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nakic@math.hr

and

Ninoslav Truhar

Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
ntruhar@mathos.hr

[Received on 21 June 2011; revised on 22 March 2013]

We consider the distance from a (square or rectangular) matrix pencil to the nearest matrix pencil in
2-norm that has a set of specified eigenvalues. We derive a singular value optimization characterization
for this problem and illustrate its usefulness for two applications. First, the characterization yields a sin-
gular value formula for determining the nearest pencil whose eigenvalues lie in a specified region in
the complex plane. For instance, this enables the numerical computation of the nearest stable descriptor
system in control theory. Second, the characterization partially solves the problem posed in Boutry et al.
(2005, SIAM J. Matrix Anal. Appl., 27, 582–601) regarding the distance from a general rectangular pencil
to the nearest pencil with a complete set of eigenvalues. The involved singular value optimization prob-
lems are solved by means of Broyden-Fletcher-Goldfarb-Shanno and Lipschitz-based global optimization
algorithms.
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1. Introduction

Consider a matrix pencil A − λB, where A, B ∈ C
n×m with n � m. Then, a scalar ρ ∈ C is called an

eigenvalue of the pencil if there exists a nonzero vector v ∈ C
n such that

(A − ρB)v = 0. (1.1)

The vector v is said to be a (right) eigenvector associated with ρ and the pair (ρ, v) is said to be an
eigenpair of the pencil.

In the square case m = n, the eigenvalues are simply given by the roots of the characteristic poly-
nomial det(A − λB) and there are usually n eigenvalues, counting multiplicities. The situation is quite
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the opposite for n > m. Generically, a rectangular pencil A − λB has no eigenvalues at all. To see this,
note that a necessary condition for the satisfaction of (1.1) is that n!/((n − m)!m!) polynomials, each
corresponding to the determinant of a pencil obtained by choosing m rows of A − λB out of n rows,
must have a common root. Also, the generic Kronecker canonical form (KCF) of a rectangular matrix
pencil only consists of singular blocks (see Demmel & Edelman, 1995). Hence, (1.1) is an ill-posed
problem and requires reformulation before admitting numerical treatment.

To motivate our reformulation of (1.1), we describe a typical situation giving rise to rectangular
matrix pencils. Let M ∈ C

n×n and suppose that the columns of U ∈ C
n×m form an orthonormal basis

for a subspace W ⊂ C
n known to contain approximations to some eigenvectors of M . Then, it is quite

natural to consider the n × m matrix pencil

A − λB := MU − λU . (1.2)

The approximations contained in W and the approximate eigenpairs of A − λB are closely connected to
each other. In one direction, suppose that (ρ, x) with x ∈W satisfies

(M + ΔM − ρI)x = 0 (1.3)

for some (small) perturbation ΔM . Then there is v ∈ C
n such that x = Uv. Moreover, we have

(A + ΔA − ρB)v = 0 (1.4)

with ΔA := ΔM · U satisfying ‖ΔA‖2 � ‖ΔM‖2. In the other direction, the relation (1.4) with an arbi-
trary ΔA implies (1.3) with ΔM = ΔA · U∗ satisfying ‖ΔM‖2 = ‖ΔA‖2. Unless M is normal, the first
part of this equivalence between approximate eigenpairs of M and A − λB does not hold when the latter
is replaced by the more common compression U∗MU . This observation has led to the use of rectangular
matrix pencils in, e.g., large-scale pseudospectra computation (see Toh & Trefethen, 1996) and Ritz
vector extraction (see Jia & Stewart, 2001).

This paper is concerned with determining the 2-norm distance from the pencil A − λB to the nearest
pencil (A + ΔA) − λB with a subset of specified eigenvalues. To be precise, let S = {λ1, . . . , λk} be a
set of distinct complex numbers and let r be a positive integer. Let mj(A + ΔA, B) denote the (possibly
zero) algebraic multiplicity1 of λj as an eigenvalue of (A + ΔA) − λB. Then, we consider the distance

inf

⎧⎨
⎩‖ΔA‖2 :

k∑
j=1

mj(A + ΔA, B) � r

⎫⎬
⎭ . (1.5)

1.1 Rank-deficient B

Throughout the paper, we allow B to be rank deficient. However, we require that rank(B) � r. Otherwise,
if rank(B) < r, the pencil (A + ΔA) − λB has fewer than r finite eigenvalues for all ΔA and, conse-
quently, the distance in (1.5) is ill posed. As the following example demonstrates, another source of ill-
posedness is the existence of a right singular block in the KCF of A − λB or nearby pencils (see Section 2
on the KCF).

1 For a rectangular matrix pencil, the algebraic multiplicity of λj is defined as the sum of the sizes of associated regular Jordan
blocks in the KCF; see also Section 2. By definition, this number is zero if λj is actually not an eigenvalue of the pencil.
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Example 1.1 Consider the matrix pencil

A − λB =
⎡
⎣2 0 0

0 2 0
0 0 1

⎤
⎦− λ

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ ,

which has the eigenvalues 2, 2, ∞. Let S = {0} and r = 2, meaning that we aim at prescribing a multiple
eigenvalue zero. In particular, A + ΔA needs to be singular, implying that ‖ΔA‖2 � 1. However, the
perturbation

ΔA =
⎡
⎣0 0 0

0 0 0
0 0 −1

⎤
⎦

has norm 1 and results in a singular pencil, that is, det(A + ΔA − λB) ≡ 0. Moreover, by an arbitrarily
small additional perturbation, any two finite eigenvalues can be prescribed to the pencil. For example,
with

Δ̃ =
⎡
⎣ 0 0 (λ1 − 2)ε

(λ2 − 2)ε 0 −(λ2 − 2)ε2

−ε2 ε ε3

⎤
⎦ ,

the pencil det(A + ΔA + Δ̃ − λB) ≡ 0 has eigenvalues {λ1, λ2} for any λ1, λ2 ∈ C, no matter how small
ε > 0 is chosen. As discussed by De Terán & Kressner, in a paper in preparation, this observation holds
in a more general setting: for any pencil A − λB having a right singular block, there is an arbitrarily
small perturbation prescribing up to rank(B) eigenvalues at any given locations.

Motivated by the observations in the example above, it appears to be more natural to replace (1.5)
by the distance

τr(S) := inf

⎧⎨
⎩‖ΔA‖2 :

k∑
j=1

mj(A + ΔA, B) � r or A + ΔA − λB has a right singular block

⎫⎬
⎭ . (1.6)

1.2 Relation to existing results

For k = r = 1, it is easy to see that

τ1({λ1}) = σm(A − λ1B),

where, here and in the following, σk denotes the kth largest singular value of a matrix. (The particular
form of this problem with k = r = 1, and when A and B are perturbed simultaneously, is also studied for
instance in Byers & Nichols, 1993.) One of the main contributions of this paper is a derivation of a sim-
ilar singular value optimization characterization for general k and r, which facilitates the computation
of τr(S). Very little seems to be known in this direction. Existing results concern the square matrix case
(m = n and B = I); see the works by Malyshev (1999) for k = 1 and r = 2 as well as Lippert (2005),
Gracia (2005) for k = 2 and r = 2, Ikramov & Nazari (2003) for k = 1 and r = 3 and Mengi (2011) for
k = 1 and arbitrary r. Some attempts have also been made by Lippert (2010) for arbitrary k and r and
for the square matrix case, and by Papathanasiou & Psarrakos (2008) for k = 1 and r = 2 and for the
square matrix polynomial case.
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Another class of applications arises in (robust) control theory, where it is desirable to move some or
all eigenvalues into a certain region in the complex plane by perturbing a dynamical system. With the
region of interest denoted by Ω ⊆ C, the results in this paper are an important step towards rendering
the numerical computation of the distance

inf{‖ΔA‖2 : (A + ΔA) − λB has r finite eigenvalues in Ω}

feasible. Here and in the following, multiple eigenvalues are counted according to their algebraic mul-
tiplicities. For r = 1 and Ω equal to C

+ (right-half complex plane), the quantity above amounts to the
distance to instability, also called stability radius. In Van Loan (1984), a singular value characterization
was provided for the distance to instability, forming the basis of a number of algorithms for its com-
putation; see, e.g., Boyd & Balakrishnan (1990) and Byers (1988). In our more general setting, we can
also address the converse problem: given an unstable matrix pencil A − λB, determine the closest stable
pencil. Note that this problem is intrinsically harder than the distance to instability. For the distance to
instability it suffices to perturb the system so that one of the eigenvalues is in the undesired region. On
the other hand, to make an unstable system stable one needs to perturb the system so that all eigenvalues
lie in the region of stability.

An important special case, Ω = C, leads to

inf{‖ΔA‖2 : (A + ΔA) − λB has r finite eigenvalues}.

For r = 1 and particular choices of rectangular A and B, this distance corresponds to the distance to
uncontrollability for a matrix pair (see Eising, 1984; Burke et al., 2005). For general r, a variant of this
distance was suggested in Boutry et al. (2005) to solve an inverse signal processing problem approxi-
mately. More specifically, this problem is concerned with the identification of the shape of a region in
the complex plane given the moments over the region. If the region is assumed to be a polygon, then its
vertices can be posed as the eigenvalues of a rectangular pencil A − λB, where A and B are not exact
due to measurement errors, causing the pencil to have no eigenvalues (see Elad et al., 2004 for details).
Then the authors attempt to locate nearby pencils with a complete set of eigenvalues. In this work, we
allow perturbations to A only, but not to B. This restriction is only justified if λ does not become too
large in absolute value. We consider our results and technique as significant steps towards the complete
solution of the problem posed in Elad et al. (2004).

1.3 Outline

In the next section, we review the KCF for the pencil A − λB. In Section 3, we derive a rank character-
ization for the condition that

∑k
j=1 mj(A, B) � r or A − λB has a right singular block. This is a crucial

prerequisite for deriving the singular value characterizations of τr(S) in Section 4. In Section 5 we dis-
cuss several corollaries, in particular for the distances to pencils with eigenvalues in a prescribed region
Ω and to rectangular pencils with a prescribed number of eigenvalues, of the singular value charac-
terization for τr(S). The singular value characterizations are deduced under certain mild multiplicity
and linear independence assumptions. Although we expect these assumptions to be satisfied for exam-
ples of practical interest, they may fail to hold, as demonstrated by an academic example in Section 6.
Interestingly, the singular value characterization remains true for this example despite the fact that our
derivation no longer applies. Finally, a numerical approach to solving the involved singular value opti-
mization problems is briefly outlined in Section 7 and applied to a number of settings in Section 8.
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The main point of the developed numerical method and the experiments is to demonstrate that the sin-
gular value characterizations facilitate the computation of τr(S) and related distances. We do not claim
that the method outlined here is as efficient as it could be, neither do we claim that it is reliable.

2. Kronecker canonical form

Given a matrix pencil A − λB ∈ C
n×m, the KCF (see Gantmacher, 1959) states the existence of invertible

matrices P ∈ C
n×n and Q ∈ C

m×m such that the transformed pencil P(A − λB)Q is block diagonal with
each diagonal block taking the form

Jp(α) − λIp or Ip − λJp(0) or Fp − λGp or FT
p − λGT

p ,

where

Jp(α) =

⎡
⎢⎢⎢⎢⎣

α 1

α
. . .
. . . 1

α

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
p×p

, Fp =

⎡
⎢⎣1 0

. . .
. . .
1 0

⎤
⎥⎦

︸ ︷︷ ︸
p×(p+1)

, Gp =

⎡
⎢⎣0 1

. . .
. . .
0 1

⎤
⎥⎦

︸ ︷︷ ︸
p×(p+1)

, (2.1)

for some α ∈ C. Regular blocks take the form Jp(α) − λIp or Ip − λJp(0), with p � 1, corresponding to
finite or infinite eigenvalues, respectively. The blocks Fp − λGp and FT

p − λGT
p are called right and left

singular blocks, respectively, with p � 0 corresponding to a so-called Kronecker index.

3. Rank characterization for pencils with specified eigenvalues

In this section, we derive a rank characterization for the satisfaction of the condition

k∑
j=1

mj(A, B) � r or (A + ΔA) − λB has a right singular block, (3.1)

where mj(A, B) denotes the algebraic multiplicity of the eigenvalue λj. The following classical result
(Gantmacher, 1959, Theorem 1, p. 219) concerning the dimension of the solution space for a Sylvester
equation will play a central role.

Theorem 3.1 Let F ∈ C
m×m and G ∈ C

r×r. Then the dimension of the solution space for the Sylvester
equation

FX − XG = 0

only depends on the Jordan canonical forms of the matrices F and G. Specifically, suppose that
μ1, . . . , μ
 are the common eigenvalues of F and G. Let cj,1, . . . , cj,
j and pj,1, . . . , pj,
̃j

denote the sizes
of the Jordan blocks of F and G associated with the eigenvalue μj, respectively. Then

dim{X ∈ C
m×r : FX − XG = 0} =


∑
j=1


j∑
i=1


̃j∑
q=1

min(cj,i, pj,q).
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For our purposes, we need to extend the result of Theorem 3.1 to a generalized Sylvester equation
of the form

AX − BXC = 0, (3.2)

where C is a matrix with the desired set of eigenvalues S and with the correct algebraic multiplicities.
For this type of generalized Sylvester equation, the extension is straightforward.2 For the moment, let
us suppose that A − λB has no right singular block. Then, the KCF can be partitioned as

P(A − λB)Q = diag(AF − λI, I − λAI , AS − λBS), (3.3)

such that

• AF − λI contains all regular blocks corresponding to finite eigenvalues;

• I − λAI contains all regular blocks corresponding to infinite eigenvalues;

• AS−λBS contains all left singular blocks of the form FT
p − λGT

p .

Note that the finite eigenvalues of A − λB are equal to the eigenvalues of AF with the same algebraic
and geometric multiplicities.

Using (3.3), X is a solution of the generalized Sylvester equation (3.2) if and only if

(PAQ)(Q−1X ) − (PBQ)(Q−1X )C = 0 ⇐⇒ diag(AF , I, AS)Y − diag(I, AI , BS)YC = 0,

where Y = Q−1X . Consequently, the dimension of the solution space for (3.2) is the sum of the solution
space dimensions of the equations

AFY1 − Y1C = 0 and Y2 − AIY2C = 0 and ASY3 − BSY3C = 0.

Results by Demmel & Edelman (1995) show that the last two equations only admit the trivial solutions
Y2 = 0 and Y3 = 0. To summarize, the solution spaces of the generalized Sylvester equation (3.2) and
the (standard) Sylvester equation

AFX − XC = 0

have the same dimension. Applying Theorem 3.1, we therefore obtain the following result.

Theorem 3.2 Let A, B ∈ C
n×m with n � m be such that the KCF of A − λB does not contain right

singular blocks. Then the dimension of the solution space for the generalized Sylvester equation

AX − BXC = 0

only depends on the KCF of A − λB and the Jordan canonical form of C ∈ C
r×r. Specifically, suppose

that μ1, . . . , μ
 are the common eigenvalues of A − λB and C. Let cj,1, . . . , cj,
j and pj,1, . . . , pj,
̃j
denote

the sizes of the Jordan blocks of A − λB and C associated with the eigenvalue μj, respectively. Then

dim{X ∈ C
m×r : AX − BXC = 0} =


∑
j=1


j∑
i=1


̃j∑
q=1

min(cj,i, pj,q).

2 Košir (1996) provides an extension of Theorem 3.1 to a more general setting.
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We now apply the result of Theorem 3.2 to the generalized Sylvester equation

AX − BXC(μ, Γ ) = 0, (3.4)

where C(μ, Γ ) takes the form

C(μ, Γ ) =

⎡
⎢⎢⎢⎢⎣

μ1 −γ21 . . . −γr1

0 μ2
. . .

...
. . . −γr,r−1

0 μr

⎤
⎥⎥⎥⎥⎦ (3.5)

with

μ = [μ1 μ2 · · · μr]
T ∈ S

r, Γ = [γ21 γ31 · · · γr,r−1]T ∈ C
r(r−1)/2.

As explained in the introduction, the set S = {λ1, . . . , λk} contains the desired approximate eigenvalues.
Suppose that λj occurs pj times in μ. Furthermore, as in Theorem 3.2, denote the sizes of the Jordan
blocks of A − λB and C(μ, Γ ) associated with the scalar λj by cj,1, . . . , cj,
j and pj,1, . . . , pj,
̃j

, respec-

tively. Note that pj =
∑
̃j

q=1 pj,q. In fact, for generic values of Γ the matrix C(μ, Γ ) has at most one
Jordan block of size pj associated with λj for j = 1, . . . , k; see Demmel & Edelman (1995). In the fol-
lowing, we denote this set of generic values for Γ by G(μ). By definition, this set depends on μ but not
on A − λB.

First, suppose that the inequality in (3.1) holds. If we choose μ such that
∑k

j=1 pj = r and pj �
mj(A, B) =∑
j

i=1 cj,i, then Theorem 3.2 implies that the dimension of the solution space for the general-
ized Sylvester equation (3.4) is

k∑
j=1


j∑
i=1


̃j∑
q=1

min(cj,i, pj,q) �
k∑

j=1


j∑
i=1

min(cj,i, pj) �
k∑

j=1

min(mj(A, B), pj) =
k∑

j=1

pj = r.

In other words, there exists a vector μ with components from S such that the dimension of the solution
space of the Sylvester equation (3.4) is at least r.

Now, on the contrary, suppose that the inequality in (3.1) does not hold. Then, for generic values
Γ ∈ G(μ), the solution space dimension of (3.4) is

k∑
j=1


j∑
i=1

min(cj,i, pj) �
k∑

j=1


j∑
i=1

cj,i =
k∑

j=1

mj(A, B) < r.

In other words, no matter how μ is formed from S, the dimension is always less than r for Γ ∈ G(μ).
This leads to the following result.

Theorem 3.3 Let A, B ∈ C
n×m with n � m. Consider a set S = {λ1, . . . , λk} of distinct complex scalars,

and a positive integer r. Then the following two statements are equivalent:

(1)
∑k

j=1 mj(A, B) � r, where mj(A, B) is the algebraic multiplicity of λj as an eigenvalue of A − λB,
or A − λB has a right singular block;
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(2) there exists μ ∈ S
r such that

dim{X ∈ C
m×r : AX − BXC(μ, Γ ) = 0} � r

for all Γ ∈ G(μ), where C(μ, Γ ) is defined as in (3.5).

Proof. If the KCF of A − λB does not contain right singular blocks, then the result follows from the
discussion above. Now, suppose that the KCF of A − λB contains a right singular block Fp − λGp ∈
R

p×(p+1) for some p � 0. By Košir (1996, Section 4), the generalized Sylvester equation FpY −
GpXC(μ, Γ ) = 0 has a solution space of dimension r. This implies that also the solution space of
AX − BXC(μ, Γ ) = 0 has dimension at least r. This shows that (1) implies (2). The other direction
trivially holds. �

To obtain a matrix formulation of Theorem 3.3, we use the Kronecker product ⊗ to vectorize the
generalized Sylvester equation (3.4) and obtain(

(I ⊗ A) − (CT (μ, Γ ) ⊗ B)
)=L(μ, Γ , A, B)vec(X ) = 0,

with the lower block-triangular matrix

L(μ, Γ , A, B) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

A − μ1B
γ21B A − μ2B

...
. . .

. . .
...

. . . A − μr−1B
γr1B γr2B · · · γr,r−1B A − μrB

⎤
⎥⎥⎥⎥⎥⎥⎦ . (3.6)

The operator vec stacks the columns of a matrix into one long vector. Clearly, the solution space of the
generalized Sylvester equation and the null space of L(μ, Γ , A, B) have the same dimension. Conse-
quently, Theorem 3.3 can be rephrased as follows.

Corollary 3.4 Under the assumptions of Theorem 3.3, the following two statements are equivalent:

(1)
∑k

j=1 mj(A, B) � r or A − λB has a right singular block;

(2) there exists μ ∈ S
r such that rank(L(μ, Γ , A, B)) � mr − r for all Γ ∈ G(μ).

4. A singular value characterization for the nearest pencil with specified eigenvalues

As before, let S = {λ1, . . . , λk} be a set of distinct complex scalars and let r be a positive integer. The
purpose of this section is to derive a singular value optimization characterization for the distance τr(S)

defined in (1.6). Our technique is highly inspired by the techniques in Mengi (2011, 2012) and in fact
the main result of this section generalizes the singular value optimization characterizations from these
works. We start by applying the following elementary result (Golub & Van Loan, 1996, Theorem 2.5.3,
p. 72) to the rank characterization derived in the previous section.

Lemma 4.1 Consider C ∈ C

×q and a positive integer p < min(
, q). Then

inf{‖ΔC‖2 : rank(C + ΔC) � p} = σp+1(C).
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Defining
Pr(μ) := inf{‖ΔA‖2 : rank(L(μ, Γ , A + ΔA, B)) � mr − r} (4.1)

for some Γ ∈ G(μ), Corollary 3.4 implies

τr(S) = inf
μ∈Sr

Pr(μ),

independent of the choice of Γ . By Lemma 4.1, it holds that

Pr(μ) = inf{‖ΔA‖2 : rank(L(μ, Γ , A + ΔA, B)) � mr − r}
� σmr−r+1(L(μ, Γ , A, B)),

using the fact that A enters L linearly. Note that this inequality in general is not an equality due to
the fact that the allowable perturbations to L(μ, Γ , A, B) in the definition of Pr(μ) are not arbitrary.
On the other hand, the inequality holds for all Γ ∈ G(μ) and hence—by continuity of the singular value
σmr−r+1(·) with respect to Γ —we obtain the lower bound

Pr(μ) � sup
Γ ∈Cr(r−1)/2

σmr−r+1(L(μ, Γ , A, B)) =: κr(μ). (4.2)

For m = n, it can be shown that σmr−r+1(L(μ, Γ , A, B)) tends to zero ‖Γ ‖ :=∑ |γij|2 → ∞, provided
that rank(B) � r; see Appendix for details. From this fact and the continuity of singular values, it follows
that the supremum is attained at some Γ∗ in the square case:

κr(μ) = σmr−r+1(L(μ, Γ∗, A, B)).

In the rectangular case, numerical experiments indicate that the supremum is still attained if rank(B) � r,
but a formal proof does not appear to be easy. Moreover, it is not clear whether the supremum is attained
at a unique Γ∗ or not. However, as we will show in the next two subsections, any local extremum of the
singular value function is a global maximizer under mild assumptions. (To be precise, the satisfaction
of the multiplicity and linear independence qualifications at a local extremum guarantees that the local
extremum is a global maximizer; see Definitions 4.2 and 4.3 for multiplicity and linear independence
qualifications.)

Throughout the rest of this section we assume that the supremum is attained at some Γ∗ and that
Γ∗ ∈ G(μ). The latter assumption will be removed later, in Section 4.3.

We will establish the reverse inequality Pr(μ) � κr(μ) by constructing an optimal perturbation ΔA∗
such that

(i) ‖ΔA∗‖2 = κr(μ) and

(ii) rank(L(μ, Γ∗, A + ΔA∗, B)) � mr − r.

Let us consider the left and right singular vectors U ∈ C
rn and V ∈ C

rm satisfying the relations

L(μ, Γ∗, A, B) V = κr(μ)U , U∗L(μ, Γ∗, A, B) = V ∗κr(μ), ‖U‖2 = ‖V‖2 = 1. (4.3)

The aim of the next two subsections is to show that the perturbation

ΔA∗ := −κr(μ)UV+, (4.4)
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with U ∈ C
n×r and V ∈ C

m×r such that vec(U) = U and vec(V) = V , satisfies properties (i) and (ii).
Here, V+ denotes the Moore–Penrose pseudoinverse of V . The optimality of ΔA∗ will be established
under the following additional assumptions.

Definition 4.2 (Multiplicity qualification) We say that the multiplicity qualification holds at (μ, Γ )

for the pencil A − λB if the multiplicity of the singular value σmr−r+1(L(μ, Γ , A, B)) is 1.

Definition 4.3 (Linear independence qualification) We say that the linear independence qualifica-
tion holds at (μ, Γ ) for the pencil A − λB if there is a right singular vector V associated with
σmr−r+1(L(μ, Γ , A, B)) such that V ∈ C

m×r, with vec(V) = V , has full column rank.

4.1 The 2-norm of the optimal perturbation

Throughout this section we assume that the multiplicity qualification holds at the optimal (μ, Γ∗) for the
pencil A − λB. Moreover, we can restrict ourselves to the case κr(μ) �= 0, as the optimal perturbation is
trivially given by ΔA∗ = 0 when κr(μ) = 0 .

Let A(γ ) be a matrix-valued function depending analytically on a parameter γ ∈ R. If the multiplic-
ity of σj(A(γ∗)) is 1 and σj(A(γ∗)) �= 0, then σj(A(γ )) is analytic at γ = γ∗, with the derivative

∂σj(A(γ∗))
∂γ

= Re

(
u∗

j

∂A(γ∗)
∂γ

vj

)
, (4.5)

where uj and vj denote a consistent pair of unit left and right singular vectors associated with σj(A(γ∗));
see, e.g., Rellich (1936), Bunse-Gerstner et al. (1991) and Malyshev (1999).

Let us now define

f (Γ ) := σnr−r+1(L(μ, Γ , A, B)),

where we view f as a mapping R
r(r−1) → R by decomposing each complex parameter γj
 contained in

Γ into its real and imaginary parts �γj
 and �γj
. By (4.5), we have

∂f (Γ∗)
∂�γj


= Re(U∗
j BV
),

∂f (Γ∗)
∂�γj


= Re(i U∗
j BV
) = −Im(U∗

j BV
),

where Uj ∈ C
n and V
 ∈ C

m denote the jth and 
th block components of U and V , respectively. Further-
more, the fact that Γ∗ is a global maximizer of f implies that both derivatives are zero. Consequently,
we obtain the following result.

Lemma 4.4 Suppose that the multiplicity qualification holds at (μ, Γ∗) for the pencil A − λB and
κr(μ) �= 0. Then, U∗

j BV
 = 0 for all j = 2, . . . , r and 
 = 1, . . . , j − 1.

Now, by exploiting Lemma 4.4 we show U∗U = V∗V . Geometrically, this means that the angle
between Ui and Uj is identical with the angle between Vi and Vj.
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Lemma 4.5 Under the assumptions of Lemma 4.4 it holds that U∗U = V∗V .

Proof. Expressing the first two equalities in the singular value characterization (4.3) in matrix form
yields the generalized Sylvester equations

AV − BVC(μ, Γ∗) = κr(μ)U

and
U∗A − C(μ, Γ∗)U∗B = κr(μ)V∗.

By multiplying the first equation with U∗ from the left-hand side, multiplying the second equation with
V from the right-hand side and then subtracting the second equation from the first, we obtain

κr(μ)(U∗U − V∗V) = C(μ, Γ∗)U∗BV − U∗BVC(μ, Γ∗). (4.6)

Lemma 4.4 implies that U∗BV is upper triangular. Since C(μ, Γ∗) is also upper triangular, the right-hand
side in (4.6) is strictly upper triangular. But the left-hand side in (4.6) is Hermitian, implying that the
right-hand side is indeed zero, which—together with κr(μ) �= 0—completes the proof. �

The result of Lemma 4.5 implies ‖UV+‖2 = 1. A formal proof of this implication can be found
in Malyshev (1999, Lemma 2) and Mengi (2011, Theorem 2.5). Indeed, the equality ‖UV+‖2 = 1 can
be directly deduced from ‖UV+x‖2 = ‖VV+x‖2 for every x (implied by Lemma 4.5), and ‖VV+‖2 = 1
(since VV+ is an orthogonal projector).

Theorem 4.6 Suppose that the multiplicity qualification holds at (μ, Γ∗) for the pencil A − λB. Then
the perturbation ΔA∗ defined in (4.4) satisfies ‖ΔA∗‖2 = κr(μ).

4.2 Satisfaction of the rank condition by the optimally perturbed pencil

Now we assume that the linear independence qualification (Definition 4.3) holds at (μ, Γ∗) for the pencil
A − λB. In particular, we assume that we can choose a right singular ‘vector’ vec(V) so that V has full
column rank. We will establish that

rank(L(μ, Γ∗, A + ΔA∗, B)) � mr − r (4.7)

for ΔA∗ defined as in (4.4).
Writing the first part of the singular vector characterization (4.3) in matrix form leads to the gener-

alized Sylvester equation
AV − BVC(μ, Γ∗) = κr(μ)U .

The fact that V has full column rank implies V+V = I and hence

AV − BVC(μ, Γ∗) = κr(μ)UV+V ,

�⇒ (A − κr(μ)UV+)V − BVC(μ, Γ∗) = 0,

�⇒ (A + ΔA∗)V − BVC(μ, Γ∗) = 0.

Let us consider M= {D ∈ C
r×r : C(μ, Γ∗)D − DC(μ, Γ∗) = 0}, the subspace of all r × r matrices com-

muting with C(μ, Γ∗). By Theorem 3.1, M is a subspace of dimension at least r. Clearly, for all D ∈M,
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we have
0 = (A + ΔA∗)VD − BVC(μ, Γ∗)D = (A + ΔA∗)(VD) − B(VD)C(μ, Γ∗).

In other words, {VD : D ∈M} has dimension at least r (using the fact that V has full column rank) and
represents a subspace of solutions to the generalized Sylvester equation

(A + ΔA∗)X − BXC(μ, Γ∗) = 0.

Reinterpreting this result in terms of the matrix representation, the desired rank estimate (4.7) follows.
This completes the derivation of Pr(μ) � κr(μ) under the stated multiplicity and linear independence
assumptions.

4.3 Main result

To summarize the discussion above, we have obtained the singular value characterization

τr(S) = inf
μ∈Sr

sup
Γ

σmr−r+1(L(μ, Γ , A, B)). (4.8)

Among our assumptions, we have
Γ∗ ∈ G(μ). (4.9)

It turns out that this particular assumption can be dropped. To see this, we first note that both Pr(μ)

and κr(μ), defined in (4.1) and (4.2), change continuously with respect to μ. Suppose that μ has repeat-
ing elements, which allows for the possibility that Γ∗ /∈ G(μ). But for all μ̃ with distinct elements,
we necessarily have G(μ̃) = C

r(r−1)/2. Moreover, when μ̃ is sufficiently close to μ, then Pr(μ̃) = κr(μ̃),
provided that the multiplicity and linear independence assumptions hold at (μ, Γ∗) (implying the sat-
isfaction of these two assumptions for μ̃ also). Then, the equality Pr(μ) = κr(μ) follows from conti-
nuity. Consequently, the assumption (4.9) is not needed for the singular value characterization. Note
that this continuity argument depends on the attainment of the supremum in (4.8) not only for μ,
say at Γ∗, but also for nearby μ̃. This can be ensured by the condition σmr−r+1 (L (μ, Γ∗, A, B)) >

limk→∞ σmr−r+1 (L (μ, Γk , A, B)) for any sequence {Γk} with ‖Γk‖ → ∞ as k → ∞. This is certainly
true in the square case, as the singular value σmr−r+1 (L (μ, Γ , A, B)) decays to zero as ‖Γ ‖ → ∞ as
shown in the Appendix.

We conclude this section by stating the main result of this paper.

Theorem 4.7 (Nearest pencils with specified eigenvalues) Let A − λB be an n × m pencil with n � m,
let r be a positive integer and let S = {λ1, . . . , λk} be a set of distinct complex scalars.

(i) Then
τr(S) = inf

μ∈Sr
sup
Γ

σmr−r+1(L(μ, Γ , A, B))

holds, provided that the optimization problem on the right is attained at some (μ∗, Γ∗) for which
Γ∗ is finite and such that σmr−r+1(L(μ∗, Γ∗, A, B)) > limk→∞ σmr−r+1(L(μ∗, Γk , A, B)) for any
sequence {Γk} with ‖Γk‖ → ∞ as k → ∞, and the multiplicity as well as the linear independence
qualifications hold.

(ii) A minimal perturbation ΔA∗, such that
∑k

j=1 m(A + ΔA∗, B) � r or A + ΔA∗ − λB has a right
singular block, is given by (4.4), with μ replaced by μ∗.
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5. Corollaries of Theorem 4.7

As discussed in the introduction, one potential application of Theorem 4.7 is in control theory, to ensure
that the eigenvalues lie in a particular region in the complex plane. Thus, let Ω be a subset of the com-
plex plane. Then, provided that the assumptions of Theorem 4.7 hold, we have the following singular
value characterization for the distance to the nearest pencil with r eigenvalues in Ω:

τr(Ω) := inf{‖ΔA‖2 : (A + ΔA) − λB has r finite eigenvalues in Ω

or (A + ΔA) − λB has a right singular block}
= inf

S⊆Ω
τr(S)

= inf
S⊆Ω

inf
μ∈Sr

sup
Γ

σmr−r+1(L(μ, Γ , A, B))

= inf
μ∈Ωr

sup
Γ

σmr−r+1(L(μ, Γ , A, B)), (5.1)

where Ωr denotes the set of vectors of length r with all entries in Ω .
When the pencil A − λB is rectangular, that is, n > m, the pencil has generically no eigenvalues.

Then, the distance to the nearest rectangular pencil with r eigenvalues is of interest. In this case, the
singular value characterization takes the following form:

τr(C) := inf{‖ΔA‖2 : (A + ΔA) − λB has r finite eigenvalues

or (A + ΔA) − λB has a right singular block}
= inf

S⊆C

τr(S)

= inf
μ∈Cr

sup
Γ

σmr−r+1(L(μ, Γ , A, B)). (5.2)

The optimal perturbations ΔA∗ such that the pencil (A + ΔA∗) − λB has eigenvalues (in C and Ω) are
given by (4.4), with μ replaced by the minimizing μ values in (5.2) and (5.1), respectively.

6. Multiplicity and linear independence qualifications

The results in this paper are proved under the assumptions of multiplicity and linear independence
qualifications. This section provides an example for which the multiplicity and linear independence
qualifications are not satisfied for the optimal value of Γ . Note that this does not mean that these
assumptions are necessary to prove the results from this paper. In fact, numerical experiments suggest
that our results may hold even if these assumptions are not satisfied.

Consider the pencil ⎡
⎣−1 0 0

0 5 0
0 0 2

⎤
⎦− λ

⎡
⎣0 0 0

0 1 0
0 0 1

⎤
⎦ .

Let μ = [5 1]T, that is, the target eigenvalues are 5 and 1. Then, it is easy to see that the optimal
perturbation is given by

ΔA∗ =
⎡
⎣0 0 0

0 0 0
0 0 −1

⎤
⎦ .
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The singular values of the matrix L(μ, γ , A, B) are

0, 1,
√

16 + |γ |2,
√

5 + 1
2 |γ |2 ± 1

2

√
|γ |4 + 20|γ |2 + 64,

where the multiplicity of the singular value 1 is 2. Hence,

σ5(L(μ, γ , A, B)) =
√

5 + 1
2 |γ |2 − 1

2

√
|γ |4 + 20|γ |2 + 64.

Clearly, the supremum is attained for γ = 0 and σ5(L(μ, 0, A, B)) = 1. Hence, the multiplicity condition
at the optimal γ is violated. All three pairs of singular vectors corresponding to the singular value
1 at the optimal γ violate the linear independence condition, but one pair does lead to the optimal
perturbation ΔA∗.

7. Computational issues

A numerical technique that can be used to compute τr(Ω) and τr(C) based on the singular value char-
acterizations has already been described in Mengi (2011, 2012). For completeness, we briefly recall this
technique in the following. The distances of interest can be characterized as

τr(Ω) = inf
μ∈Ωr

g(μ) and τr(C) = inf
μ∈Cr

g(μ),

where g : C
r → R is defined by

g(μ) := sup
Γ ∈Cr(r−1)/2

σmr−r+1(L(μ, Γ , A, B)).

The inner maximization problems are solved by Broyden-Fletcher-Goldfarb-Shanno (BFGS), even
though σmr−r+1(·) is not differentiable at multiple singular values. In practice, this is not a major issue
for BFGS as long as a proper line search (e.g., a line search respecting weak Wolfe conditions) is used,
since for any given μ a point Γ , where the singular value σmr−r+1(L(μ, Γ , A, B)) is multiple, is isolated
in C

n(n−1)/2; see the discussions in Lewis & Overton (2012). If the multiplicity and linear independence
qualifications hold at a local maximizer Γ∗, then Γ∗ is in fact a global maximizer and hence g(μ) is
retrieved. If, on the other hand, BFGS converges to a point where one of these qualifications is violated,
it needs to be restarted with a different initial guess. In practice, we usually observe convergence to a
global maximizer immediately, without the need for such a restart.

Although the function g(μ) is in general nonconvex, it is Lipschitz continuous:

|g(μ + δμ) − g(μ)| � ‖δμ‖2 · ‖B‖2.

There are various Lipschitz-based global optimization algorithms in the literature stemming mainly
from ideas due to Piyavskii and Shubert (see Piyavskii, 1972; Shubert, 1972). The Piyavskii–Shubert
algorithm is based on the idea of constructing a piecewise linear approximation lying beneath the Lip-
schitz function. We used DIRECT (see Jones et al., 1993), a sophisticated variant of the Piyavskii–
Shubert algorithm. DIRECT attempts to estimate the Lipschitz constant locally, which can possibly
speed up convergence.

The main computational cost involved in the numerical optimization of singular values is the
retrieval of the rth smallest singular value of L(μ, Γ , A, B) at various values of μ and Γ . As we only
experimented with small pencils, we used direct solvers for this purpose. For medium- to large-scale
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pencils, iterative algorithms such as the Lanczos method (see Golub & Van Loan, 1996) are more appro-
priate.

8. Numerical experiments

Our algorithm is implemented in Fortran and calls LAPACK routines for singular value computations.
The limited memory BFGS routine written by J. Nocedal (discussed in Liu & Nocedal, 1989) is used
for the inner maximization problems, and an implementation of the DIRECT algorithm by Gablonsky
(described in Gablonsky, 2001) is used for the outer Lipschitz-based minimization. A MEX interface
provides convenient access via MATLAB.

The current implementation is not very reliable, which appears to be related to the numerical solution
of the outer Lipschitz minimization problem, in particular, the DIRECT algorithm and its termination
criteria. We rarely obtain results that are less accurate than the prescribed accuracy. The multiplicity
and linear independence qualifications usually hold in practice and do not appear to affect the numerical
accuracy. For the moment, the implementation is intended for small pencils (e.g., n, m < 100).

8.1 Nearest pencils with multiple eigenvalues

As a corollary of Theorem 4.7 it follows that, for a square pencil A − λB, the nearest pencil having
S = {μ} as a multiple eigenvalue is given by

τ2(S) = sup
γ

([
A − μB 0

γ B A − μB

])
,

provided that the multiplicity and linear independence qualifications are satisfied at the optimal (μ, γ∗).
Therefore, for the distance from A − λB to the nearest square pencil with a multiple eigenvalue, the
singular value characterization takes the form

inf
μ∈C

sup
γ

σ2n−1

([
A − μB 0

γ B A − μB

])
. (8.1)

Specifically, we consider the pencil

A − λB =
⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦− λ

⎡
⎣−1 2 3

2 −1 2
4 2 −1

⎤
⎦ . (8.2)

Solving the above singular value optimization problem results in a distance of 0.59299 to the nearest
pencil with a multiple eigenvalue. By (4.4), a nearest pencil turns out to be⎡

⎣ 1.91465 −0.57896 −1.21173
−1.32160 1.93256 −0.57897
−0.72082 −1.32160 1.91466

⎤
⎦− λ

⎡
⎣−1 2 3

2 −1 2
4 2 −1

⎤
⎦ ,

with the double eigenvalue λ∗ = −0.85488. The optimal maximizing γ turns out to be zero, which
means neither the multiplicity nor the linear independence qualifications hold. (This is the nongeneric
case; had we attempted to calculate the distance to the nearest pencil with μ as a multiple eigenvalue
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Fig. 1. Pseudospectra for the pencil in (8.2), with eigenvalues marked by the black crosses. Two components of the ε-
pseudospectrum coalesce for ε = 0.59299, corresponding to the distance to a nearest pencil with a multiple eigenvalue
λ∗ = −0.85488 at the coalescence point (marked by the asterisk).

for a given μ, optimal γ appears to be nonzero for generic values of μ.) Nevertheless, the singular value
characterization (8.1) remains true for the distance as discussed next.

The ε-pseudospectrum of A − λB (subject to perturbations in A only) is the set Λε(A, B) containing
the eigenvalues of all pencils (A + ΔA) − λB such that ‖ΔA‖2 � ε. Equivalently,

Λε(A, B) = {λ ∈ C : σmin(A − λB) � ε}.

It is well known that the smallest ε such that two components of Λε(A, B) coalesce equals the distance
to the nearest pencil with multiple eigenvalues. (See Alam & Bora, 2005 for the case B = I, but the
result easily extends to arbitrary invertible B.) Figure 1 displays the pseudospectra of the pencil in (8.2)
for various levels of ε. Indeed, two components of the ε-pseudospectrum coalesce for ε = 0.59299,
confirming our result.

8.2 Nearest rectangular pencils with at least two eigenvalues

As an example for a rectangular pencil, let us consider the 4 × 3 pencil

A − λB =

⎡
⎢⎢⎣

1 0 0
0 0.1 0
0 2 0.3
0 1 2

⎤
⎥⎥⎦− λ

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ .
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Fig. 2. Level sets over R
2 of the function g(μ) defined in (8.3). The asterisk marks the numerically computed global minimizer

of g, which corresponds to the eigenvalues of a nearest pencil with two eigenvalues.

The KCF of this pencil contains a 4 × 3 singular block and therefore the pencil has no eigenvalues.
However, if the entry a22 is set to zero, then the KCF of the resulting pencil contains a 2 × 1 singular
block and a 2 × 2 regular block corresponding to finite eigenvalues. Hence, a perturbation with 2-norm
0.1 is sufficient to have two eigenvalues.

According to the corollaries in Section 5 the distance to the nearest 4 × 3 pencil with at least two
eigenvalues has the characterization

τ2(C) = inf
μ∈C2

sup
γ

σ2m−1

([
A − μ1B 0

γ B A − μ2B

])
︸ ︷︷ ︸

=:g(μ)

(8.3)

for m = 3. Our implementation returns τ2(C) = 0.03927. The corresponding nearest pencil (4.4) is given
by ⎡

⎢⎢⎣
0.99847 −0.03697 −0.01283

0 0.08698 0.03689
0 2.00172 0.30078

0.00007 1.00095 2.00376

⎤
⎥⎥⎦− λ

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦

and has eigenvalues at μ1 = 2.55144 and μ2 = 1.45405. This result is confirmed by Fig. 2, which illus-
trates the level sets of the function g(μ) defined in (8.3) over R

2.
For this example the optimal γ is 2.0086. The smallest three singular values of the matrix in (8.3) are

1.4832, 0.0393 and 0.0062 for these optimal values of μ and γ . The linear independence qualification
also holds.
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Fig. 3. Pseudospectra of the matrix A defined in (8.4). The outer orange curve represents the boundary of the ε-pseudospectrum
for ε = 0.6610, the distance to a nearest stable matrix.

8.3 Nearest stable pencils

As a final example, suppose that Bx′(t) = Ax(t), with A, B ∈ C
n×n, is an unstable descriptor system. The

distance to a nearest stable descriptor system is a special case of τn(Ω), with Ω = C
−, the open left half

of the complex plane. A singular value characterization is given by

τn(C
−) = inf

λj∈C−
sup
γik∈C

σn2−n+1

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

A − λ1B 0 0
γ21B A − λ2B 0

. . .
γn1B γn2B A − λnB

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ .

Specifically, we consider a system with B = I2 and

A =
[

0.6 − 1
3 i −0.2 + 4

3 i

−0.1 + 2
3 i 0.5 + 1

3 i

]
. (8.4)

Both eigenvalues λ1 = 0.7 − i and λ2 = 0.4 + i are in the right-half plane. Based on the singular value
characterization, we have computed the distance to a nearest stable system x′(t) = (A + ΔA∗)x(t) as
0.6610. The corresponding perturbed matrix

A + ΔA∗ =
[

0.0681 − 0.3064i −0.4629 + 1.2524i
0.2047 + 0.5858i −0.1573 + 0.3064i

]
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at a distance of 0.6610 has one eigenvalue (λ∗)1 = −0.0885 + 0.9547i in the left-half plane and the
other, (λ∗)2 = −0.9547i, on the imaginary axis. The ε-pseudospectrum of A is depicted in Fig. 3. For
ε = 0.6610, one component of the ε-pseudospectrum crosses the imaginary axis, while the other com-
ponent touches the imaginary axis.

9. Concluding remarks

In this work a singular value characterization has been derived for the 2-norm of a smallest perturbation
to a square or a rectangular pencil A − λB such that the perturbed pencil has a desired set of eigenvalues.
The immediate corollaries of this main result are

(i) a singular value characterization for the 2-norm of the smallest perturbation so that the perturbed
pencil has a specified number of its eigenvalues in a desired region in the complex plane, and

(ii) a singular value characterization for the 2-norm of the smallest perturbation to a rectangular
pencil so that it has a specified number of eigenvalues.

Partly motivated by an application explained in the introduction, we allow perturbations to A only.
The extension of our results to the case of simultaneously perturbed A and B remains open.

The development of efficient and reliable computational techniques for the solution of the derived
singular value optimization problems is still in progress. As of now the optimization problems can be
solved numerically only for small pencils with a small number of desired eigenvalues. The main task that
needs to be addressed from a computational point of view is a reliable and efficient implementation of
the DIRECT algorithm for Lipschitz-based optimization. For prescribing more than a few eigenvalues it
is necessary to develop Lipschitz-based algorithms converging asymptotically faster than the algorithms
(such as the DIRECT algorithm) stemming from the Piyavskii–Shubert algorithm. The derivatives from
Section 4.1 might constitute a first step in this direction.
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Appendix. Proof that σmr−r+1(L(μ, Γ , A, B)) → 0 as Γ → ∞
We prove that the r smallest singular values of L(μ, Γ , A, B) decay to zero as soon as at least one
entry of Γ tends to infinity, provided that n = m. In the rectangular case, n > m, these singular values
generally do not decay to zero.

We start by additionally assuming that A − μiB are nonsingular matrices for all i = 1, . . . , r. We will
first prove the result under this assumption, and then we will drop it. Our approach is a generalization of
the procedure from Ikramov & Nazari (2005, Section 5), which in turn is a generalization of Malyshev
(1999, Lemma 2).

Under our assumptions the matrix L(μ, Γ , A, B) is nonsingular, and one can explicitly calculate the
inverse. It is easy to see that the matrix L−1(μ, Γ , A, B) has the form⎡

⎢⎢⎢⎢⎢⎣
(A − μ1B)−1 0 . . . 0

X21 (A − μ2B)−1 . . . 0
X31 X32 . . . 0

...
...

. . .
...

Xr1 Xr2 . . . (A − μrB)−1

⎤
⎥⎥⎥⎥⎥⎦ .

We will use the well-known relations

σnr−r+1(L(μ, Γ , A, B)) = σr(L(μ, Γ , A, B)−1)−1 � σr(Xij)
−1. (A.1)

We first compute the matrices X21, . . . , Xr,r−1 which lie on the first subdiagonal. By a straightforward
computation, we obtain

Xi+1,i = −γi+1,i(A − μi+1B)−1B(A − μiB)−1.

If σr((A − μi+1B)−1B(A − μiB)−1) > 0, then from (A.1) it follows that if any of |γi+1,i| tend to infinity,
we obtain the desired result. But σr((A − μi+1B)−1B(A − μiB)−1) > 0 easily follows from the assump-
tion rank(B) � r.

If this is not the case, meaning maxi{γi+1,i} is bounded, then we use the entries on the next subdiag-
onal Xi+2,i. Again by straightforward computation, we obtain

Xi+2,i = −γi+2,i(A − μi+2B)−1B(A − μiB)−1

+ γi+2,i+1γi+1,i(A − μi+2B)−1B(A − μi+1B)−1B(A − μiB)−1.

Again because rank(B) � r implies σr((A − μi+2B)−1B(A − μiB)−1) > 0, it follows that if any of |γi+2,i|
tend to infinity, we obtain the desired result. In general, we have the recursive formula

Xi+j,i = −γi+j,i(A − μi+jB)−1B(A − μiB)−1 −
j−1∑
k=1

γi+j,i+k(A − μi+jB)−1BXi+k,i.

Applying the same procedure as above, we conclude the proof in this case.



GENERALIZED EIGENVALUE PROBLEMS WITH SPECIFIED EIGENVALUES 501

To remove the assumption that the matrices A − μiB are nonsingular, we fix any ε > 0. Let
us choose a matrix Aε such that ‖Aε − A‖ < ε and such that the matrices Aε − μiB are nonsin-
gular for all i = 1, . . . , r. From the arguments above, it follows that there exists γ0 > 0 such that
σnr−r+1(L(μ, Γ , Aε, B)) < ε when ‖Γ ‖ > γ0. Since

σnr−r+1(L(μ, Γ , A, B)) � σnr−r+1(L(μ, Γ , Aε, B)) + ε,

we obtain the inequality σnr−r+1(L(μ, Γ , A, B)) < 2ε when ‖Γ ‖ > γ0.


