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Abstract. By Interlaced Space Structures (ISS) we mean a coupled system of naturally
curved flexible panels/strips interlaced together according to a design pattern. We are
looking for a physically-based and efficient form-finding procedure in order to interac-
tively explore different interlaced morphologies with respect to the design parameters for
structural design purposes. Each panel is considered as an inextensible discrete kirchhoff
rod and the rest shape of the coupled system rods is obtaibned via a constrained total
energy minimization. The interlacing pattern is translated into a set of overlap order
constraints and applied to the optimization problem. We employ an implementation of
the interior-point filter linesearch algorithm with the Quasi-Newton procedure to solve
the constrained nonlinear optimization and discuss the results through a case study.

1 INTRODUCTION

We are interested in a family of space structures where the geometry is behavior-based.
It means that the curved shape of the structure is determined by the equilibrium of its
flexible components deforming under the imposed loads and boundary conditions. The
Euler Elastica rod [26, 23] is an example of such naturally curved configurations. Naturally
curved structures are elastically resistant to external loads and deformations, offer a high
structural performance, are large span and lightweight and are easy to erect. For all
those reasons naturally curving has been a compelling form exploration process among
the researchers working on the architectural geometry applications. [20] We focus the
present study on Interlaced Space Structure (ISS), an actively curved structure composed
of flexible linear structural components (strands) naturally curved from a flat initial state
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and interlaced according to a design pattern. The concentration here has been on the
case of ISS made by flexible strips (e.g. thin timber panels) without lack of generality.

1.1 Goals and contributions

We are looking for a physically-based quantitative (non-exact but efficient) form-finding
tool in order to interactively explore interlaced morphologies for structural design pur-
poses.

Nonlinear static framework: we formulate an offline constrained optimization problem
based on the kinematics of Discrete Elastic Rod model (DER) [6] as a nonlinear static
simulation. Since only the final rest shape matters for our design purpose, treating the
problem in a static framework helps to surpass transition modes which would occur in a
dynamic simulation. Moreover, Instead of iteratively solving for twists in a quasi-static
step and then integrate for positions (as in [6]), we rather define positions and twists as
variables of the optimization problem all at once.

Interlace and inextensiblity constraints: we use a Quasi-Newton procedure which only
requires gradients and facilitates imposing various types of constraints on the system.
Unlike the initial DER used for physically based animation, we do not need rigid body
coupling features but complex strand-strand coupling constraints.

A rich rod model for architectural geometry applications: our implementation en-
hances the DER formulation for architectural geometry applications. We bring two main
feature into the existing particle-based form-finding tools such as [29]: (i) the possibility
to deal with general cross sections with proper elastic stiffness terms, instead of simplified
spring stiffness which has to be interpreted each time and (ii) enhancing twist degrees
of freedom which we believe can open the ground to discover twisted forms in actively
curved complex structures.

1.2 Related work

Form finding of curved structures of all kinds has been the topic of several research
publications. Tensioned structures [8, 4], tensegrity structures [33], gridshells [15, 2, 17],
hybrid structures with coupled beams and membranes [14, 34] and actively curved thin
shell structures [27, 21] are some examples of such curved complex structures among
others. Each time simplified mechanics-based procedures have been proposed to deal with
nonlinear equations of the form-finding problem with a focus on robustness and efficiency.
The force density method [31] and its derived version trust network analysis [9], The
surface stress density method [24], Dynamic Relaxation Method [3] and most recently
the Particle based systems such as [29] are some of such developments approached in the
community of architectural geometry research.

Elastic rods have been subject of intense ongoing research. Covered topics goes from
computational mechanics [19, 13], DNA supercoiling Simulation [11, 32, 28] and robotics
[30, 22] up to the physically based computer animation and virtual surgery simulators. [10,
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Figure 1: Graph representation of an ISS with its dual structure supposing the set of
parameters
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25] Among existing models we have chosen the discrete Kirchhoff rod model introduced
in the seminal research project carried out at Columbia Computer Graphics Group to
study discrete geometric dynamics and artistic control of curves and surfaces. [5] The
DER model has its origins heavily based on fast developing field of discrete differential
geometry techniques. [16]

2 GEOMETRICAL FUNDAMENTALS

2.1 ISS graph representation

A graph representation is introduced in order to define and distinguish ISS morpholo-
gies. (see fig.1 left) Curves numbered at both ends represent strands and for intermediate
nodes the relative overlap order of strands is noted using the > notation. The graph
representation enables to effectively sweep over interlaced configurations in an abstract
topological form regardless of the dual 3D shape while there might be several of those
duals corresponding to the same graph depending on panel’s initial lengths and elastic
properties and also the crossing’s linking number.

2.2 Discrete Kirchhoff rod kinematics and elastic energies

Notation: For the sake of readability we follow the notation used in [6] in expressions,
where vertex-based terms are noted with a subscript, edge-based quantities with a su-
perscript and quantities referring to the initial state of the rod with an overline. While
treating the system of coupled strands, an additional subscript will be used to distinguish
quantities of separate strands.

The expressions for discrete bending and twist energies for a discrete kirchhoff rod with
anisotropic cross section, flat initial state and zero initial twist are given in Eq.(1). These
expressions are based on the curve-angle representation and the notion of the twist-free
frame (so called Bishop frame). The concept has first appeared in [7] in its smooth form as
an alternative to Frenet-Serret derivative based curve framing and recovered later in [6] for
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the discrete representation. (see also [18] for detailed discussion and smooth energies) The
main idea is heavily based on the notion of the parallel transport, interpreted for curves
in R3. It is roughly to transport a quantity (here an adapted frame) along the tangent
vector of the curve. In discrete framework a definition is required for the discrete parallel
transport operator (and also its gradients) to be able to propagate the twist-free frame
along the discrete curve edges as a reference to measure the material curvature. We adopt
the same operator used in [6], which comes down to rotating the previous frame around
the bi-normal vector to align ti−1 on ti. In order to equip a curve in R3 with twist-free
frames, we have to start with an initial frame {t0,u0,v0} and then parallel transport it
along the curve edges. Notice that the first bishop frame coincides with the first material
frame and that giving only u0 is enough to get the initial frame. We note this initial cross
section orientation as n1 and take it as one of the parameter which have to be specified
by the user. (see Fig.2 left) In energy expressions of Eq.1, Bj is the bending stiffness
matrix for jth edge, β is the torsional stiffness of the rod, (κb)i the discrete curvature
bi-normal and ω is the discrete material curvature vector. For a rectangular cross section
b wide and t thick, these stiffness quantities are noted in Eq. 3, some fundamental vector
quantities are also illustrated in fig.2 and described in Eq. 2.

Ebend(Γ) =

n−1∑
i=1

1

2l̄i

( i∑
j=i−1

(ωji )
TBjωji

)
Etwist(Γ) =

n−1∑
k=1

β
(
θk − θk−1

)2
l̄k

(1)

ωji =
(

m2
j

−m1
j

)
· (κb)i : j ∈ {i− 1, i} (κb)i =

2 ei−1 × ei

‖ēi−1‖ ‖ēi‖+ ei−1 · ei[
m1

j

m2
j

]
=

[
cos
(
θj
)
uj + sin

(
θj
)
vj

−sin
(
θj
)
uj + cos

(
θj
)
vj

]
l̄i =

(
ēi · ēi + ēi−1 · ēi−1

)
/2 (2)

B =
(

th3

12 0

0 ht3

12

)
, β =

Gwt3

3
, G =

E

2(1 + ν)
(3)

3 OPTIMIZATION PROBLEM

We are looking for the final deformed state of the ISS and reformulate a static procedure
replacing the dynamic integration proposed in [6]. We would not either apply the quasi-
static material frame update as proceeded in [6], which also means that our energy gradient
with respect to positions will be slightly different. Variables of the optimization problem
are relaxed positions and material frame twist angles for all strands, assembled as a global
vector of unknowns u =

{
θ(i),x(i)

}
. The values for energies, constraints, energy gradients

and Jacobian of constraints are also global quantities containing contributions from all
strands and the coupling constraints. Design parameters for each strand are position
of end vertices (x

(i)
0 ,x

(i)
n ), the initial length (l

(i)
init) and targeted span (l

(i)
tar), mechanical

properties (E, ν, b, t)(i), the panel offset to be respected at each overlap node (d) and two

4



S.S. Nabaei, O. Baverel and Y. Weinand

Figure 2: left: Design parameters and the discrete segmented representation. right:
Angles and vectors used in the discrete notation. For ith edge: discrete Bishop frame{
ti,ui,vi

}
, discrete material frame

{
ti,mi

1,m
i
2

}
, twist angle θi, tangent vector ti. For ith

vertex discrete curvature binoraml vector is κbi.

vectors indicating the cross section orientation to which start and end edges have to be
aligned, respectively noted as (n

(i)
1 ,n

(i)
2 ). These design parameters are the input for our

form-finding problem.

3.1 Formulation

We suppose the ISS is composed of a given number of strands defined by specifying
the start and end vertices. We note ith strand as Γ(i). Instead of imposing all constraints
at once to the flat initial state to get the interlaced - twisted - buckled configuration,
we instead proceed with a three stage solution procedure formulated as constrained opti-
mization problems detailed bellow.

I. System of planar Elasticas of imposed total length and span The initial
optimization is to solve the inextensible Elastica problem. Strand(i) with initial length of
l
(i)
init buckles to span l

(i)
tar, with n(i) equal edges, fixed end vertices and under an additional

constraint to keep the deformed configuration in the initial vertical plane. We note the
normal to this plane as n

(i)
0 = z × t0(i). This vector will also be used as the cross section

orientation for first and last edges (θ0(i)
= θn(i) = 0) and to define the first Bishop frame

as
{
t0(i)

,n
(i)
0 , t0(i) × n

(i)
0

}
. The initial state for this first stage is the flat strand state. Each

strand(i) with n(i) edges will contribute with respectively (3(n(i)−1)+n(i)−2) and (n(i)+2)
items to the assembled variables and constraints vector and the constraint Jacobian will
have (6(n(i) − 1) + 6) extra non-zero items.
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min
{θ(i),x(i)}

E(θ,x) =

Γ count∑
(i)=0

Ebend(Γ
(i)) + Etwist(Γ

(i))

s.t. i)
∥∥∥x(i)

j+1 − x
(i)
j

∥∥∥2

=
(
l
(i)
init

)2

/
(
n(i)
)2

: j ∈
{

0(i), . . . , n(i) − 1
}

ii) x
(i)
j = x̄

(i)
j : j = 0(i), n(i)

iii) n
(i)
0 ·

(
x

(i)
1 − x

(i)
0

)
= 0

iv) n
(i)
0 ·

(
x

(i)

n(i)−1
− x

(i)

n(i)

)
= 0

II. System of twisted Elasticas: as the next step we solve for the deformed system
of twisted Elasticas and we suppose end edges to be clamped. The initial state for this
analysis are deformed Elasticas retrieved by solving problem I described above. The cross
section orientation at both ends for each strand are obtained by rotating the corresponding

initial normal vector n
(i)
0 respectively by θ0(i)

and θn(i). (see Fig.2 left) Each strand(i) with
n(i) edges will contribute with respectively (3(n(i) − 3) + n(i) − 2) and (n(i) − 2) items to
the assembled variables and constraints vector and the constraint Jacobian will have
(6(n(i) − 1) + 6) more non-zero items.

min
{θ(i),x(i)}

E(θ,x) =

Γ count∑
(i)=0

Ebend(Γ
(i)) + Etwist(Γ

(i))

s.t. i)
∥∥∥x(i)

j+1 − x
(i)
j

∥∥∥2

=
(
l
(i)
init

)2

/
(
n(i)
)2

: j ∈
{

1(i), . . . , n(i) − 2
}

ii) x
(i)
j = x̄

(i)
j : j = 0(i), 1(i), n− 1(i), n(i)

iii) Twist angle of material frames for first and last edges of strand(i)

respectively (θ0)(i), (θn
(i)−1)(i)aligned w.r.t n

(i)
1 and n

(i)
2

III. Interlacing twisted Elasticas: The final simulation step is dedicated to couple
twisted strands according to the schematic interlace pattern. The initial state for this
analysis is the result of problem II. For each overlap Strand(i) > Strand(k), a handle
reference point is considered in 3D space to determine where exactly the overlap has
to be passed. The vertices of the strands involved in the overlap (the ones closest to

this handle point), noted as x
(i)
j and x

(k)
l , will be the ones to hold the constraints. The

distance between corresponding nodes of the overlapping strands,
∥∥∥x(i)

j − x
(k)
l

∥∥∥, is set to

be equal to the given offset distance d and the top/bottom in the overlap is imposed
using the projected distance of the involved nodes with respect to the material frame
vector m

(i)
2 of the strand(i). (The one which is passing on top) Each strand(i) with n(i)

edges will contribute with respectively (3(n(i) − 1) + n(i) − 2) and (n(i) − 2) items to
the assembled variables and constraints vector and the constraint Jacobian will have
(6(n(i)−1)+6) more non-zero items. On top of that, for each overlap order of

(
x

(i)
j > x

(k)
l

)
,

2 extra constraints have to be considered additionally and the constraint Jacobian will
have (4 + 3(n(i) − 3) + 6) extra non-zero contribution to take into account the coupling.
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min
{θ(i),x(i)}

E(θ,x) =

Γ count∑
(i)=0

Ebend(Γ
(i)) + Etwist(Γ

(i))

s.t. i)
∥∥∥x(i)

j+1 − x
(i)
j

∥∥∥2

−
(
l
(i)
init/n

(i)
)2

= 0 : j ∈
{

1(i), . . . , n(i) − 2
}

ii) x
(i)
j − x̄

(i)
j = 0 : j = 0(i), 1(i), n− 1(i), n(i)

iii) Twist angle of material frames for first and last edges of strand(i)

respectively (θ0)(i), (θn
(i)−1)(i)aligned w.r.t n

(i)
1 and n

(i)
2

iv) foreach
(
x

(i)
j > x

(k)
l order constraint

)
∥∥∥x(i)

j − x
(k)
l

∥∥∥2

− d2 = 0 (see 3.3)(
x

(i)
j − x

(k)
l

)
· (mj

2)(i) − d = 0 (see 3.3)

We proceed to solve the above cited problems using a Quasi-Newton procedure with
BFGS approximation of the Hessians using IPOPT [35] as the optimization core and HSL
solver Ma27.[1] IPOPT is an open source implementation of a primal-dual interior-point
algorithm with a filter line-search method for nonlinear programming. We need analytical
expressions for the gradients of energies and constraints for this purpose discussed in
following lines.

3.2 Energy gradients

The expressions for energy gradients are mainly recalled from [6]. For the sake of
simplicity, equations are discussed for a single strand suppressing the strand superscripts.
Contributions from all strands are assembled in a global vector of energy gradient ∇e
which is evaluated along with the objective function of total energy by the optimization
core at each iteration.

The expression for energy derivatives with respect to θj are needed for all intermediate
nodes. Twist energy depends explicitly on twist angles whereas the bending energy is
related to twist mainly through the material curvatures vector. While vertex positions
remain unchanged with respect to variation of θj, bi-normal curvature (κb)i and Bishop
frames

{
tj ,uj ,vj

}
will not contribute and this also means that the partial and total deriva-

tives with respect to θj are equivalent. The expression for dE(Γ)
dθj

follows, where J =
(

0 −1
1 0

)
operates as a counterclockwise rotation of π

2
around the edge tangent vector.

dE(Γ)

dθj
=

1

l̄j

(
ωjj

)T
JBjωjj +

1

l̄j+1

(
ωjj+1

)T
JBjωjj+1 +

2β
(
θj − θj−1

)
l̄j

−
2β
(
θj+1 − θj

)
l̄j+1

(4)

In terms of Energy gradients with respect to xi, variation of centerline position will
modify how discrete Bishop frame travels along the discrete curve, so two contribution
appear from terms depending on position degrees of freedom and the terms coupling twist
angles to positions.
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dE(Γ)

dxi
=

n−1∑
k=1

1

l̄k

( k∑
j=k−1

(
∇iωjk

)T
Bjωjk

)
+

n−1∑
j=1

(
E(Γ),θj ∇iθj

)
(5)

Notice that twist energy does not depend explicitly on x and is excluded from the first
gradient expression. The material curvature derivative is given by:

∇iωjk =

[
m2

j

−m1
j

]
· ∇i (κb)k − Jωjk ⊗∇iθ

j (6)

The (κb)k is a function of xk−1, xk and ek+1. The non-zero terms for ∇i (κb)k can be
summarized as follows. [u]× is the cross product matrix of vector u with E = εijkei⊗ej⊗ek

being the permutation tensor of order three.


∇k−1 (κb)k =

2[ek]×+ ek ⊗ (κb)k

α

∇k+1 (κb)k =
2[ek−1]×− ek−1 ⊗ (κb)k

α

∇k (κb)k = − (∇k−1 +∇k+1) (κb)k

,

{
α =

∥∥ēk−1
∥∥ ∥∥ēk∥∥+ ek−1 · ek

[u]× = −E · u
(7)

The variation of the twist angle with respect to vertex position variation is also given
as ∇iθ

j =
∑j

k=1∇iψk which comes form the notion of discrete Holonomy of the parallel
transport connection for discrete curves in R3. [6, 12] The variation of discrete Holonomy
will give us how much an adapted frame will be extra twisted, while parallel transported
along a discrete curve with respect to variation of its vertices which is the ingredient we
are looking for. The non-zero contributions of ∇iψk are:


∇k−1 ψk =

(κb)k
2‖ek−1‖

∇k ψk = − (∇k−1 +∇k+1) ψk

∇k+1 ψk = − (κb)k
2‖ek‖

(8)

3.3 Gradient of constraints

For each optimization problem, constraints are assembled in a global vector of c. Here
the elements of ∇c are provided for the main employed constraints: the edge length or
inextensibility constraints, overlap order constraints and the constraints used to keep an
edge normal to the strand initial plane. The interface with the optimization core is proceed
with a sparse Jacobian construction, so only the non-zero items and their global index
will be transmitted. The segment length for jth edge is imposed as an equality constraint
with respect to its vertex coordinates as ml = ‖xj+1 − xj‖2 − (linit/n)

2
= 0. The nonzero

derivatives are ∇j ml = − (xj+1 − xj) and ∇j+1 ml = (xj+1 − xj). The constraint for keeping
the offset between the overlap nodes in optimization problem III is imposed similarly.

8



S.S. Nabaei, O. Baverel and Y. Weinand

The constraint used to impose the overlap order (x
(i)
j > x

(k)
l ) is formulated with respect

to the material frame vector of the top strand (mj
2)(i) as mo =

(
x

(i)
j − x

(k)
l

)
· (mj

2)(i) − d = 0.
The non-zero contributions to the assembled constraint Jacobian appear while computing

gradients with respect to x
(i)
j , x

(k)
l and θj

(i)
as follows.


∂mo

∂x
(i)
j

= (mj
2)(i) −

(
x

(i)
j − x

(k)
l

)
· (mj

1)(i) ⊗ ∂θj
(i)

∂x
(i)
j

∂mo

∂x
(k)
l

= −(mj
2)(i)

∂mo

∂θj(i)
= −

(
x

(i)
j − x

(k)
l

)
· (mj

1)(i)

(9)

Constraints to keep an edge laid in the plan specified by the normal vector n0 are
used in optimization problem I (see 3.1) and are formulated as mp = n

(i)
0 ·

(
x

(i)
1 − x

(i)
0

)
= 0.

Two non-zero contribution of such constraint into the assembled constraint Jacobian are
∂mp

∂x
(i)
0

= −n(i)
0 and ∂mp

∂x
(i)
1

= n
(i)
0 .

4 CASE STUDY

We approach with a simple case study to show the relationship between the 2D graph
representation and its dual ISS variants with respect to two main parameters: the position
of the overlap handle point and overlap order variation. The simple ISS shown in fig. 3
(right) is consisted of three panels interlaced at a single intermediate point with the
following design parameters. Elastic properties are identical for all panels chosen to
represent mean wood elastic constants E = 8000 Mpa, ν = 0.3, b = 150 mm, t = 6 mm,
overlap offset d = 200mm, initial lengths l

(i)
init are {6.0m, 5.5m, 7.5m} and targeted span

lengths l
(i)
tar are {3.9m, 4.0m, 5.1m}. Cross section orientations are illustrated in fig. 3

and identical twist of 45 ◦ is applied on the end vertex of all three panels, each of them
equally segmented to 21 edges. In order to see how position of handle point can modify
the 3D dual shape of the ISS, two variants are generated by only changing the handle
point, highlighted in fig. 3. Furthermore keeping the handle point at the same position
of variant1 in fig. 3, the overlap order of panel is changed to generate possible overlaps
of three panels over the intermediate point illustrated in fig. 4.

More complex ISS morphologies are not far from reach like the structure illustrated in
fig. 1 (right) involving several strands with more populated overlaps.

5 CONCLUSION AND FUTURE WORK

We introduced a new form-finding procedure to deal with naturally curved interlaced
structures by approaching the nonlinear equilibrium of the coupled system as a con-
strained optimization problem. We enhance the research community working on actively
bent structures with an implementation of a rich rod model with two main capabilities
of capturing twist degrees of freedom and handling anisotropic cross sections. We believe
this tool can open perspectives to a new generation of actively curved girdshell-like struc-
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00
2>1>0

Figure 3: right to left: ISS graph representation, flat initial state, system of Elasticas,
System of twisted Elasticas, interlaced Variant1, interlaced Variant2.

1>0>2 2>1>00>2>1

2>0>11>2>00>1>2
Figure 4: ISS variants with respect to the overlap order

tures made with panels and also empowers the research on actively twisted structures
with complex geometry such as twisted gridshells. We segmented the simulation pipeline
as three optimization problems: form-finding of Elastica, the twisted Elastica and the
coupled system of twisted Elastica. Whereas our focus has been to solve the coupled
problem, we also believe that the first two form-finding procedures on their own can raise
a lot of interest among the community of researchers and students working on actively
curved structures. Two main complementary studies remaining to approach in a futures
publication on the topic are: built prototypes and comparison for some complex ISS gen-
erated by the tool and enhancing constraints to couple strands on their end vertices as
well, provided that the present study enables only intermediate coupling.
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