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Abstract

Motivation: The increasing availability of high-throughput datasets requires power-
ful methods to support the detection of signatures of selection in landscape genomics.
Results: We present an integrated approach to study signatures of local adaptation,
providing rapid processing of whole genome data and enabling assessment of spatial
association using molecular markers.
Availabilty: Samβada is an open source software written in C++ available at
http:lasig.epfl.ch/sambada (under the license GNU GPL 3). Compiled versions are
provided for Windows, Linux and MacOS X.
Contact: stephane.joost@epfl.ch, sylvie.stucki@a3.epfl.ch
Supplementary material is available online.
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1 Introduction
The time interval between Mitton et al.’s (1977) first attempt to correlate allelic frequen-
cies with environmental variables to look for signatures of selection in ponderosa pine,
and Joost et al.’s (2007; 2008) application of this concept allowing parallel processing
of large numbers of logistic regressions was otherwise marked by little developments.
During this period correlative approaches were used in parallel with population genetics
outlier-detection methods (e.g. Beaumont and Nichols, 1996; Vitalis et al., 2003; Foll and
Gaggiotti, 2008) as cross-validation (e.g. Jones et al., 2013; Henry and Russello, 2013)
to detect signatures of selection (see a review in Vitti et al., 2013). However, while such
methods are still in vogue (e.g. Colli et al., 2014), there has been a revival in the interest
of developing new statistical approaches for the emerging field of landscape genomics
(e.g. Coop et al., 2010; Günther and Coop, 2013; Frichot et al., 2013; Guillot et al.,
2014). For example, BayEnv (Günther and Coop, 2013) implements a Bayesian method
to compute correlations between allele frequencies and ecological variables taking into
account differences in sample sizes and shared demographic history. LFMM (Frichot
et al., 2013) estimates the influence of population structure on allele frequencies by in-
troducing unobserved variables as latent factors. Finally, SGLMM (Guillot et al., 2014)
uses a spatially-explicit computational framework including a random effect to quantify
the correlation between genotypes and environmental variables. Yet, important func-
tions are still lacking such as high performance computing capacity to process whole
genome data, and the integration of spatial statistics to support a distinction between
selection and demographic signals. Here we present the software Samβada, which aims
at filling these gaps offering an open source multivariate analysis framework to detect
signatures of selection. Samβada’s use is illustrated with a case study dedicated to the
detection of potentially adaptive loci in 813 Bos taurus and Bos indicus individuals in
Uganda genotyped for ∼ 40,000 SNP. Lastly, Samβada’s performance is described with
respect to other state of the art software to detect signatures of selection.

2 Methods
2.1 Samβada’s approach
Samβada uses logistic regressions to model the probability of presence of an allelic variant
for a polymorphic marker given the environmental conditions of the sampling locations
(Joost et al., 2007). Since each of the states of a given character is considered indepen-
dently (i.e. as binary presence/absence in each sample), Samβadacan handle many types
of molecular data (e.g. SNPs, indels, copy number variants and haplotypes), provided
the user formats the input. Specifically, biallelic SNPs are recoded as three distinct geno-
types. A maximum likelihood approach is used to fit the models (Dobson and Barnett,
2008).
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2.1.1 Univariate analysis

In the univariate case, each model for a given genotype is compared to a constant
model, where the probability of presence is the same at each location and is equal to the
frequency of the genotype. Significance is assessed with both log-likelihood ratio (G) and
Wald tests (Dobson and Barnett, 2008). Bonferroni correction is applied for multiple
comparisons. In order to avoid numerous computations of p-values, the significance
threshold α is converted to a minimum score threshold. G and Wald scores are used
to compare models rather than Akaike or Bayesian information criterion in order to
automate model selection.

2.2 Multivariate analysis
The model selection procedure is adapted to assess the significance of multivariate mod-
els. Both G and Wald tests refer to a null model to build the null hypothesis. The
current model can be compared to the constant model (the same as in the univariate
analysis) using multivariate χ2 statistics. While rejecting the null hypothesis in this
configuration indicates that at least one parameter is statistically significant, it does
not provide information about which parameter(s) is relevant to the model. Therefore
model selection is based on simpler models nested in the current one, and parameter
significance is determined with either a Wald test applied to each parameter separately
(except the constant parameter) or with G tests excluding a parameter at the time. For
the latter, if a model A has q parameters, we define the parents of A as the q models
with q − 1 parameters obtained by dropping one parameter from A. For instance, if A
models the occurrence of genotype Xi with 3 environmental variables E2, E3 and E5,

A = (Xi|E2, E3, E5),

then the parents of A are the three models

(Xi|E2, E3), (Xi|E2, E5) and (Xi|E3, E5).

The parent of A with the highest log-likelihood is used as the reference model for the
significance test. This way, the G score is the smallest possible among all parents, thus
if the null hypothesis is rejected, it will also be rejected by comparing A with each of its
parents. This method ensures that adding a new parameter leads to a better modelling
of the presence of the genotype. The overall procedure for fitting and selecting models for
each genotype begins with the computation of the constant model. Univariate models are
built and tested against the constant one, followed by testing bivariate models against
their parents, and so forth until the user-defined maximum number of parameters is
reached.

2.3 Spatial autocorrelation
Beyond detection of selection signatures, Samβada quantifies the level of spatial depen-
dence in the distribution of each genotype. This measure of spatial autocorrelation refers
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to similarities or differences among neighbouring individuals that cannot be explained
by chance. Assessing whether the geographic location has an effect on allele frequency
is especially important in landscape genomics since statistical models assume indepen-
dence between events. Thus if individuals with similar genotypes tend to concentrate
in space, spurious correlations may co-occur with specific values of environmental vari-
ables. On the other hand, spatial independence of data strengthens the confidence in
the detections.

Samβada measures the global spatial autocorrelation in the whole dataset with
Moran’s I, as well as the spatial dependency of each point with Local Indicators of
Spatial Association (LISA) (Moran, 1950; Anselin, 1995). In practice, LISAs are com-
puted by comparing the value of each point with the mean value of its neighbours as
defined by a specific weighting scheme based on a kernel function (see supplementary
material). Both a spatially fixed kernel type relying on distance only, and a varying
kernel type considering point density can be used. Samβada includes three fixed ker-
nels (moving window, Gaussian and bisquare) and a varying one (nearest neighbours).
The sum of LISAs on the whole dataset is proportional to Moran’s I (Anselin, 1995).
Significance assessment relies on an empirical distribution of the indices. For Moran’s
I, values (genotype occurrences) are permutated among the locations of individuals of
the whole dataset and a pseudo p-value is computed as the proportion of permutations
for which I is equal to - or more extreme (higher for a positive Moran’s I or lower for a
negative Moran’s I) - than the observed I. For LISA, the pseudo p-value is separately
computed for each point (individual), by keeping the individual of interest’s value fixed
and permuting its neighbouring points with the rest of the dataset.

3 Samβada implementation
Samβada is a standalone application written in C++. The application was developed
using the Scythe Statistical Library (Pemstein et al., 2011) for matrix computation and
probability distributions, which was also chosen for its straightforward application pro-
gramming interface (API). Samβada is distributed under an open source GNU General
Public License license in order to ease its use for research and teaching.

3.1 Desktop and High Performance Computing
Two complementary versions of the software were developed: a desktop option-rich pro-
gram well suited to small to medium-sized datasets, and a High Performance Computing
version dedicated to large datasets.

3.1.1 Desktop version (Samβada)

Samβada includes multivariate analysis and spatial autocorrelation. Many options are
provided to facilitate the formatting of the data and to customise the analysis. For
instance, the significance of models is assessed during the analysis and non-significant
associations can be discarded. Moreover models can be sorted according to their scores
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before writing the results in order to make it possible to directly be in a position to in-
terpret them. All results presented in this paper were processed with Samβada Desktop.

3.1.2 Parallel computing version (CoreSAM)

When processing large datasets, primary analysis usually focuses on univariate models.
Multivariate models and spatial autocorrelation may be considered as a second step, but
are too computationally intensive to be applied to the whole dataset. In order to speed-
up the process, CoreSAM is a light version of Samβada, written in C, which focuses
on univariate analysis. Compared with Samβada, fewer options are available, but the
computation is up to seven times faster.

Combining Samβada and CoreSAM, large datasets may be analysed by steps: Uni-
variate logistic models identify candidate loci exhibiting selection signatures. These loci
may be then investigated in the light of spatial autocorrelation measures and multi-
variate models. The former may point out whether the observed correlation is due to
similarities between neighbours, while the latter allows including the population struc-
ture, if any, in the model in order to assess whether the environmental variable provides
supplementary information on the marker frequency when taking the demography into
account.

3.2 Modules
Samβada includes several modules that enhance interfacing with other programs.

3.2.1 Geovisualization of spatial statistics

Samβada provides an option to save the spatial autocorrelation results as a shapefile
(.shp), a common format for storing vector information in Geographic Information Sys-
tems (GIS). This feature relies on the shplib open source library (shape-lib.maptools.org).

3.2.2 Recoding molecular data

Samβada is distributed with a utility for recoding molecular data into binary informa-
tion. Currently RecodePlink handles ped/map files, a format for SNP data used by
PLINK (Purcell et al., 2007).

3.2.3 Supervision

For very large molecular datasets, Samβada provides a module to share workload be-
tween computers. “Supervision” splits the input data in several files that can be pro-
cessed separately, even on heterogeneous computers. Lastly, Supervision merges the
results to provide the same output as if the whole dataset had been processed at once.
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4 Case study
4.1 Sampling design
This study addressed local adaptation in Ankole and Shorthorn zebu cattle in Uganda.
Sampling was designed to cover the whole country, including each eco-geographic region,
and to obtain a homogeneous distribution of individuals across the country. A regular
grid made of 51 cells of 70 x 70 km was produced to this end. On average, four farms
were visited in each cell and four unrelated individuals were selected from each farm, for
a total of 917 biological samples retrieved from 202 farms. Recorded information also
included the location of the farm, the name of the breed, a picture and morphological
information on each individual. These elements were stored in a database accessible
through a Web interface, enabling real-time monitoring of the sampling campaign.

4.2 Molecular data
Out of the 917 individuals, 813 samples were genotyped with a medium-density SNP chip
(54,609 SNPs, BovineSNP50 BeadChip, Illumina Inc., San Diego, CA). Only markers
located on the autosomal chromosomes were considered in the analyses. The dataset
was filtered with PLINK (Purcell et al., 2007) with a call rate set to 95% for both
individuals and SNPs, and a minimum allele frequency (MAF) set to 1%. The resulting
dataset contains 804 samples and 40,019 SNPs.

4.3 Environmental data
The geographical coordinates of the individuals sampled enabled the characterisation
of their habitat with the help of the WorldClim dataset containing monthly values of
precipitation, minimum, mean and maximum temperature as well as 19 derived vari-
ables, at 1km resolution (Hijmans et al., 2005). These environmental variables were
originally stored in four tiles (portions of map) which were pasted using the Geospa-
tial Data Abstraction Library (GDAL Development Team, 2013) and a customized
Python script. The topography is described by the 90m resolution SRTM3 (Shut-
tle Radar Topography Mission) digital elevation model (Farr et al., 2007). SAGA
GIS (www.saga-gis.org) was used to paste the 36 tiles covering the country and to
derive slope and orientation from the altitude. Longitude and latitude were also in-
cluded as a proxy of population structure. Finally the values of the 72 environmental
variables were extracted for each animal using the “Point Sampling Tool” extension
(http://hub.qgis.org/projects/pointsamplingtool) in QuantumGIS (www.qgis.org).

Considering all environmental variables in the computation of the multiple logistic
regressions would have provided a comprehensive analysis with a low risk of missing
detections. Nonetheless some variables are highly correlated; this implies dependence
between models and increases the variance of parameters in multivariate analyses. Thus
we used the Variance Inflation Factor (VIF) to control for multicollinearity (Dobson and
Barnett, 2008). A maximum VIF of 5 corresponds to a coefficient of correlation of 0.9
between pairs of variables. The number of variables was reduced iteratively by randomly
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removing one of the two most highly correlated variables until the maximum correlation
was lower than the threshold. This procedure led to a set of 23 environmental variables
that were used for univariate landscape genomic analysis (table S1). Bivariate models
were also processed with Samβada to assess the effect of a combination of predictors,
and to take the population structure into account. This information was constituted by
the coefficient of membership of individuals to the two main populations of Ugandan
cattle. As a single coefficient was sufficient to represent the origin of each individual, a
new variable “population structure” was defined as the coefficient of membership of each
individual to the population Ankole. This variable was added to the set of 23 variables
and the correlation-based variable selection method was reapplied to limit the VIF to
5. On this basis, fifteen environmental variables were considered for Samβada bivariate
analysis (table S1).

4.4 Population structure
Population structure was analysed with Admixture (Alexander et al., 2009), which es-
timates maximum likelihood of individual ancestries from multilocus SNP genotype
datasets. This approach assumes that samples descend from a predefined number of
ancestor populations that are mixing. Admixture estimates both the fraction of each
sample coming from each population and the marker frequencies in these populations.
The optimal number of populations is assessed by a k-fold cross-validation procedure.

4.5 Alternative methods to detect selection
For comparison purpose, three alternative approaches to Samβada were used to detect
signatures of selection in Ugandan cattle data. Two of these are correlative approaches
(BayEnv and Latent Factor Mixed Models, Coop et al., 2010; Frichot et al., 2013), while
the third is an outlier-detection population genetics approach (Beaumont and Nichols,
1996) included in Arlequin 3.5 (Excoffier and Lischer, 2010).

4.5.1 BayEnv

BayEnv uses a Bayesian approach to detect candidate SNPs under selection while ac-
counting for the inherent correlation in allele frequencies across populations due to shared
demographic history (Coop et al., 2010). BayEnv first uses a set of neutral loci to build a
null model robust to demographic history, against which an alternative model including
an environmental variable is compared. Markers exhibiting the highest Bayes factors
are potentially subject to selection. In this study the set of neutral loci was chosen at
random among loci identified as neutral by Samβada.

4.5.2 Latent Factor Mixed Models

LFMM is a Bayesian individual-based approach to detect selection in landscape genomics
(Frichot et al., 2013). Population structure is added into the model via unobserved
variables. Thus the significance of the association between genome and environment can
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be assessed while taking into account the effect of the population structure. The number
of latent factors (unobserved variables) must be specified for the analysis. Although this
number is related to the population structure, it is usually lower than the number of
populations (Frichot personal communication).

4.5.3 Outlier approach

Arlequin is a comprehensive software for population genetics analyses (Excoffier and Lis-
cher, 2010) that includes an outlier-based method to detect signatures of selection (Beau-
mont and Nichols, 1996). This approach assumes an island model, where individuals are
sampled in distinct populations that exchange migrants. Each locus is characterised by
the fixation index FST (Wright, 1949) and its heterozygosity. Neutral coalescent simu-
lations are used to estimate the distribution of FST conditional on heterozygosity. Loci
exhibiting extreme values of FST are candidate targets of selection.

5 Results
5.1 Population structure
The best partition of the dataset consisted of four populations, although the vast ma-
jority of the samples were allocated to two clusters (almost 96%) on the basis of the
ancestry coefficients (Figure S1). Mapping these coefficients revealed the two clusters
(340 and 431 individuals out of 804) occurred in the South-West and North-East of
Uganda respectively. Using pictures of sampled individuals, the first cluster was iden-
tified as Ankole cattle and the second one as zebu. The remaining two clusters (32
animals) possibly represent introgression from allochthonous gene pools.

5.2 Detection of selection signatures
Four approaches were applied to detect selection signatures. The statistical significance
threshold for Samβada, LFMM and Arlequin was set to 1% before applying Bonferroni
correction. For BayEnv, model selection was based on the distribution of Bayes Factors
(BF) for neutral loci (Coop et al., 2010). Results were analysed separately for each
environmental variable and models showing a BF higher than the 1st percentile of the
neutral distribution were detected as candidate loci. For BayEnv and Arlequin, samples
were classified into populations using a threshold of 0.85 for the higher admixture coeffi-
cient, leading to three clusters of 162 Ankole cattle, 8 zebus and 10 cattle from the third
population; samples from the fourth population were highly admixed and none satisfied
the condition.

Using univariate models, Samβada identified 2,499 SNPs (6.2 %) potentially subject
to selection, BayEnv 1977 (4.9 %), LFMM 280 (0.7 %) and Arlequin did not identify
any loci as significant. The loci detected by Samβada with the highest G scores were
compared among methods in table S2. Thirty-six loci were identified by the three cor-

8



relative methods and three of them were among the most significant models in Samβada
(Table S3). These three SNPs occur close to each other in chromosome five.

Samβada’s multivariate analysis identified 84 significant bivariate models, corre-
sponding to 29 loci. In Samβada’s framework, this means these models provided a
significantly more accurate estimation of the genotype’s frequency than their univari-
ate parents, while at least one of their parents was also significant. Among those,
three models that included the “population structure” variable also had a parent model
showing a significant association with this variable. Therefore, although the popula-
tion structure partly explains the distribution of these genotypes, adding an environ-
mental variable provided a significantly more accurate estimation of their distribution
(p ≤ 7.9 · 10−10 ⇔ G ≥ 37.8). These models correspond to three loci that were detected
by all correlative approaches.

5.3 Spatial autocorrelation
Global and local indicators of spatial autocorrelation were computed for two genotypes
with a weighting scheme based on the 20 nearest neighbours: ARS-BFGL-NGS-113888
(hereon ARS-113) (allele GG), which was detected by Samβada with the highest G score
and was also detected by BayEnv, was compared with Hapmap28985-BTA-73836 (here
on HM-28) (allele GG), which was detected by Samβada, BayEnv and LFMM. Logis-
tic models significantly associated both genotypes with isothermality, which measures
the stability of temperature during the year. Figure 1 shows local indices of spatial
autocorrelation for these 2 genotypes: on the one hand, ARS-113 (GG) was positively
autocorrelated for the majority of points and the indicator was significant for half of
them. The distribution of this marker shows spatial dependence, non-significant as-
sociations were found at the edge of Lake Victoria and in a corridor in the North of
the Lake with some occurrences in the West of Uganda. This widespread pattern of
spatial autocorrelation could originate from the underlying population structure, since
Ankole cattle are more common in the South-West while zebus are more common in the
North-East of the country. Thus the correlation detected by logistic regressions between
ARS-113 (GG) and environmental variables could be spurious and due to demographic
factors. On the other hand, the local indicators of spatial association of HM-28 (GG)
showed lower values in general and were only significant in the North-West of Uganda.
This particular region also showed the lowest values of isothermality in Uganda, i.e. a
high variability of temperatures. The low value of spatial autocorrelation for HM-28
(GG) implies that the distribution of this genotype was mostly independent from the
location and this supports a possible adaptive origin of the observed correlation between
HM-28 (GG) and isothermality with logistic models. This correlation between HM-28
(GG) and isothermality also appeared with bivariate LISAs, where the presence of the
genotype was compared to the mean value of isothermality among neighbouring points
(not shown).
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(a) ARS-113 (GG) (b) HM-28 (GG)

Figure 1: Local indicators of spatial association of markers ARS-113 (allele GG) and
HM-28 (allele GG). The weighting scheme is based on the first 20 nearest neighbours.
Red points tend to be similar to their neighbours while blue points differ from them.
Yellow points are independent from their neighbourhood. Small points indicate non-
significant values (p > 0.001). The map in the background represents the relief, the
darker the shade, the higher the altitude. Samples coming from the same farm have
been spread on a circle around their actual location.
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6 Discussion
The key features of Samβada are the multivariate modelling and the measure of spatial
autocorrelation. Both can help the interpretation of results in the case that the dataset
features population structure. Bivariate models may include the global ancestry coeffi-
cients provided by a preliminary analysis. This setup can detect which loci are correlated
with the environment while taking demography into account. Additionally, the intro-
duction of measurements of spatial autocorrelation into these analyses integrates spatial
statistics with landscape genomics. Contrary to most current and non-spatial models
(e.g. Frichot et al., 2013; Coop et al., 2010), this approach integrated in Samβada allows
the determination of whether the observed data reflects independent samples, a require-
ment of the underlying modelling assumptions of such methodologies. Measuring spatial
autocorrelation assesses whether the occurrence of a genotype is related to its frequency
in the surrounding locations. More specifically, local indices of spatial autocorrelation
allow the mapping of areas prone to spatial dependency. On the basis of the present
analysis, using spatial statistics in conjunction with correlative models may lower the
risk of false positives due to population structure in landscape genomics.

In the present study, Samβada detected the highest number of SNPs as potentially
subject to selection among the four approaches. However when comparing the positions
of these SNPs, 1,029 of them were less than 100,000 base pairs apart from another de-
tected locus, thus some of these detections might refer to the same signature of selection.
Samβada’s results partially match with those of BayEnv with 435 common SNPs (i.e.
22% of BayEnv’s detections). Concerning the third correlative approach, LFMM is more
conservative than Samβada but the correspondence is better since 154 loci (out of 280,
i.e. 55% of LFMM’s detections) are detected by both methods. Moreover, 25 SNPs de-
tected by LFMM only are less than 100,000 base pairs apart from a loci detected by
Samβada, potentially identifying the same selection signature. The order of detections
differed between the two methods, as the most significant loci detected by Samβada
are ignored by LFMM. Lastly, Arlequin’s best results involved 17 SNPs with p-values
lower than 10−4 (significance threshold: α = 2.5 · 10−7), out of which 2 were common
with Samβada and 16 were common with BayEnv. This result suggests that population-
based methods, whether using outliers or environmental correlations, tend to detect the
same selection signatures. On the one hand, Samβada’s detection rate may indicate
the occurrence of some false positives due to population structure; on the other hand,
the discrepancy between the results may indicate that the more conservative approaches
have some false negatives. Thus the actual number of loci subject to selection is likely to
lie in between. Comparing the results in the light of spatial dependence gives informa-
tion about the differences between Samβada’s and LFMM’s detections. Maps of local
spatial autocorrelation for ARS-113 (GG) and HM-28 (GG) illustrated a general trend:
LFMM discarded SNPs showing significant local spatial autocorrelation for a large pro-
portion of the sampling locations, while Samβada detected them. Thus measuring local
autocorrelation of candidate genotypes may help distinguishing between the effects of
local adaptation and those of population structure among Samβada detections.
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Regarding common detections, the three SNPs identified by Samβada when popu-
lation structure was included as a covariate were among the common detections of cor-
relatives approaches. Thus pre-existent knowledge on demography may be built on to
refine correlation-based detections of selection signatures. One possible approach could
consist of computing population structure and then including one variable summarising
this structure in the constant model used by Samβada. This way, only genotypes show-
ing a significant correlation with the environment while taking the population structure
into account would be detected. Concerning the biological function of the common de-
tections, these three loci are located on chromosome 5, near the gene POLR3B whose
mouse counterpart is involved in limiting infection by intracellular bacteria and DNA
viruses (UniProt, www.uniprot.org). Moreover, genotype HM-28 (GG) shows spatial
autocorrelation in the North-Western part of Uganda and this area overlaps with one of
those where the higher load of tse-tse fly (Glossina spp.) occur in the country (Abila
et al. (2008); MAAIF et al., 2010). Hence the risk of cattle trypanosomiasis is high in
this region and the detected mutations may be involved in parasite resistance.

The increasing availability of large molecular datasets raises challenges regarding
their analysis. Correlative approaches in landscape genomics enable fast detection of
candidate loci to local adaptation. However these methods must take into account the
effect of population structure (Frichot et al., 2013; Joost et al., 2013; De Mita et al., 2013).
Limited dispersal of individuals leads to spatial autocorrelation of marker frequencies,
which may cause spurious correlations with the environment. Samβada addresses the
first topic by detecting rapidly selection signatures and the second one by measuring
the level of spatial autocorrelation for candidate loci. The next methodological step in-
volves developing spatially-explicit models that directly include autocorrelation. Guillot
et al. (2014) provide such a model, however the current R-based implementation does
not enable whole-genome analysis. Alternatively Geographically Weighted Regressions
(GWR) measure the spatial stationarity of regression coefficients by fitting a distinct
model for each sampling location. The number of neighbouring points considered for
each sampling location is given by the weighting scheme. These models allow some “lo-
cal” coefficients to differ between sampling points while some “global” coefficients are
common to all points (Fotheringham et al., 2002; Joost et al., 2013). Thus GWR enables
building a null model where the constant term may vary in space and then refining it
by adding a global environmental effect for all locations. Comparing these two models
would enable an assessment of whether the global environmental effect is needed to de-
scribe the distribution of the genotype. The key advantage of allowing the constant term
to vary in space is to take spatial autocorrelation into account in the models. This way,
GWR allows an investigation of the spatial behaviour of loci showing selection signature
with standard logistic regressions and may help to distinguish between local adaptation
and population structure in landscape genomics. However GWR models require a fine-
tuning of the weighting scheme from the user, which restrains their application to very
large datasets.

Computation time is critical when processing large datasets. In this context, Samβada
is able to swiftly analyse high-density SNP-chips and variants from whole-genome se-
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quencing (e.g. the case study presented in here is analysed within 69 minutes for uni-
variates models alone and 8.5 hours for both univariate and bivariate models). When
considering single-process computations, Samβada is approximately 4.5 times quicker
than LFMM and 30 times than BayEnv. Both Samβada and LFMM enable parallelised
processing. Samβada’s processing speed, combined with its ability to analyse the spa-
tial autocorrelation in molecular data and to incorporate prior knowledge on population
structure, suits a wide range of applications, especially those involving whole genome
sequence data.
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High performance computation of landscape genomic
models integrating local indices of spatial association

Supplementary material

1 Spatial autocorrelation
Several indices are available for measuring the global spatial autocorrelation in a dataset. Samβada
uses the Moran’s I (Moran, 1950), defined as follows:

I = n

S0

∑n
i=1
∑n

j=1 wij(yi − ȳ)(yj − ȳ)∑n
i=1(yi − ȳ)2 = n

S0

∑n
i=1
∑n

j=1 wijzizj∑n
i=1 z2

i

(1)

avec
n number of sampling points;
wij weight of point j in the neighbourhood of i, defined by the spatial kernel;
S0 sum of all weights

(
S0 =

∑n
i=1
∑n

j=1 wij

)
;

yi, yj values for points i and j;
ȳ mean value;
zi, zj deviations from the mean.

Local indices of spatial association (LISA, Anselin, 1995) measure the local association be-
tween the value of a point and the neighbouring points. Samβada computes a local variant of
the Moran’s I for each point i:

Ii = n − 1∑n
i=1 z2

i


zi

n∑

j=1
wijzj


 (2)

(3)

LISAs are defined in such a way that their sum over all points is proportional to a global
measure of spatial autocorrelation, in this case the Moran’s I:

I = 1
n − 1

n∑

i=1
Ii (4)
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2 Environmental variables

Variable Description Data source
Used for
univariate
analysis

Used for
bivariate
analysis

alt_SRTM Altitude [m] SRTM3 X

aspect Orientation of the relief [◦] Derived from
SRTM3 X X

BIO2 Mean Diurnal Range

WorldClim

X X(Mean of monthly (max temp -
min temp))

BIO3 Isothermality (BIO2/BIO7) (*
100) X X

BIO7 Temperature Annual Range
(max temp - min temp) X

BIO9 Mean Temperature of Driest
Quarter X

BIO12 Annual Precipitation X X

BIO15 Precipitation Seasonality
(Coefficient of Variation) X X

BIO18 Precipitation of Warmest
Quarter X X

latitude Latitude Sampling
measurements

X X
longitude Longitude X X
prec2 Precipitation in February

WorldClim

X
prec3 Precipitation in March X
prec4 Precipitation in April X X
prec5 Precipitation in May X X
prec6 Precipitation in June X
prec7 Precipitation in July X
prec9 Precipitation in September X
prec10 Precipitation in October X X
prec11 Precipitation in November X X

slope Slope of the relief [%] Derived from
SRTM3 X X

tmin10 Minimal temperature in October WorldClim X X
tmax10 Maximal temperature in October X

Ankole Coefficient of ancestry to the
population Ankole

Analysis with
Admixture X

Number of variables 23 15

Table S1: Environmental variables used to detect selection signatures with correlative ap-
proaches. Univariate analyses were performed with Sambada, BayEnv and LFMM and bivariate
analyses with Sambada
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3 Population structure

Figure S1: Population structure computed with Admixture (Alexander et al., 2009). Individuals
are gathered together by populations, labeled horizontally. The assignation is based on the
highest membership coefficient Qmax of the sample. Inside each population, individuals are
ranked by increasing (or decreasing) value of Qmax.

4 Computation times

41,215 SNPs 634,849 SNPs
804 samples 102 samples

Samβada 1.2 2.9
Samβada biv. 8.7 18.4
BayEnv 41.3 62.,2
LFMM 3.2 16.0
LFMM (mono) 6.1 58.1
Arlequin ? ?

Table S2: Comparison of computation times among methods. The datasets used in this case
include chromosome X. The first dataset refers to the data used in the article (SNPs and indi-
vidual call rates=5%, MAF=1%, including chr. X). The second dataset refers to 102 samples of
Ugandan cattle that were chosen among the 917 samples to be genotyped with a high-density
SNP chip (BovineHD, Illumina Inc; SNPs and ind. call rates=5%, MAF=5%). Durations are
expressed in hours. “LFMM (mono)” shows the durations if using a single thread. Arlequin was
run on another computer, thus its performance is not comparable.
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5 Comparison of detections

Loci Chr. Pos. [Mbp] Sa
m
β

ad
a

B
ay

En
v

LF
M

M

A
rle

qu
in

Detections
1 ARS-BFGL-NGS-113888 5 48.32 1 1 0 0 2
2 Hapmap41074-BTA-73520 5 48.35 1 1 0 0 2
3 Hapmap41762-BTA-117570 5 18.94 1 1 0 0 2
4 ARS-BFGL-NGS-46098 20 2.95 1 1 0 0 2
5 Hapmap41813-BTA-27442 5 49.04 1 1 0 0 2
6 BTA-73516-no-rs 5 48.75 1 1 0 0 2
7 Hapmap28985-BTA-73836 5 70.34 1 1 1 0 3
8 Hapmap31863-BTA-27454 5 48.99 1 1 0 0 2
9 ARS-BFGL-NGS-106520 5 70.20 1 1 1 0 3

10 BTA-73842-no-rs 5 70.18 1 1 1 0 3
11 Hapmap50523-BTA-98407 5 46.74 1 1 0 0 2
12 BTB-01400776 20 2.70 1 1 0 0 2
13 Hapmap23956-BTA-36867 15 47.20 1 1 0 0 2
14 ARS-BFGL-NGS-10586 2 128.64 1 1 0 0 2
15 ARS-BFGL-NGS-43694 5 49.65 1 1 0 0 2
16 BTA-122374-no-rs 14 16.44 1 1 0 0 2
17 BTB-01356178 20 2.49 1 1 0 0 2
18 ARS-BFGL-NGS-94862 11 103.53 1 1 1 0 3
19 BTA-108359-no-rs 14 16.31 1 0 0 0 1
20 ARS-BFGL-NGS-15960 5 28.02 1 1 0 0 2
21 ARS-BFGL-NGS-116294 2 128.58 1 1 0 0 2
22 INRA-566 13 57.94 1 0 1 0 2
23 BTA-49720-no-rs 5 69.66 1 1 1 0 3
24 ARS-BFGL-NGS-56387 13 24.36 1 1 0 0 2
25 BTA-28185-no-rs 26 22.78 1 0 0 0 1

Table S3: List of SNPs detected by Samβada corresponding to the models with the highest G
scores. Loci are identified by their name, their chromosome and their position in million base
pairs. The following columns show which method detected them and the last one counts these
detections. Loci in bold type are the commons discoveries of Samβada, LFMM and BayEnv.
Local indices of spatial autocorrelation were computed for SNPs on lines 1 and 7.
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