Journal article

Inflation, leptogenesis, and Yukawa quasiunification within a supersymmetric left-right model

A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including supergravity corrections, we find that this extended model naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild tuning of the initial conditions. With a convenient choice of signs of the terms in the Kahler potential, we can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data on the inflationary observables are readily reproduced. Inflation is followed by nonthermal leptogenesis via the decay of the right-handed neutrinos emerging from the decay of the inflaton, and any possible washout of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino oscillation parameters.


Related material