- 1. School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland - 2. Harvard School of Engineering and Applied Sciences, Cambridge, USA ## COMPRESSIVE ACQUISITION OF COLOR AND NEAR-INFRARED IMAGES #### **Abstract** We propose using a single silicon sensor and a modified Bayer CFA for joint acquisition of color and near-infrared (NIR) images. Silicon sensors, which are placed in most color cameras, are inherently sensitive to NIR. Hence, our proposed scene \rightarrow design is very similar to consumer color cameras in terms of hardware. The main contribution of this work is an algorithm that estimates full-resolution color and NIR images from subsampled and mixed sensor measurements. Our method results in high-quality RGB and NIR images. Applications of combining color and NIR images #### Goal Our main goal is to design an RGB and NIR imaging system that requires least amount of hardware modification in current color cameras. Such a design does not impose additional manufacturing costs. ### Our Proposed Color+NIR Camera The NIR-blocking filter is removed. # **Proposed Algorithm** ## The Separation Algorithm 1. Green and NIR separation ## Impose the sparsity constraint to find the unique solution: $$oldsymbol{s}^\star = \operatorname{argmin} \|oldsymbol{s}\|_0 \quad \text{s.t. } oldsymbol{y} = oldsymbol{M} oldsymbol{\Phi} oldsymbol{s} \longrightarrow oldsymbol{x}^\star = oldsymbol{\Phi} oldsymbol{s}^\star$$ $$\boldsymbol{M} = \begin{bmatrix} \alpha_1 & \beta_1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \alpha_2 & \beta_2 & \cdots & 0 \\ \vdots & & & & & \end{bmatrix}$$ $\alpha_1, \alpha_2, \beta_1, \beta_2$: optimized on a training set ## Φ : the sparsifying transform $oldsymbol{\Phi} = oldsymbol{D}_{ ext{PCA}} imes oldsymbol{D}_{ ext{DCT}}$ #### 2. NIR interpolation 3. Red/Blue and NIR separation More details about the algorithm in [1]. http://ivrg.epfl.ch/people/kermani ## **Simulation Results** Rows 1-3: color and rows 4-6: NIR images. The customized CFA algorithm is presented in [2]. ## Acknowledgment This work is supported by the Hasler Foundation under grant number 12100 and the Swiss National Science Foundation under grant number 200021-124796/1. #### References - [1] Z. Sadeghipoor, Y. Lu, and S. Süsstrunk, "A novel compressive sensing approach to simultaneously acquire color and near-infrared images on a single sensor," ICASSP 2013. - [2] Y. M. Lu, C. Fredembach, M. Vetterli, and S. Süsstrunk, "Designing color filter arrays for the joint capture of visible and near-infrared images," ICIP 2009.