draft tube pressure level.

Figure 3.31 contains the axial velocity profiles obtained with PIV at the streamwise Position B,

0.70×D 1̄ below the runner exit, at the same six instants shown in Figure 3.11 for OP#2. Each

subplot includes the mean velocity data and the standard deviation values resulting from

the averaging over 40 vector fields at each measurement point. Both the results based on

the raw cross-correlation maps and the validated velocity fields according to Section 3.3.2

are displayed. Furthermore, the vortex rope edge location is estimated with the algorithm

introduced in Section 3.3.1 and marked with a vertical dashed line in each subplot. The origin

of the x-axis corresponds to the cone centerline and its maximum to the location of the inner

cone wall.

It is observed that the calculated edge limits the somewhat chaotic region characterized by

large values of the standard deviation fairly well. The growing phase of the vortex rope diameter

at this particular position extends to t = 0.83×T , implying that the collapse of the cavity is very

quick, as shown in Figure 3.33. Figure 3.32 shows the profiles of the axial velocity component

at the same six instants in one plot for each of the three streamwise Positions A, B, and C.
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Figure 3.31: Raw and validated radial Cm profiles at Position B for OP#2. (◦): raw Cm, (×): raw
std, solid lines: validated Cm (top) and std (bottom).
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Figure 3.32: Radial profile plots of the validated axial velocity component Cm at OP#2 for the
Positions A, B, and C.

78



3.7. Local discharge variation around the vortex rope

3.7 Local discharge variation around the vortex rope

3.7.1 Calculation of the discharge area

With the method described in Section 3.3.1, the instantaneous vortex rope radius can be

estimated at the three measurement positions A, B and C. This radius is then used in the

discharge calculation using eq. (3.2). Figure 3.33 shows the corresponding variation over one

period of the pressure oscillation. In the rare cases no valid vortex rope radius is detected, a

linear interpolation is performed based on the adjacent measurement points. The window

size for the spatial filter described in Section 3.3.1 is set to 1×4 pixel for the Position A, since

the reflection of the light sheet is not very distinct at the corresponding streamwise position,

as can be observed in Figure 3.11. The detection of the vortex rope edge is consequently less

accurate, as evidenced by the unsteadiness of the corresponding curve. For the Positions

B and C, the window size is 1× 8 pixel. It is noticed that the vortex rope radius does not

reach zero at the collapse, which does not necessarily correspond to the reality. The resulting

underestimation of the discharge during these moments is discussed in a later Section.
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Figure 3.33: Variation of the instant vortex rope radius over one period of the pressure
oscillation at three streamwise positions in the draft tube cone for OP#2.

In order to compensate for the lack of reliability of the edge detection in certain regions and to

get more continuous estimates of the discharge evolution, the radius curves in Figure 3.33 are

smoothed. It is found that a 8th degree polynomial interpolation is a good fit in capturing the

different phases of the vortex rope radius variation, as demonstrated in Figure 3.34.

3.7.2 Flow rate variation around an oscillating vortex rope

From the axial velocity profiles and the local vortex rope radius in Section 3.6.2 and Section

3.7.1 at a particular streamwise position, the corresponding volumetric flow rate around

the cavity is estimated. Several measurements taken at different instants over one pressure

oscillation cycle are put together in order to reconstruct the evolution over an entire pressure

oscillation period. For the operating point labeled OP#2, the results are presented in Figure
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Figure 3.34: Vortex rope radius over one period of the pressure oscillation at three streamwise
positions in the draft tube cone for OP#2, together with a 8th degree polynomial fit.

3.35a. The flow rate is made non-dimensional by the mean discharge measured in an upstream

pipe with an electromagnetic flowmeter and is based on the fitted vortex rope radii presented

in Figure 3.34.

A comment about the definition of the phase angle on the x-axis needs to be made before

comparing the estimated flow rate to other quantities, such as the pressure, instantaneous

velocity components from LDV or the vortex rope volume. The displayed period is simply a

discretization of the interval [0,2π] by the number of PIV measuring points. As explained in

Section 3.2.2, each of these measuring points stands for a different trigger delay value. Since

the trigger itself is released at a constant but arbitrary voltage level of the wall pressure signal
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3.7. Local discharge variation around the vortex rope

(see TTL trigger output in Figure 3.6), no direct link to the instant phase defined in Section

3.3.4 may be established. However, the internal signal which triggers the actual Laser pulse

from the timing box can be recorded and its time shift with respect to the adjacent pressure

peaks is then determined in post-processing. This time shift is consequently averaged over all

measurements at a given measuring point and compared to a mean phase averaged reference

wall pressure signal obtained from the totality of recorded pressure cycles at C1N. Finally, a

mean wall pressure value can be determined for each trigger delay in order to reconstruct the

mean pressure fitting the PIV period. The corresponding signal is shown in Figure 3.35b.
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Figure 3.35: Dimensionless flow rate evolution at the positions A, B and C and corresponding
mean wall pressure factor cp at C1N.

The variation towards the end of the period observed at all three measurement positions A, B

and C seems to coincide with the rising phase of the wall pressure signal. Other correlations

with the pressure signal are not apparent. As for the individual behavior, all curves experience

a local minimum between π/4 and 5π/4 at varying amplitudes and locations. The flow rate at

position B displays the most continuous behavior close to the nominal discharge, where as

the corresponding curve at position A runs significantly below. With mean values of 92.0%,

99.5% and 95.8% over the whole period,respectively, the mean discharge in the test rig is only
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matched at position B. However, in view of the significant discharge oscillations that may exist

upstream and downstream of the vortex rope and the periodically chaotic nature of the flow,

the significance of the quantitative aspects of these findings is limited.

As briefly mentioned before, the accuracy of the shown result may suffer lightly from an unde-

sired change in the operating conditions during the time it takes to record all the measuring

points constituting one period of the pressure oscillation. It is for instance challenging to

maintain a constant pressure in the downstream reservoir with the vacuum pump over several

hours. The reason are small leakages in the system, which ultimately lead to a modification of

the cavitation number and therefore the properties of the vortex rope oscillation.

The use of a more powerful laser device for the PIV measurements in the future will expand

the target area in the draft tube cone where the flow rate can be estimated. Furthermore, it will

increase the reliability of the detection of the vortex rope edge with the algorithm described in

Section 3.3.1 and hence the calculation of the discharge at the given streamwise location.

3.8 Summary and discussion

At the end of this chapter, a deep knowledge of the flow field properties throughout the draft

tube cone is acquired for several operating conditions. After a description of the experimental

setup for the LDV and PIV measurements as well as the flow visualization, an additional

method for the estimation of the vortex rope volume based on the local radius of the vortex

rope is introduced. This integral method as well as the differential approach described in

Section 2.3.3 agree well with each other and deliver satisfying results for the volume of the

visible portion of the vortex rope in the draft tube. The reliability of the integral method may

be compromised around the collapse of the cavity and the bubbly flow phases, whereas the

output from the differential method is biased when ambient light is reflected at the vortex

rope interface.

The vortex ropes at a nominal speed factor of nED = 0.288 and at a lower value of nED = 0.273

display diverging properties in terms of their volume. The first one, having a rather slender

shape as opposed to the large cavity at nED = 0.273, reaches its maximum volume together

with the pressure and is characterized by a very rapid growth. The vortex rope at the lower nED

however seems much more inert in the growing phase and is therefore shifted with respect to

the pressure signal, in a way of reaching its maximum when the wall pressure is minimal and

vice versa. The difference in the runner inlet flow incidence angle between the two operating

points might play a role in this, as it directly impacts the volume of the previously mentioned

cavitation on the runner blades. The amount of blade cavitation is expected to be higher

for nED = 0.273, which is evidenced by the increased amount of bubbles in the surrounding

flow. The common point is that for both nED values, the start of the growing phase of the

vortex rope seems to coincide with the disappearance of the bubbles in the flow. This moment

corresponds to the end of the highly fluctuating section covering the minima of the wall

pressure signals at the upper measurement section.

82



3.8. Summary and discussion

The velocity profiles at cavitation-free conditions agree with classical vortex and swirling jet

theories. The effect of the adverse pressure gradient on the shape of the velocity profiles is

illustrated by a systematic variation of the discharge factor QED and hence the draft tube inlet

flow swirl. The results suggest the presence of a critical swirl number of about 0.385 around a

discharge factor of QED = 0.254 at a speed factor of nED = 0.273.

The velocity components from the LDV measurements are averaged with respect to the instant

phase of the wall pressure signal. The resulting profiles display a significant increase of the

tangential velocity component Cu following the pressure maximum, at all radial measurement

positions. This is at the origin of a periodic variation of the flow swirl in the draft tube, which

is going to be discussed in Chapter 4.

The axial velocity profiles from the PIV measurements together with the local vortex rope

radius obtained from image processing are used to calculate the instant discharge around

the vortex rope at a certain moment, at a certain streamwise position. Repeating this for

several measurement points systematically distributed over the pressure oscillation period,

the corresponding flow rate fluctuation is established. It features a local minimum at all the

investigated streamwise positions when the pressure in the draft tube rises.
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4 Angular momentum balance

4.1 Swirl variation in the draft tube

The axial and especially tangential velocity profiles presented in Section 3.6.1 indicate a

significant variation of the draft tube flow swirl. The latter is represented by the swirl number

S, which is defined as the ratio between the axial flux of the angular momentum (Gθ) and the

axial flux of the axial momentum (Gz ) [26]. It takes the expression

S =

R∫
0

r 2 ·Cu ·Cm dr

R1̄ ·
R∫
0

r ·Cm2 dr

(4.1)

where R1̄ is the external runner outlet diameter. The axial and tangential velocity components

Cm and Cu are available from the LDV measurements and the instantaneous swirl number can

therefore be estimated on both LDV measurement sections shown in Figure 3.2. The procedure

is based on the mean phase averaged velocity profiles displayed in Figures 3.27, 3.28 and 3.30,

where eq. (4.1) is calculated at each step of the phase angle θ ∈ [0,2π]. Ultimately, this results

in the evolution of the flow swirl over one period of the pressure oscillation.

The mean phase averaged vortex rope volume and the swirl number are both based on the

instant phase of the pressure oscillation. The reference signal is however not the same, since

the measurements were recorded at different moments. As mentioned earlier, the physical

conditions may be subject to natural fluctuations between two tests at the same operating

point. Moreover, in case of the swirl number, there are as many reference signals as there

are radial LDV measurement positions. Hence, before any conclusions with regard to the

relationship between the swirl and the vortex rope volume can be drawn, the corresponding

mean phase averaged reference pressure signals need to be compared. This is illustrated in

Figure 4.1 for the upper measurement positions at OP#5 and OP#7. In case of the swirl number,
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the displayed cp -curve is an average over all the radial measurement positions. In order to

enhance the readability of the graphs, the statistical error is not included.
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Figure 4.1: cp mean phase averaged corresponding to the LDV measurements (solid lines)
and the flow visualizations (dashed lines).

While the agreement is very good for OP#7, a more substantial difference between the two

curves in the region of the pressure maximum is observed at OP#5. The location of the peak

with respect to the overall period is however nearly identical and the following analysis remains

therefore valid. Figure 4.2 shows the swirl number over one period of the pressure oscillation,

together with the mean phase averaged wall pressure factors (C1N) and vortex rope volumes

on both LDV measurement sections at OP#5. For the upper position in Figure 4.2a, close to

the runner exit, the swirl number and the cp display a very similar shape. The jump in the flow

swirl at roughly 5π/8 is very abrupt, swiftly followed by the pressure rise and then eventually

by the vortex rope volume. As already foreshadowed by the local tangential velocity profiles in

Section 3.6.1, the modification of the flow swirl arrives at the lower LDV measurement section

with a significant delay (see Figure 4.2b).

For the upper position at OP#7, the evolution of the flow swirl, the vortex rope volume and

the wall pressure factor are plotted in Figure 4.3. Other than the mean swirl being on a higher

level, the relationship between the displayed quantities is slightly different with respect to the

previously presented OP#5. This is to be expected in view of the results presented in Section

3.4, showing already a different evolution of the vortex rope volume compared to the wall

pressure cycle. In the present case, the maximum of the flow swirl corresponds to the low

point of the vortex rope volume. The wall pressure follows behind with a phase shift of roughly

π/4. Around the pressure maximum, the decrease of the swirl and the raise of the vortex rope

volume temporarily flatten.

4.2 Evidence of periodic blade cavitation appearance

As indicated earlier, CFD calculations based on the experimental data from the reduced scale

model testing suggest a significant presence of cavitation on the low pressure side of the runner

blades [9]. This is verified by high speed visualization with the setup shown in Figure 3.7. For
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Figure 4.2: Swirl number together with the mean wall pressure factor and the vortex rope
volume over one period of the pressure oscillation at OP#5 (nED = 0.288).

this purpose, the runner is illuminated from below with a stroboscope, which is synchronized

with the camera. At a frequency of eight times the one of the runner, an image is recorded at

each light pulse. The visualization is synchronized with the wall pressure measurements and

Figure 4.4 shows one period of the raw cp signal including the instants (a) to (p) at which the

images in Figure 4.5 are recorded.

The chosen perspective shows the suction side of three out of a total of sixteen runner blades.

The view is barely obstructed by the vortex rope, since the latter is comparatively slim at this

particular operating point (see Figure A.2). The vortex rope is partly visible in the lower right

corner of the individual images, allowing to follow simultaneously the evolution of Vc .
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Figure 4.3: Swirl number together with the mean wall pressure factor and the vortex rope
volume over one period of the pressure oscillation at OP#7 (nED = 0.273).

0 1 2 3 4 5 6
−0.04

−0.02

0

0.02

0.04

0.06

0.08
cp (-)

t × n (-)

a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p)

Figure 4.4: Wall pressure factor at C1N for OP#5 (nED = 0.288) plotted against the number of
runner revolutions, together with the moments corresponding to the pictures in Figure 4.5
(vertical dashed lines).
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Figure 4.5: Formation of cavitation on the runner blades at OP#5 (nED = 0.288) during one
period of the pressure oscillation (see Figure 4.4 for corresponding cp values).
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4.3 Calculation of the relative flow angle β

The cavitation on the runner blades causes a modification of the relative flow angle β at the

runner outlet. According to the velocity triangles in Figure 2, it is defined as

β= tan−1
(

Cm

U −Cu

)
. (4.2)

The value of β should be constant on a given measurement section, since it is directly linked

to the runner geometry. Except for the wake in the central region of the cone. Figure 4.6 shows

the profiles of β on the upper LDV measurement section for six equally spaced instants over

one period T of the pressure oscillation at OP#7 and OP#5. The three vertical dashed lines

correspond to the radial locations (a), (b) and (c) from Figure 3.23, for which the time-wise

evolution based on the pressure phase averaged velocity components are shown in Figure 4.7.

The mean value of the peripheral velocity U is used in eq. (4.2), even though the instant runner

speed experiences periodic fluctuations as shown in Figure of Section 4.4. The amplitude of

the fluctuations is however too small to cause a noticeable difference in β.
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Figure 4.6: Relative flow angles as a function of the dimensionless cone radius at six instants
of the pressure oscillation period at OP#7 and OP#5.

The variation of the relative flow angle is more significant for the lower speed factor at nED =
0.273. A distinctive minimum is especially observed at the radial position (b) in Figure 4.7. Said

minimum occurs later for nED = 0.288 than for nED = 0.273 with respect to the mean period of

the pressure oscillation and coincides with the swirl maximum in Figure 4.2a and Figure 4.3a.

4.4 Runner speed and torque fluctuations

The significant variation of the swirl number shown above suggests a measurable interaction

of the flow in the draft tube with the mechanical system of the test rig. A high-resolution

angular encoder used with a counter/timer module offers the possibility of studying the
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4.4. Runner speed and torque fluctuations
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Figure 4.7: Relative flow angles as a function of the mean phase angle at six instants of the
pressure oscillation period at OP#7 and OP#5.

instant runner frequency. The angular encoder has an output of 18’000 pulses per revolution

and the counter/timer card, which is integrated in the PXI system, features a 80 MHz timebase

or in other words a maximum resolution of 12.5 ns. A torquemeter on the runner shaft

provides the instant torque values. Figure 4.8 shows the time history of these two quantities

for the two operating points OP#5 and OP#7 at a speed factor of nED = 0.288 and nED = 0.273,

respectively. The graphs for the runner speed contain the result based on a discretization of

the circumference into 2’000 segments and a smoothed version based on a low pass filter.

Significant oscillations are observed in both the runner frequency and the torques at both

operating points. The peak-to-peak amplitudes of the runner frequency fluctuation are

between 0.5-1% of the specified value of 800 rpm and 505 rpm, respectively. The signal is

more regular for OP#5, whereas higher frequency components are present in the oscillation of

the runner speed at OP#7. The same can be said about the torque oscillation. In terms of the

amplitudes, the torque reaches peak-to-peak values between 4-6% of the mean value at the

given operating point. In view of the relationship P = Tm ×ω, this has a non-negligible impact

of the power output of the machine.

Figure 4.9 shows the pressure phase averaged signal of the runner speed and the torque, to-

gether with the mean phase averaged wall pressure reference signal at the sensor location C1N.

This representation places the measurements displayed in Figure 4.8 in the general context of

the instability by studying their evolution with respect to the same reference signal that was

used in previous sections. Unsurprisingly, the rotating frequency and torque oscillations are

nearly in phase. The torque peak is only slightly following behind the maximum of the runner

frequency (0.16 ·π for nED = 0.288 and 0.27 ·π for nED = 0.273). With regard to the reference

signal, the maxima of the torque and the runner frequency occur during the falling edge of the

wall pressure.
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Chapter 4. Angular momentum balance
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Figure 4.8: Variation of the runner frequency and of the mechanical torque at OP#7 (nED =
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503

504

505

506

507

508

−0.2

−0.1

0.0

0.1

0.2

0.3

0 π/2 π 3π/2 2π2π

cp (-)N (min-1)

(a) Runner speed at OP#7 (nED = 0.273)

0 π/2 π 3π/2 2π
796

798

800

802

804

2π
−0.03

0.0

0.03

0.06

0.09
cp (-)N (min-1)

(b) Runner speed at OP#5 (nED = 0.288)

0.630

0.642

0.654

0.666

0.678

0.690

−0.2

−0.1

0.0

0.1

0.2

0.3

0 π/2 π 3π/2 2π2π

cp (-)Tm (kNm)

(c) Mechanical torque at OP#7 (nED = 0.273)

1.36

1.39

1.42

1.45

1.48

0 π/2 π 3π/2 2π2π
−0.03

0.0

0.03

0.06

0.09
cp (-)Tm (kNm)

(d) Mechanical torque at OP#5 (nED = 0.288)
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4.5. Summary and discussion

4.5 Summary and discussion

Based on the LDV measurements presented in Chapter 3, the draft tube flow swirl is calculated

and a significant periodic variation is observed. At the upper measurement section, the

swirl peak occurs almost simultaneously with the pressure peak for a higher speed factor

of nED = 0.288, whereas it has a short advance on the pressure for nED = 0.273. The swirl

maximum corresponds to the vortex rope maximum at nED = 0.288, whereas it coincides with

the volume minimum for the lower nED value.

The cavitation on the runner blades is visualized for nED = 0.288. It is observed that at the

pressure peaks, no traces of cavitation are found and that the start of the fluctuating segment

of the wall pressure signal coincides with the appearance of the first cavities on the runner

blades.

Furthermore it is shown that the swirl modification is accompanied by a modification of

the relative flow angle β at several radial positions. The β-profiles along the radius display

significant changes, which are more pronounced for nED = 0.273. It is curious that values of

the relative flow angle seem generally lower for nED = 0.288, since β should not depend on the

operating conditions.

Periodical variations of the instant runner frequency and the mechanical torque are doc-

umented. The torque peaks have a slight delay with respect to the maxima of the runner

frequency at both speed factor values of nED = 0.288 and nED = 0.273. The amplitude of the

fluctuations are 0.5− 1% for the runner frequency and 4− 6% for the mechanical torque,

indicating significant power swings.

Finally, the presented findings suggest a strong link between the self-sustained pressure

oscillations, the flow swirl and the cyclic appearance of cavitation on the runner blades, which

needs to be further investigated.
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5 Conclusions and perspectives

5.1 Conclusions

At full load operation, characterized by discharge values beyond the best efficiency point, hy-

draulic machines may experience self-excited pressure and cavitating vortex rope oscillations.

The physical properties of this phenomenon differ fundamentally from well documented

instabilities involving cavitation at a partial load range. Extensive experimental investiga-

tions are therefore performed to increase the understanding of its underlying causes and key

sustaining mechanisms.

A detailed characterization of the wall pressure evolution throughout the hydraulic system as

well as the flow field in the draft tube cone is performed on a 1:16 reduced scale physical model

of a Francis turbine. Furthermore, the interaction with the mechanical system is studied. The

use of state of the art measurement techniques, such as Laser Doppler Velocimetry, fluorescent

Particle Image Velocimetry and high-speed flow visualization as well as the development of

appropriate signal processing tools grants access to the important physical quantities involved.

It is hence possible to simultaneously study the wall pressure P , the axial and tangential

velocity components Cm and Cu at various streamwise and radial locations, the instant flow

rate Q around the vortex rope, the vortex rope volume Vc , the swirl number S, the relative

flow angle β, the instant torque T and the runner frequency n for a large range of operating

conditions. An averaging of all these signals with respect to a mean phase of the pressure

oscillation makes a direct comparison between them possible. The results suggest a strong link

between the periodically changing flow configuration in the draft tube cone in terms of the

swirl and the cyclic appearance of cavitation on the runner blades. Both the swirl and the blade

cavitation have a constant phase relationship with the dominant wall pressure oscillations.

This observation is in agreement with the results obtained from recent multi-phase numerical

simulations, coupling the draft tube and the runner, which accurately reproduced the pressure

fluctuations and the characteristic vortex rope oscillation measured on the reduced scale

model. The experiments conducted on the reduced scale model constitute a comprehensive

data resource for the validation of analytical and numerical flow models.
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Chapter 5. Conclusions and perspectives

In a further effort, self-excited pressure oscillations are reproduced and investigated on a

simplified, small scale test facility with a micro-turbine and a horizontal conical diffuser.

The unsteady flow rates upstream and downstream of the draft tube are calculated using

pressure transducers and the vortex rope volume is estimated from flow visualizations, thus

enabling the study of the hydroacoustic draft tube flow parameters found in commonly used

one-dimensional models. Representing the vortex rope volume as a function of the mentioned

flow rates and the cavitation number suggests that the flow swirl at the runner outlet (draft

tube inlet) plays a crucial role in the destabilizing of the system. The cavitation compliance for

a given operating point can be approximated by a constant value from a linear fit of the raw

data, where as the accuracy of the mass flow gain factor calculation suffers from singularities

in the partial derivatives which define them.

It is concluded that the modification of the flow swirl in the draft tube inlet through the appear-

ance of cavitation on the runner blade plays an important role in the feedback mechanism of

the self-excited pressure and vortex rope oscillation.

5.2 Perspectives

The vast amount of experimental data collected during this research project allows an exten-

sion of the presented analysis to a larger operating range. Given the sometimes divergent

behavior between the different speed factors, for instance, in terms of the vortex rope volume

and the flow swirl evolution with respect to the pressure signal, additional data points are to

be taken into account in order to understand the dependencies of the important variables on

certain operating conditions. A systematic comparison of the time for the collapse and the

rebuilding of the vortex rope between the various operating points is to be performed.

For future investigations, several strategies should be considered in light of the above findings.

The analysis of the hydroacoustic draft tube parameters on a simplified test case yielded

encouraging results. Performing this on a reduced scale model may produce a stability map

and the definition of stability criteria based on said hydroacoustic model parameters. For this

purpose, the upstream and downstream flow rate should be measured on the test rig. The

results would also benefit from a slightly more realistic estimation of the vortex rope volume.

Finally, the dynamic transfer matrix could be calculated with such an equipment.

Based on the estimation of the instant flow rate from the PIV measurements and the vortex

rope volume in the draft tube cone, a local mass balance can be established at several stream-

wise locations. Moreover, the mass flow gain factor, defined as the change in the vortex rope

volume with respect to the flow rate, can be estimated locally for the validation of recently pro-

posed distributed hydroacoustic draft tube flow models (in contrast to the lumped approach

presented in Section 1.2.1).

The flow swirl breakdown might be attributed to the modification of the relative flow angle at

the runner outlet, due to the formation of cavitation on the blades. The collapse of the blade
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5.2. Perspectives

cavitation presumably causes a sudden reestablishment of the flow swirl in the draft tube,

inducing the reformation of the vortex rope. This should be verified or disproved by additional

swirl measurements and simultaneous visualizations of the blade cavitation and the vortex

rope, for several operating conditions. The passage from stable to unstable should be included

in such a survey, in order to verify if the collapsing blade cavitation causes the self-sustained

pressure oscillation or the other way round.

Finally, it needs to be determined to what extent the results presented in this work are valid for

the actual prototype by attempting to transpose the measured values of quantities such as the

pressure and torque fluctuations.
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A Flow visualizations

This chapter contains additional flow visualizations for some of the operating points in Table

B.1. In parallel, the corresponding wall pressure coefficients are plotted, showing the chosen

period from the high speed video.
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Figure A.1: Wall pressure coefficient at C1N for the visualization in Figure A.3 at OP#2.
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Figure A.2: Wall pressure coefficient at C1N for the visualization in Figure A.4 at OP#5.
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Appendix A. Flow visualizations

Figure A.3: High-speed visualization of the cavitating vortex rope between two pressure peaks
at OP#2. The period of the oscillation is T = 0.711 s and the time increment between the
photos is ∆t = 37.4 ms.
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Figure A.4: High-speed visualization of the cavitating vortex rope between two pressure peaks
at OP#5. The period of the oscillation is T = 0.3 s and the time increment between the photos
is ∆t = 15.8 ms.

101





B List of operating points for reduced
scale model tests

Table B.1: Operating conditions for investigation on 1:16 reduced scale physical model.

OP# nED QED σ N E Fr QED /Q∗
ED

1

(-) (-) (-) (-) (min−1) (J kg−1) (-) (-)
BEP 0.288 0.200 0.11 800 262.5 8.7 1.000

1 0.288 0.262 0.11 650 173.6 7.1 1.310
2 0.273 0.262 0.10 505 116.0 5.8 1.310
3 0.288 0.253 atm. 800 262.6 8.7 1.265
4 0.273 0.250 atm. 505 115.2 5.8 1.250
5 0.288 0.260 0.11 800 262.7 8.7 1.300
6 0.275 0.268 0.10 505 114.8 5.8 1.340
7 0.273 0.263 0.11 505 116.1 5.8 1.340

1Q∗
ED

is the discharge coefficient at the best efficiency point (BEP)
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C List of operating points on the simpli-
fied micro-turbine test rig

Table C.1: Operating conditions for investigation on small scale micro-turbine test rig.

OP# nED QED σ N E Q/Qnom.
1

(-) (-) (-) (-) (min−1) (J kg−1) (-)
A 0.2145 0.2420 0.131 1’000 52.45 2.0

A-1 0.2147 0.2424 1.137 1’000 52.37 2.0
A-2 0.2148 0.2429 0.141 1’000 52.29 2.0
A-3 0.2150 0.2436 0.145 1’000 52.21 2.0
A-4 0.2152 0.2434 0.151 1’000 52.11 2.0
A-5 0.2152 0.2451 0.154 1’000 52.11 2.0
A-6 0.2156 0.2447 0.161 1’000 51.93 2.0
A-7 0.2158 0.2453 0.166 1’000 51.85 2.0
A-8 0.2159 0.2453 0.170 1’000 51.78 2.0
A-9 0.2161 0.2459 0.176 1’000 51.70 2.0

A-10 0.2161 0.2476 0.180 1’000 51.69 2.0
A-11 0.2163 0.2486 0.186 1’000 51.56 2.0
A-12 0.2167 0.2487 0.191 1’000 51.38 2.0
A-13 0.2168 0.2493 0.196 1’000 51.33 2.0
A-14 0.2168 0.2482 0.250 1’000 51.35 2.0
A-15 0.2166 0.2441 0.472 1’000 51.45 2.0

1The nominal flow rate Qnom. is defined to meet the no-swirl condition in the draft tube, corresponding to a
purely axial flow at the turbine outlet. It is 8.33 ·10−4 m3s−1 for a turbine speed of N = 1′000 rpm.
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D Hill chart of the reduced scale model
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Figure D.1: Hill chart of the reduced scale Francis turbine physical model on the EPFL test rig
PF3 as a function of nED and QED .
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