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Exploiting Long-Term Connectivity and

Visual Motion in CRF-based Multi-Person Tracking
Alexandre Heili*, Student Member, IEEE, Adolfo López-Méndez, and Jean-Marc Odobez, Member, IEEE

Abstract—We present a Conditional Random Field (CRF)
approach to tracking-by-detection in which we model pairwise
factors linking pairs of detections and their hidden labels, as
well as higher order potentials defined in terms of label costs. To
the contrary of previous works, our method considers long-term
connectivity between pairs of detections and models similarities
as well as dissimilarities between them, based on position, color
and as novelty, visual motion cues. We introduce a set of
feature-specific confidence scores which aim at weighting feature
contributions according to their reliability. Pairwise potential
parameters are then learned in an unsupervised way from
detections or from tracklets. Label costs are defined so as to
penalize the complexity of the labeling, based on prior knowledge
about the scene like the location of entry/exit zones. Experiments
on PETS’09, TUD, CAVIAR, Parking Lot and Town Centre
public datasets show the validity of our approach, and similar
or better performance than recent state-of-the-art algorithms.

EDICS Category: ARS-IVA

I. INTRODUCTION

Automated tracking of multiple people in video is a central

problem in computer vision. It is particularly interesting in

video surveillance contexts, where tracking the position of

people over time might benefit tasks such as group and social

behavior analysis, pose estimation or abnormality detection,

to name a few. Nonetheless, multi-person tracking remains a

challenging task, especially in single camera settings, notably

due to sensor noise, changing backgrounds, high crowding,

occlusions, clutter and appearance similarity between individ-

uals.

Tracking-by-detection methods have become increasingly

popular [19], [8], [36]. These methods aim at automatically

associating human detections across frames, such that each

set of associated detections univocally belongs to one indi-

vidual in the scene. Compared to background modeling-based

approaches, tracking-by-detection is more robust to changing

backgrounds and moving cameras. However, human detection

is not without weaknesses: detectors usually produce false

alarms and they missdetect objects. Hence, on top of the

numerous challenges of multiple person tracking, tracking-by-

detection approaches must deal with detectors’ caveats.

Several existing approaches address these issues by initially

linking detections with high confidence to build track frag-

ments or tracklets [19], [34], and then finding an optimal

association of such tracklets. Although obtaining impressive
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Fig. 1. Overview of the proposed approach. Detections in incoming frames
are represented as observation nodes. Pairs of labels/observations within a
temporal window Tw are linked to form the labeling graph, thus exploiting
longer-term connectivities (note: for clarity, only links having their two
nodes within the shown temporal window are displayed). Pairwise feature
similarity/dissimilarity potentials, confidence scores and label costs are used
to build the energy function to optimize for solving the labeling problem
within the proposed CRF framework.

results on several datasets, these approaches ultimately rely

on low-level associations that are limited to neighboring time

instants and reduced sets of features (color and adjacency).

Hence, a number of higher-level refinements with different

sets of features and tracklet representations are required in

order to associate tracklets into longer trajectories.

In this paper, we explore an alternative approach that relies

on longer-term connectivities between pairs of detections for

multi-person tracking. We formulate tracking as a labeling

problem in a Conditional Random Field (CRF) framework,

where we target the minimization of an energy function

defined upon pairs of detections and labels. Our approach is

summarized in Fig. 1.

Contrarily to existing approaches, the pairwise links be-

tween detections are not limited to pairs of detections in

adjacent frames, but between frames within a time interval

Tw (from ±0.5s to ±2s). Hence, the notion of tracklets is not

explicitly needed to compute features for tracking, allowing us

to keep the optimization at the detection level. In particular,

a novelty of our approach is to directly use the visual motion

computed from the video sequence for data association. This

avoids resorting to tracklet creation or cumbersome tracklet

hypothesizing and testing optimization to obtain discriminative

motion information.

Another differential trait of our method is the form of energy

potentials, formulated here in terms of similarity and dissim-

ilarity between pairs of detections. Moreover, the proposed

potentials depend not only on sets of features, but also on

the time interval between two detections. In this way, we

model how discriminative a feature is given the observed
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distance in the feature space and the time gap between pairs of

detections, an important characteristic when considering long-

term connectivity. Furthermore, to take into account not only

the actual feature distance value but also its reliability, we

exploit a set of confidence scores per feature to characterize

how trustable the pairwise distances are. For instance, visual

cue distances are given a lower confidence whenever one of

the detections is possibly occluded. These scores ultimately

allow to re-weight the contribution of each feature based

on spatio-temporal cues, and to rely on the most reliable

pairwise links for labeling. This is important near occlusion

situations, where thanks to long-term connectivity, the labeling

can count on cleaner detections just before or after occlusion

to propagate labels directly to the noisier detections obtained

during occlusion instead of through adjacent drift-prone frame-

to-frame pairwise links only.

One important advantage of our modeling scheme is that it

allows to directly learn the pairwise potential parameters from

the data in an unsupervised and incremental fashion. To that

end, we propose a criterion to first collect relevant detection

pairs to measure their similarity/dissimilarity statistics and

learn model parameters that are sensitive to the time interval

between detection pairs. Then, at a successive optimization

round, we can leverage on intermediate track information to

gather more reliable statistics and exploit them to estimate

accurate model parameters.

Finally, compared to some existing CRF approaches for

tracking [34], [36], [17] a novel aspect of our framework is

that the energy function includes higher order terms in the

form of label costs. The aim of such label costs is to model

priors on label fields. In our tracking framework, this translates

into penalizing the complexity of the labeling, mostly based

on the fact that sufficiently long tracks should start and end

in specific areas of the scenario. We are interested in static

camera settings, in which scene-specific maps can be defined

for that purpose.

To summarize, the paper addresses the multi-person tracking

problem within a tracking-by-detection approach and makes

contributions in the following directions (see also Fig. 1):

1) A CRF framework formulated in terms of similar-

ity/dissimilarity pairwise factors between detections and

additional higher-order potentials defined in terms of

label costs. Differently from existing CRF frameworks,

our method considers long-term connectivity between

pairs of detections. Note however that long-term temporal

connectivity alone is generally not sufficient to guarantee

good results, and needs to be exploited in conjunction

with the other contributions described below: visual mo-

tion, confidence weights, time-sensitive parameters with

unsupervised learning from tracklets.

2) A novel potential based on visual motion features. Visual

motion allows incorporating motion cues at the bottom

association level, i.e., the detection level, rather than

through tracklet hypothesizing.

3) A set of confidence scores for each feature-based po-

tential and pair of detections. The proposed confidence

scores model the reliability of the feature considering

spatio-temporal reasoning such as occlusions between

detections.

4) Thanks to the similarity/dissimilarity formulation, the

parameters defining the pairwise factors can be learned in

an unsupervised fashion from detections or from tracklets,

leading to accurate time-interval dependent factor terms.

Experiments conducted on standard public datasets show the

benefit of the different modeling contributions. They demon-

strate that our optimization conducted at the detection node

level but relying on longer time window association leads to

competitive performance compared to recent state-of-the art

methods.

The paper is structured as follows. Section II describes

related work. The CRF framework is formulated in Section

III. Pairwise potentials with associated confidence scores are

detailed in Section IV whereas label costs are described in

Section V. Unsupervised parameter learning is explained in

Section VI. Section VII describes the optimization method-

ology. Finally, experimental results are presented in Section

VIII.

II. RELATED WORK

Tracking-by-detection methods have become increasingly

popular in the vision community. On the contrary to gener-

ative methods, detection-based trackers use a discriminative

classifier to assess the presence of an object in a scene,

which is generally more robust, as state-of-the-art detectors

give very good performance at detecting humans [13][15].

The detector’s output is used to generate target hypotheses

in each frame, which then have to be transitively linked to

form trajectories with consistent identity labels. Tracking-by-

detection can therefore be formulated as a data association

problem. This data association generally relies on affinity

models between detections in successive frames based on

motion constraints and intrinsic object descriptors such as

color [38].

The association problem is addressed by some approaches

on a multi-frame basis [27], [33], [3]. Dependencies are often

modeled using graphs, and the optimization problem then

consists in finding the best paths between all the detections

in separate frames. The process can be applied on potentially

large time windows, so as to overcome the sparsity in the

detection sets induced by missed detections and also to deal

with false alarms, but the complexity of the optimization

increases rapidly. Moreover, due to the temporal locality

considered in this context, tracking-by-detection techniques

can perform poorly in presence of long-term occlusions, i.e.

many successive missed detections.

Alternatively, to reduce the computational cost and to pro-

gressively increase the temporal range for correspondences,

hierarchical approaches can be considered, in which low-level

tracklets are first generated and then merged at a higher-

level. For instance, in [19], the lower level associates pairs

of detections in adjacent frames based on their similarity

in position, size and appearance. The resulting tracklets are

then fed into a Maximum A Posteriori (MAP) association

problem which is solved by the Hungarian algorithm, and

further refined at a higher level to model scene exits and
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occluders. As there are fewer tracklets than detections, the

complexity of the optimization is reduced, but any wrong

association made at the low-level is then propagated to the next

hierarchy level. This hierarchical association is also followed

in the CRF models presented in [34], [36]. The motivation

of the CRF framework is to introduce pairwise potentials

between tracklets, such that pairs of difficult tracklets can

be better distinguished. While [22], [35] make emphasis on

learning discriminative appearance models for tracklets, they

both follow the hierarchical association of [19]. Similarly, Bak

et al. [5] propose a two-level association algorithm where

tracklets are linked by using discriminative analysis on a

Riemannian manifold. The described methods rely on bottom

level associations between pairs of detections in consecutive

frames, often with a subset of features (motion information is

not used at the bottom level). This limitation can be critical,

provided that errors are propagated to higher levels of the

hierarchy.

A different approach to hierarchical association of detec-

tions is presented in [39]. To generate the first level tracklets,

detections within predefined short time windows are linked,

thus breaking the frame adjacency constraint of previously

described methods. Then, tracklet association between con-

secutive windows is performed. At both levels, the same

optimization framework is employed. The objective function

relies on a motion model where all pairs of detections within

the tracklet contribute to build a motion estimate which can be

used with a constant speed assumption to compute a prediction

error. Additionally, a virtual detection generation approach is

proposed in order to tackle occlusions.

Alternatively, some authors focus on global methods that

aim at alleviating these short temporality limitations. They

usually consider the whole span of the sequence, which can

be a problem if online processing is required. In [40], the

authors use a similar MAP formulation as in [19] but embed

it in a network framework where min-cost flow algorithm

can be applied. The authors of [8] formulate the problem

as finding the flow of humans on a discrete grid space that

minimizes the cost of going through the detections, which are

obtained by fusing the foreground information from several

camera views. In [29], the authors extend their method by

adding global appearance constraints. Impressive results are

obtained, but only results in indoor scenarios are shown,

where relatively clean detections from multiview background

subtraction images are used. Furthermore, in many tracking

scenarios, multiple synchronized and calibrated cameras are

not available.

Labeling detections with identity labels can also be done

jointly with finding smooth trajectories that best explain the

data. The method proposed in [4] tackles the problem by

alternating between discrete data association and continuous

trajectory estimation using global costs. This method relies

solely on trajectories and does not involve appearance of

objects.

Some multi-person tracking algorithms focus on context

learning and model adaptation in order to address possible

limitations of pre-learned affinity models. Context models

proposed in [37][31] rely on the availability of sufficient

training data. If such data cannot be acquired, one can alter-

natively adapt tracking models by using local crowd density

estimations [28]. Similarly, [30] propose a tracklet adaptation

approach based on the variance of the observed features along

a path. In [24], contextual cues such as target births and clutter

intensities are incrementally learned using tracker feedback.

Different from the above, we benefit from important tem-

poral context by connecting detection pairs not only be-

tween adjacent frames, but between frames within a long

time interval. Not only we differentiate from [39] in that

we exploit longer-term connectivities between detections, but

also in that our method is built entirely on pairwise links

between detections, allowing us to re-label detections at any

iteration of the algorithm. Since the notion of tracklet is not

explicitly used in the proposed framework, we use motion

information by introducing a novel feature based on visual

motion. Furthermore, to the contrary of most existing methods

above, our approach does not only optimize the label field on

a similarity hypothesis basis, but also relies on a dissimilarity

information to assess the labeling. By contrasting the two

hypotheses for each detection pair, the model is more robust

to assess the appropriateness of a given association. Apart

from the larger connectivity between pairs of detections, our

CRF framework differs from [34], [36] in that we consider

confidence scores for the features, as well as higher order

potentials in the form of label costs. Confidence scores can be

regarded as a context adaptation approach where, differently

from methods such as [30], we do not rely on tracklets but on

the position of detections on a per-frame basis.

III. CRF TRACKING FRAMEWORK

This Section introduces the main elements of our tracking

framework. We start by introducing our data representation,

and then present how we formulate our tracking problem. A

list of all symbols used in the manuscript, along with their

brief definition and where they are introduced in the paper is

given in the supplementary material.

A. Data representation

Let us define the set of detections of a video sequence

as R = {ri}i=1:Nr
, where Nr is the total number of detec-

tions. The features we choose to represent our detections are

articulated around 3 cues: position, motion and color. More

precisely, each detection is defined as

ri = (ti,xi,vi, {h
b
i}

b∈P) (1)

which comprises the following features:

• ti denotes the time instant at which the detection occurs;

• xi denotes the 2D image or ground-plane position de-

pending on the availability of calibration information;

• vi denotes the 2D image plane visual motion computed

from the video sequence;

• h
b
i with b ∈ P = {whole, head, torso, legs} denotes a set

of multi-resolution color histograms extracted from a set

P of body parts.

Note that, in contrast to existing approaches, each detection

has an associated motion vector vi, which is independent







EXPLOITING LONG-TERM CONNECTIVITY AND VISUAL MOTION IN CRF-BASED MULTI-PERSON TRACKING 6

Fig. 5. Motion feature: learned β curves on CAVIAR for different time
intervals.

by observed motion vectors. This is confirmed by the beta

curves automatically learned from data shown in Fig. 5, which

favor association when motion and detection displacements

are aligned (cosine near 1) and becomes more positive as the

cosine becomes lower than ≈ 0.5, discouraging association.

Interestingly, we see that the model is more discriminative

for larger time gaps ∆, when the uncertainty about the

displacement (measured from the detected position) is lower.

C. Color cue similarity distributions

Finally, we propose an appearance similarity measure based

on Bhattacharyya distances Dh between color histograms. The

pairwise color features are defined for k ∈ [4, 7] as:

fk(ri, rj) = Dh(h
g(k)
i ,h

g(k)
j ) (12)

where g is a mapping between color feature indices and

corresponding body parts: g : k ∈ [4, 5, 6, 7] → g(k) ∈
[whole, head, torso, legs]. Then, the distribution of each feature

fk for a given hypothesis H and time gap ∆ is assumed to

follow a Gaussian mixture model (GMM) given by:

p(fk(ri, rj)= f |H(li, lj)=H,λk)=
Nmix
∑

n=1

π
H,k
∆ij ,n

N (f |µH,k
∆ij ,n

, σ
H,k
∆ij ,n

)
(13)

with ∆ij = |tj − ti| and Nmix = 10 represents the number of

mixture components. In practice, GMM parameters λ
H,k
∆

=

{πH,k
∆,n, µ

H,k
∆,n, σ

H,k
∆,n, n ∈ [1, . . . , Nmix]}, i.e. weights, means

and variances, are estimated using Expectation-Maximization

from appropriate training data (cf. the unsupervised parameter

learning Section VI).

Fig. 6 illustrates the resulting learned β models for different

body parts under a time interval ∆ of 15 frames. It can be seen

that for small Bhattacharyya distances between detection pairs,

the association cost is negative and progressively rises as the

distance increases, reaching positive values where it disfavors

association. Surprisingly, the torso and legs regions exhibit

almost no difference in their learned β curves. The head region

shows less discrimination, which might be understandable

since at the considered resolution, the head of people contains

few distinctive color feature. Note that color models also

exhibit time-interval dependencies, as illustrated in Fig. 9,

where the β curves of the torso part are displayed for two

different values of the time gap ∆.

Fig. 6. Learned β curves on PETS for different body parts subject to a time
interval of 15 frames.

D. Similarity/dissimilarity distribution parameters

The parameters λ = {λk} of the similarity and dis-

similarity functions are thus defined for each feature k as

λk = {λk
∆
,∆ = 1 . . . Tw}, with: λ1

∆
= {ΣH0

∆
,ΣH1

∆
} for the

position feature (k=1), λk
∆

= {α∆,H0
, α∆,H1

} for the motion

feature (k=2,3), and with λk
∆

= {λH0,k
∆

, λ
H1,k
∆

} for the color

feature (k=4,5,6,7). It is worth emphasizing that each factor is

time-interval sensitive, as the parameters depend on the time

between the detection pairs.

E. Pairwise factor contextual weighting

The energy terms defined previously rely on feature distance

distributions whose parameters are learned in an unsupervised

way as explained in Section VI. These distributions, however,

are global and only reflect the overall feature distance statistics

and their discriminative power. To leverage on the local context

during test time, we have introduced the weights wk
ij in the

definition of our factor terms and of the resulting energy

function (7). For each feature k and detection pair ri and

rj , they allow to modulate the previously defined energy

terms according to the knowledge of the detection’s spatial

surroundings.

For instance, when some detection bounding boxes overlap

within a frame, the collected color measurements might be

corrupted. Hence, we should strongly downvote the color

feature contribution of the occluded detections according to

the importance of the coverage. Similarly, the visual motion

is measured from pixel displacements and such detection

overlaps can lead to inaccurate motion estimates that we do

not want to rely on for association. By downweighting the

contribution of the color and motion features in such cases,

we avoid taking into account unreliable features, but can still

rely on more accurate measurements done before or after

the occlusion and on the position feature to track a partially

occluded object. Following the above intuition, the weights

have been defined as described below.

Color factor weighting. Let us define the confidence c(ri) of

the visual cues of a detection ri based on the overlap with the

other detections occurring in the same frame ti as:

c(ri) = 1−min









1,
∑

rj 6=ri
tj=ti

A(ri ∩ rj)

A(ri)









(14)

where A(r) denotes the area defined by the region associated

with the detection r. As can be seen, this confidence is
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VI. UNSUPERVISED PARAMETER LEARNING

The appropriate setting of the model parameters is of crucial

importance for achieving good tracking results, but can be

a tedious task. We remind that since distributions exhibited

time dependencies, we have defined our models to be time-

sensitive and feature-specific, which means that parameters

need to be defined for each feature and each time interval

up to Tw. Moreover, parameters also depend on the two-fold

hypothesis H , so that ultimately, we have a large parameter

space size. In practice, one would like to avoid supervised

learning, as this would require tedious track labeling for each

scene or camera.

In the following we propose an approach for learning

the factor parameter set in an unsupervised fashion. More

precisely, the first step is to learn model parameters by relying

directly on the raw detections within training videos of a given

scene. For convenience, we denote with a ⋆ superscript the

notations that apply to these initial models (for instance, these

models are learned up to T ⋆
w). These models can be used for

tracking on these training videos, and, provided we use a low

T ⋆
w value, can lead to pure tracklets [17].

Thus, in a second step, these tracklets corresponding to an

intermediate labelling L⋆ can be conveniently used to refine

model parameters and learn parameters for larger Tw values.

The process could then be iterated (use new learned parameters

for tracking, then resulting tracklet for parameters learning),

but experiments showed that in general no further gain can be

achieved.

In this paper, since we consider rather short sequences for

testing, unsupervised learning is performed in batch mode

directly on the test sequence, i.e. the training set is the whole

test sequence, except for the CAVIAR dataset, in which we

use as training videos the set of 6 videos that are not used in

the test. The overall procedure of unsupervised batch learning

and tracking is summarized in the block diagram of Fig. 8.

More details are provided below.

Unsupervised Learning from Detections. Learning the

model parameters λ can be done in a fully unsupervised way

using a sequence of detection outputs.

When no labels are provided, the intuition for learning

consists of collecting training data as follows: for a given

detection at time t, the closest detection amongst the detections

at time t + ∆ should statistically correspond to a detection

of the same track, while the second closest detection2 would

correspond to a different person. Thus, for each time gap ∆,

we collect for each detection its closest and second closest

detection ∆ frames away and construct the set of closest C⋆
∆

and second closest S⋆
∆ detection pairs. This procedure is

summarized in Algorithm 1. These sets can then be used to

learn model parameters under each model hypothesis for each

feature and time interval.

Learning from Tracklets. The assumption that parameters

can be learned from closest and second closest detections

holds reasonably well for small values of ∆ or low crowding,

2In principle, all non-closest detections would correspond to different
persons. However, we used the second closest detection to obtain more
discriminative models, esp. for the position feature.

Learning 
from detections

Learning from tracklets

Final tracks

Training
videos

Intermediate tracks   
with labels

U
nsupervised batch learning

Tracking

Test
video

Detection and
feature extraction

Detection and
feature extraction

Initial models 

SW tracking with                                      

Models 

SW + Block ICM tracking
with 

Fig. 8. Flowchart of the unsupervised batch learning and subsequent tracking
procedure. Detections and features are extracted on scene-specific training
videos. Initial models up to T ⋆

w are learned from detections. Tracking is
performed with these models to obtain an intermediate labelling L⋆, which is
in turn used to relearn more accurate models up to Tw > T ⋆

w . Finally, given
detections and features of a test video, these refined models for the scene are
used to perform tracking (SW and Block ICM are two tracking steps that will
be explained in Section VII).

Algorithm 1 Collection of C⋆
∆ and S⋆

∆ from detections.

for ∆ = 1 to T ⋆
w do

Initialize empty sets C⋆
∆ and S⋆

∆

for i = 1 to Nr do
j = argmink |xi − xk|, s.t. |tk − ti| = ∆

m = argmink |xi − xk|, s.t. tk = tj and k 6= j
Add pair (ri,rj) to set C⋆

∆ and pair (ri,rm) to set S⋆
∆

end for
end for

but might not be verified for larger temporal gaps. However,

since our tracking framework with models learned as above

for relatively small Tw leads to pure tracklets [18], we can

use these intermediate tracklets to collect more reliable data

for each hypothesis and learn more discriminative model

parameters, up to a higher value of Tw.

This is illustrated in Fig. 9 for the torso color model. We can

observe that for small time gaps (∆ = 1) the Bhattacharyya

distance distributions are well separated under the two hy-

potheses, even when using the raw detections. However, as

Tw increases (e.g. for ∆ = 15), the collected feature sets

C⋆
∆ and S⋆

∆ from the detections do not correspond to the

assumption any more and become more blended w.r.t. the

H1 or H0 hypothesis, resulting in non-discriminant parameter

estimates. Instead, we propose to collect new sets C∆ and S∆

of detection pairs for learning, using the intermediate track

information, i.e. the current labelling L⋆. The procedure of

collecting these sets from tracklets is summarized in Algorithm

2. When using the tracking results obtained with T ⋆
w = 8 (and

model parameters learned from the raw detections) to collect

training data, we obtain more accurate and sensible (and still

discriminative) distributions, especially for large values of Tw.

Note that the method is unsupervised and the relearned models

are still global (i.e. not specific to any track or detection).

Robust estimates. The above approach assumes that we obtain

representative training sets for both hypotheses. While this

might be true for the dissimilar hypothesis H0, we actually

miss large measurements for the similar case H1, since

tracks might actually be broken (fragmented) at places with
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Fig. 9. Unsupervised color parameter learning. 1st row: Torso pairwise feature (color Bhattacharyya distance) distribution fitted on actual PETS data under
the H1 hypothesis, i.e. labels are supposed to be the same (red curve), and H0 (blue curve), for two different values of ∆, relying on feature training sets
collected from raw detections (left) and from tracklets (right). 2nd row: Corresponding β curves of color model.

Algorithm 2 Collection of C∆ and S∆ from intermediate

labelling L⋆.

for ∆ = 1 to Tw do
Initialize empty sets C∆ and S∆

for each unique label l ∈ L⋆ do
for (ri, rj) ∈ τl with |ti − tj | = ∆ do

Add pair (ri, rj) to set C∆

end for
end for
for each pair of unique labels (l, l′) with l 6= l′ do

for rm ∈ τl and rn ∈ τl′ with |tm − tn| = ∆ do
Add pair (rm, rn) to set S∆

end for
end for

end for

high feature distances, and lead to an overconfident model

for H1. We alleviated this issue as follows. Let us denote

by p̂(fk|Hh, λ
k
∆
) the feature distributions learned using the

training sets collected as above. Then, we used:

p(fk|H1, λ
k
∆
) = 0.9p̂(fk|H1, λ

k
∆
) + 0.1p̂(fk|H0, λ

k
∆
) (21)

and p(fk|H0, λ
k
∆
) = p̂(fk|H0, λ

k
∆
) as actual feature distribu-

tions in the tracking framework. Intuitively, the above heuristic

implicitly assumes that some measurements in the H0 training

set are actually coming from the same person tracks and thus

should be incorporated in the H1 distribution. In practice it

leads to the saturation effect shown on β curves.

VII. OPTIMIZATION

We formulated multi-person tracking as the minimization

of the energy function presented in Eq. 7. The energy is

decomposed into two components, the sum of feature-specific

pairwise terms (Potts coefficients) weighted by their confi-

dence, and higher-order cost terms (label costs).

Although our energy (dropping the high-order term) expres-

sion looks like a standard pairwise optimization problem, it

can be shown (see supplementary material) that it does not

follow the submodularity principle and hence can not be solved

using global graph cut optimization techniques [21]. Instead,

we introduce an iterative approximate algorithm to find a good

labeling solution. More precisely, we start the labeling process

by applying a Sliding Window approach. Then, in a second

step we perform a more global block Iterated Conditional

Modes (ICM) optimization. The two steps are summarized

below, and details are provided in supplementary material.

Sliding Window (SW). The first step performs the labeling of

the incoming detections at time step t given the links with the

past detections, and is formulated as an assignment problem.

Essentially, each new detection can either extend an existing

track l (i.e. a track that has at least one detection with this label

within the Tw past instants), or start a new track, while existing

tracks are either extended or stopped. An association matrix

A
SW is thus constructed, whose elements only account for

the energy terms that are affected by the assignment, which is

solved using the Hungarian algorithm. Note that at this point,

the higher-order label costs are not used, since we do not

want to penalize ending old tracks or starting new ones to

avoid initial identity switches. As shown in the results, this

SW optimization already leads to very good results given the

use of the long-term connectivities, and generally produces

pure but fragmented tracks.

Block ICM optimization. In this step, optimization is con-

ducted at a more global level and includes the higher-order

label costs. The procedure is similar to [11] and is illustrated

in Fig. 10. For a given time t, the current labeling is used to

create the set of NB
τ tracks existing before t and the set of

NA
τ tracks existing after (and including) t.3 Then, as with

SW, the labeling is formulated as an assignment problem,

where past tracks can be extended or stopped, and future tracks

can extend a track or start a new one. An association matrix

A
BI is built such that it comprises all terms that depend

on the assignment: the pairwise terms, which involve only

links within a temporal neighborhood of Tw around t (hence

the block ICM terminology), and the global start and end

label cost terms. The optimal assignment is solved with the

Hungarian algorithm. The procedure is repeated for each time

t, and in practice, we notice that one or two sweeps over all

time instants t are sufficient to reach the optimum.

Optimization and tracking summary. Optimization for

3Note that this may involve splitting a current track that extends before and
after t in two parts.
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Fig. 10. Block ICM at time t. Current tracks before and after t are associated
so as to minimize block-wise β costs between pairs (dotted lines) and label
costs related to the start and ending of tracks.

tracking thus consists of two steps. First, SW is applied. It

is an online procedure that labels the detections of the current

frame given a set of previously labeled tracks within a sliding

window, end therefore does not correct the labels of other

detections within the sliding window. Even with this limitation,

experiments show that SW produces pure results thanks to

long-term connectivities with the past.

When handling test sequences in batch mode (as done in

evaluation), the SW step is applied until it reaches the end of

the sequence. Then, in a second step, Block ICM is applied,

considering the whole sequence and deciding for each pair of

successive frames to continue, stop or start tracks, as described

above. Block ICM is therefore able to correct mistakes done

at the SW level, due to its use of label costs and of both past

and future observations at a given frame.

When exploited in an online system processing incoming

video streams, the above strategy could be adapted. For

instance, SW could be applied at every frame (using a sliding

window size Tw of typically a few seconds), while Block ICM

could be invoked from time to time to correct SW labelling

within a larger sliding window (typically about 10 seconds).

In that case, t0 of Section V would refer to the start of this

larger sliding window used by Block ICM 4, while tend would

be the end of this larger window, i.e. would correspond to the

latest available frame of the video stream.

VIII. EXPERIMENTS

We conducted experiments on five different datasets, de-

scribed in Section VIII-A. Experimental details are given in

Section VIII-B. Performance metrics are presented in Section

VIII-C. Section VIII-D first presents the impact and benefit

of the different modeling contributions, while comparisons

against state-of-the-art methods as well as qualitative tracking

results are given in Section VIII-E. Finally, Section VIII-F

provides some discussion on the algorithm complexity.

A. Datasets

We used five public datasets for which bounding box

annotations are available (see samples frames in Fig. 13 to

17). For all datasets, unless specifically mentioned, we are

using the official ground truth files.

PETS 2009. PETS’09 S2.L1 [1] is a video of 795 frames

recorded at 7 fps. It presents a moderately crowded scene

4Or the corresponding effect could be neglected since the start of the video
is far in the past.

where 20 pedestrians are often crossing each other’s trajec-

tories, creating inter-person occlusions. People are also often

occluded by a street light in the middle of the scene, creating

miss-detections. Although several views of the same scenario

are available, we are working solely in View 001. As there is

no official ground truth available for PETS, we are using the

one provided by [29].

TUD. It consists of three short videos recorded at 25 fps.

We focus on the two longest ones, which are also the ones

presenting the most occlusions: TUD-Crossing (201 frames, 13

pedestrians) and TUD-Stadtmitte (179 frames, 10 pedestrians),

showing respectively a pedestrian crossing and a town-centre

pedestrian area. These videos have a low view point, on the

contrary to the PETS sequence.

CAVIAR. This corpus contains 26 monocular videos of a

corridor view recorded at 25 fps [2]. The average video length

is 1500 frames. To compare our performance to competitive

approaches, we use the same subset of 20 videos as [40],

[19], containing 140 people, along with their selected ground

truth, in which fewer persons are annotated as compared

to the complete CAVIAR ground truth. Challenges in this

dataset arise from reflections on the floor, projected shadows,

occlusions, and numerous possible entry and exit points.

Parking Lot. The Parking Lot dataset used by [39] is a 1000-

frame video recorded at 29 fps, containing 14 pedestrians

walking in queues. Challenges in this dataset include long-term

inter-object occlusions, and appearance similarities between

several subjects.

Town Centre. The Town Centre dataset introduced by [6]

is a high-definition surveillance video of a busy town centre

street recorded at 25 fps. This dataset is challenging because it

contains a large number of people frequently occluding each

other. Bounding box annotations are given for 3 minutes of

this video.

B. Experimental details and parameters

Human detection. In tracking-by-detection approaches, the

tracking performance is subject to the detection accuracy. In

the literature, different authors often apply different detectors

suited to their techniques on a given dataset. For instance, on

the PETS dataset, Ben Shitrit et. al. [29] use the POM detector

[16] which exploits multi-camera information, Breitenstein et.

al. [10] use the HOG detector [12], Andriyenko et. al [4] use

a detector exploiting both HOG [12] and relative optical flow

(HOF) [32] features within SVM classification. Similarly to

us, Zamir et. al. [39] use the part-based model detector [15].

Hence, it is currently very difficult to have fair comparisons

by re-using available detection results, as pointed out in [25].

In this work, the entry to our tracking-by-detection frame-

work is the output of the part-based detector [15] using the

human deformable model trained on the INRIA person dataset

[20]. As mentioned in Section III-A, this is an algorithmic

choice allowing to extract motion from discriminatively trained

parts (details given below) and to be able to use the same

detector and method for all experiments and all datasets. It

also presents the advantage of relying on a publicly available



EXPLOITING LONG-TERM CONNECTIVITY AND VISUAL MOTION IN CRF-BASED MULTI-PERSON TRACKING 11

Fig. 11. Extracted features for representing detections. Left: upper-body
parts obtained from the deformable parts model (cyan bounding boxes)
and estimated motion on each part (yellow arrows). Right: position (green
cross), final motion feature (white arrow) and color histograms obtained from
different pre-defined parts (head, torso, legs and fullbody).

detector. Note that the part-based model detector that we

use does not completely solve the detection problem by

itself. Indeed, as shown in Tables V and IX, our detector

gives us similar input detection accuracies as compared to

other approaches. Hence, the results shown in the manuscript

are based on input detections that are affected by severe

occlusions, false positives and misses.

Motion computation. Several techniques could be applied to

extract the motion vector vi of a detection ri. In this work, it

is extracted by estimating an affine motion model on each of

the 5 upper-body parts of the deformable part model (see Fig.

11) using the robust multi-resolution approach by [26], which

provides individual part motion along with a confidence weight

(as explained in Section III-A). The overall motion is then

obtained as the weighted average of these upper-body parts

motions. Note that these upper body parts are not the limbs,

but the head, shoulders and lower torso. We observed that their

motion is in general similar. Confidence weights given by [26]

contribute to lower the scores of parts with unreliable motion.

Color histograms. To avoid taking into account too many

pixels from the background, we only consider the elliptical

region enclosed within each bounding box. The parts are

defined by vertically partitioning the ellipse into three parts,

with the top 20% aiming at capturing the head, the 40% and

40% left in the middle and the bottom aiming at capturing

the torso and the legs, respectively, as illustrated in Fig. 11.

As color descriptors h
b
i for each of the 4 pre-defined parts

b ∈ P = {whole, head, torso, legs}, we used RGB multi-

resolution histograms (at resolutions 4× 4× 4 and 8× 8× 8)

to reduce quantization effects.

Calibration. For the PETS and CAVIAR datasets, camera

calibration and ground-plane homography are available, re-

spectively. Using this information, position models are defined

in the ground plane. On the other hand, the position models

for the TUD dataset are defined in the image plane.

Parameters. Besides λ which are learned automatically, the

same following parameters were used in all sequences: θf =
10 frames for the position model forgetting factor (Section

IV-E); dmax = 10 frames and θp = 3 frames to define

the label cost (Section V). Besides, unless stated otherwise,

unsupervised learning of interval sensitive parameters from

tracklets was conducted, all features (including motion) were

used, and SW optimization followed by block ICM exploiting

label cost with ρ = 1 was applied. Finally, we vary the size Tw

of the temporal window to analyze the impact of connectivity.

C. Evaluation Metrics

In multiple person tracking literature, different existing

evaluation metrics are not consistently used by competing

approaches [25]. To achieve a fairer comparison with existing

approaches, we use two types of measures to perform our

evaluations. Measures introduced in [23] indicate how correct

the tracks are in terms of fragmentation and confusion between

different people. Namely, Frag is the number of times that a

ground truth trajectory is interrupted in the tracking result,

while IDS is the total number of identity switches, i.e. it

indicates the number of times an output track is associated

to several ground truth targets.

In order to compare our input detections to the ones used

by other authors, when available, we report Det. Prec. and

Det. Rec, which are respectively the frame-based precision and

recall of the raw detections. The precision is defined as the

number of correctly matched detections over the total number

of detection outputs. The recall is defined as the number of

correctly matched detections over the total number of ground-

truth objects. On all datasets, these measures are computed

following the VOC criterion, with a threshold of 0.2 on the

intersection over union for matching. We also provide recall

and precision after tracking (Rec. and Prec.) by using tracking

information to interpolate tracks and remove short ones.

Finally we report the number of tracker outputs SO, the

percentage of tracks that are tracked for more than 80% of

their duration MT (Mostly Tracked), the percentage of tracks

that are tracked between 20% and 80% of their duration

PT (Partially Tracked) and the percentage of tracks that are

tracked less than 20% of their duration ML (Mostly Lost).

Since the above metrics are not adopted by several compet-

ing sate-of-the-art tracking methods, we additionally use the

CLEAR MOT metrics MOTA and MOTP [9]. ”Multi-Object

Tracking Accuracy” (MOTA) combines missed detections,

false positives and identity switches into a single evaluation

measure. On the other hand, ”Multi-Object Tracking Preci-

sion” (MOTP) gives a measure on bounding boxes localization

accuracy.

D. Results and evaluation of different modeling factors.

Sample tracking outputs can be seen in Fig. 13 to 17. In

the following, we demonstrate quantitatively the benefit of

the different modeling factors on the results. Note that more

thorough results supporting the different claims are provided in

the Supplementary material for the PETS, TUD, and CAVIAR

datasets.

Unsupervised learning. Table I demonstrates the effect of

learning model parameters from tracklets rather than from

detections, as explained in Section VI. In practice, we used

tracklets obtained with models learned from detections with

Tw = 8 (first line of Table I) to relearn models from tracklets

up to Tw = 16. We can observe that the refinement of

model parameters using tracklets has almost no effect on the
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Tw MET Rec Prec SO MT PT ML Frag IDS

8 Off 0.84 0.95 40 70% 25% 5% 13 1

8 On 0.84 0.95 39 70% 25% 5% 12 0

16 Off 0.82 0.95 92 60% 35% 5% 27 0

16 On 0.87 0.94 25 70% 25% 5% 3 0

TABLE I
UNSUPERVISED LEARNING. SW OPTIMIZATION FOR PETS USING MODEL

PARAMETERS ESTIMATED FROM TRACKLETS (MET = “ON”), OR NOT

(MET = “OFF”).

Tw TW Rec Prec SO MT PT ML Frag IDS

16 Off 0.86 0.94 26 70% 25% 5% 6 3

16 On 0.87 0.94 25 70% 25% 5% 3 0

TABLE II
SW OPTIMIZATION OUTPUT FOR PETS SEQUENCE USING TIME-INTERVAL

SENSITIVE MODELS (TW = “ON”) OR NOT (TW = “OFF”) FOR THE

COLOR AND MOTION MODELS.

performance for Tw = 8, showing that the assumption of using

the closest and second closest sets of detection pairs to learn

models is valid for small values of Tw. However, with a larger

association window (Tw = 16), using the default models leads

to precise but very fragmented tracklets (92 different labels,

27 Frag). This fragmentation can be dramatically reduced by

using the refined parameter estimates obtained from tracklets,

showing the benefit and validity of our approach. We observed

the same benefit of learning from tracklets on other datasets.

Time interval sensitivity. One might argue that learning

motion and color similarity models that depend on the time

gap between detection pairs may have no impact on the

results, since within our association windows, motion and

appearance patterns of an individual are likely to stay similar.

However, Table II demonstrates empirically that exploiting

such time-interval dependent models indeed helps reaching

better tracking performance, and confirms the dependencies

observed on the learned β curves (see Fig. 5 and 9). When

the motion and color features between pairs of detections are

collected from tracklets regardless of their time difference

(TW = 0), worse results are obtained (the position model is

learned normally), resulting in 3 more fragmentations and IDS.

A similar behavior has been observed on the other datasets.

Temporal context. The benefit of using a longer temporal con-

nectivity between detection pairs is demonstrated in Table III,

where we observe that larger Tw values reduce fragmentations.

This is due to two main reasons. First, note that tracks for

which there are long intervals with no detections (beyond

Tw) can not receive the same label, since no link is created

between the detections before and after the miss-detection

interval. Hence, increasing Tw can solve these miss-detection

and occlusion situations. This is mainly illustrated in PETS

where people tend to get occluded by the street lamp for more

than 10 frames. By increasing Tw to a value of 16, the number

of fragmentations gets significantly reduced (e.g. from 12 to

3 when using all features). The second reason is that a longer

temporal connectivity that relies on all pairwise links leads

to an energy that is better conditioned for optimization, or

in other words, that provides a better temporal context for

labeling. This is illustrated in Fig. 12 in an example from

TUD-Crossing.

Visual motion cue. Table III also demonstrates the usefulness

of the motion feature at solving ambiguities and therefore

reducing the number of identity switches. In practice, these

Frame 116 Frame 123

Frame 123Frame 116

Frag + IDS

Correct labeling
Fig. 12. Temporal context effect. First row: Even though the occluded person
with the orange label (#18) reappears less than Tw = 10 frames later, the
links do not provide enough context to reassign her with the correct label.
Bottom row: when a longer context is available (Tw = 20) more pairwise
comparisons are available, allowing to maintain a correct labeling.

Tw motion Rec Prec SO MT PT ML Frag IDS

PETS

8 Off 0.84 0.95 38 70% 25% 5% 13 2

8 On 0.84 0.95 39 70% 25% 5% 12 0

16 Off 0.87 0.94 23 70% 25% 5% 4 3

16 On 0.87 0.94 25 70% 25% 5% 3 0

TUD
10 Off 0.77 0.98 20 70% 30% 0% 6 2

10 On 0.77 0.99 20 70% 30% 0% 6 2

Stadtmitte
20 Off 0.79 0.98 19 70% 30% 0% 5 2

20 On 0.79 0.99 19 70% 30% 0% 4 1

TABLE III
RESULTS ON PETS AND TUD-STADTMITTE SEQUENCES WITH SLIDING

WINDOW OPTIMIZATION. USING THE MOTION FEATURE (MOTION=“ON”)
AND LARGER TEMPORAL WINDOW Tw PROVIDES BETTER RESULTS.

ambiguities happen mainly when people with similar ap-

pearance are crossing trajectories and there are important

missdetection periods and badly framed detections (i.e. en-

capsulating parts of the two people). The position model that

does not favor any movement direction and the color model

might not be discriminant enough to solve the association in

these cases, and the motion feature adds the complementary

information. Note here that confidence weighting is important,

as motion estimates at the near proximity of the crossing might

be unreliable because bounding boxes tend to get blended

together, but previous motion estimates are then prevailing in

the energy term because of their higher confidence (the same

goes for the color models). In the end, by using the motion

feature and a sufficiently large value of Tw, we are able to

obtain pure tracklets with few IDS in general.

Label costs and block ICM optimization. We evaluated the

benefit of using label costs with a more global optimization

to improve performance. On PETS data, where the Sliding

Window approach already provides very good tracking results

with only 3 fragmentation and 0 IDS, no improvement was

observed. However, results on TUD-Stadtmitte with ρ = 3
(Table IV) shows that several errors can be corrected, allowing

us to reach a very good performance of just 1 Frag and 0

IDS. Similar benefit could be observed on CAVIAR data,

where block ICM and label cost acted towards fragmentation

reduction while solving some IDS ambiguities as well.

From our experiences, it stands out that block ICM with

label costs can be useful to correct some mistakes through the

incorporation of track start and end penalizations leveraging
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Tw BlockICM Rec Prec SO MT PT ML Frag IDS

20 Off 0.79 0.99 19 70% 30% 0% 4 1

20 On 0.81 0.99 18 70% 30% 0% 1 0

TABLE IV
EFFECT OF BLOCK ICM WITH LABEL COSTS FOR TUD-STADTMITTE.

on scene-specific knowledge to define prior label information.

E. Comparison with the state-of-the-art.

Tables V, VI, VII, VIII and IX show the comparison with

recent state-of-the-art algorithms for the different datasets,

when available. Although there are public methods for tracking

evaluation, there is a lack of a unique standard procedure (i.e,

some authors use MOT metrics while others use fragmentation

and IDS). This makes fair comparison against several methods,

including recent ones, difficult, as pointed by Milan et. al.

[25]. In this paper, we evaluate our performance with different

existing metrics to allow comparison with existing approaches

that have some similarities to our proposal. Note as well

that, as discussed in Section VIII-B, different authors often

use different detectors. For the sake of having more detailed

comparisons, we also report and discuss the input detection

recall and precision of our detections and compare them to

those of the detections provided by the different authors, when

available.

On the CAVIAR dataset, Table V compares our results

obtained with an association horizon of 1.5 second (Tw = 38)

and default parameters, with the approaches from [19] and

[40]. Note first that our detector delivers lower performance,

with a worse detection recall for a comparable detection

precision. Nevertheless, the table shows that we outperform

[19] in terms of Frag and IDS. As compared to the network

flow formulation of [40] (algo. 1), we reach an almost identical

number of IDS (8 vs. 7) but with much less fragmented tracks

(38 vs. 58). When adding an explicit occlusion model on top

of the flow model (algo. 2), the method in [40] reduces the

number of fragmentations to 20, but this is at the cost of a

higher number of IDS (15). Our approach thus offers a good

tradeoff between their methods.

For the TUD and PETS datasets, we report our results

obtained with Tw = 20 and Tw = 16, respectively. In the

TUD-Crossing sequence which contains heavy occlusions, we

obtain 1 Frag and 0 IDS, outperforming the method of [10]

(2 IDS) and we equal [39] in terms of IDS. However, they

both present a better MOTA score. This can be explained

by the fact that MOTA takes into account not only IDS, but

also tracking precision and recall. In this sequence, people are

often occluded because they walk next to each other, and this

translates into low detection recall. For instance, by the end

of the sequence we miss a subject due to such an occlusion,

because we did not get any detection in the first place. Since

the proposed method does not attempt to propagate detections

nor extrapolate tracklets, such missdetections penalize the

tracking recall, and ultimately the MOTA. The methods of [10]

and [39] generate candidate detections by using particles and

virtual nodes, respectively, potentially overcoming problems

with missing detections due to occlusion. Despite the lack of

Det. Rec Det. Prec Rec Prec Frag IDS

Huang et. al. [19] 0.88 0.70 0.86 - 54 12

Zhang et. al. [40] algo 1 0.88 0.70 - - 58 7

Zhang et. al. [40] algo 2 0.88 0.70 - - 20 15

Ours 0.82 0.69 0.78 0.93 38 8

TABLE V
COMPARISON WITH STATE OF THE ART APPROACHES ON CAVIAR.

Rec Prec Frag IDS MOTA MOTP

Breitenstein et. al. [10] - - - 2 0.84 0.71

Zamir et. al. [39] 0.93 0.99 - 0 0.92 0.76

Ours 0.89 0.93 1 0 0.79 0.78

TABLE VI
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

TUD-CROSSING.

detections, in this sequence our method obtains pure tracklets,

with only 1 fragmentation.

On TUD-Stadtmitte, we outperform [4] both in terms of

Frag, IDS and MOT metrics. We reach similar results as [39]

and [36], with 1 Frag and 0 IDS. However, we outperform

[39] in terms of MOT metrics.

On PETS, we clearly outperform other techniques insofar

as we reach 0 IDS. The authors of [39] obtain comparable

MOT metrics but with a much higher number of 8 IDS. It

can be noted that one of our fragmentations is due to the fact

that a person going out of the scene and coming back later

is annotated as one single ground truth object. This situation

is out of the scope of this paper, as we do not tackle the re-

identification problem. Another fragmentation is due to a very

long occlusion by the street lamp (more than 10 seconds).

Finally, we compare our tracking results to state-of-the-art

methods on Parking Lot and Town Centre. On both sequences,

we use a temporal connectivity of Tw = 40. These results are

summarized in Table IX. We obtain a similar MOTA than [39]

on the Parking Lot sequence. However, our tracking precision

is higher. On the Town Centre sequence, we outperform [6]

and [39] both in terms of MOTA and MOTP. Note that on

these datasets, the recall and precision of our detections are

similar to those of the detections provided by the authors of

[39] for Parking Lot, and [6] for Town Centre5.

Qualitative results. Finally, Fig. 13, 14 15, 16 and 17 show

some visual results of our tracker on the different datasets. It

can be seen that even in the presence of multiple occlusions

and ambiguities, our algorithm is able to maintain correct

tracks throughout time. Tracking videos are made available

as supplementary material and can also be found online 6.

F. Computational complexity.

Detection-based tracking approaches can basically be de-

scribed as two processing steps: detection and association.

With regard to the detections, although we have used the

version of Felzenswalb [15] in our experiments, the DPM

detection could be made faster by relying on a recently

proposed accelerated version of DPM [14] which exploits

Fast Fourier transform to speed up the per-part convolutions

required by the algorithm. Benchmarked on the VOC dataset,

5We recall that Zamir et. al. [39] also use the part-based model detector on
all datasets.

6www.idiap.ch/∼aheili/tracking.html



EXPLOITING LONG-TERM CONNECTIVITY AND VISUAL MOTION IN CRF-BASED MULTI-PERSON TRACKING 14

Fig. 13. Visual results on TUD-Stadtmitte (1st row) and TUD-Crossing (2nd row)

Fig. 14. Visual results on PETS S2.L1 sequence (View 001)

Fig. 15. Visual results on CAVIAR

Frame 436 Frame 636 Frame 836

Fig. 16. Visual results on Parking Lot (images were edited to highlight interesting regions)

Rec Prec Frag IDS MOTA MOTP

Andriyenko et. al. [4] - - 1 4 0.62 0.63

Yang et. al. [36] 0.87 0.97 1 0 - -

Zamir et. al. [39] 0.81 0.96 - 0 0.78 0.63

Ours 0.81 0.99 1 0 0.90 0.84

TABLE VII
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

TUD-STADTMITTE.

the algorithm was shown to provide a speed-up of one order

of magnitude over the DPM baseline.

While the main cost of the human detector is very pro-

portional to the size of the input image and does not depend

on its content, the tracker cost can arise from the appearance

information extraction, the graph link construction, and the

graph optimization. Appearance feature extraction is done

Rec Prec Frag IDS MOTA MOTP

Andriyenko et. al. [4] - - 8 10 0.89 0.56

Shitrit et. al. [29] - - - 9 - -

Breitenstein et. al. [10] - - - - 0.80 0.56

Zamir et. al. [39] 0.96 0.94 - 8 0.90 0.69

Ours 0.87 0.94 3 0 0.89 0.66

TABLE VIII
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON PETS S2.L1.

Det. Rec Det. Prec MOTA MOTP

Parking Lot
Zamir et. al. [39] 0.86 0.96 0.90 0.74

Ours 0.91 0.96 0.89 0.85

Town Centre

Benfold et. al. [6] 0.77 0.88 0.65 0.80

Zamir et. al. [39] - - 0.76 0.72

Ours 0.73 0.90 0.79 0.82

TABLE IX
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON PARKING LOT

AND TOWN CENTRE.

once for every detection, and is thus not affected by the amount
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Frame 412 Frame 512

Frame 612 Frame 712
Fig. 17. Visual results on Town Centre (images were cropped to save space)

of temporal connectivity. Pairwise β term computation to

build the graph, however, depends directly on the connectivity,

but relies on simple distances between feature vectors whose

computation cost is small or that can be easily optimized.

As for the optimization, since the SW algorithm depends

on the Hungarian algorithm, its complexity is polynomial in

O(n3), where n is the maximum between the number of detec-

tions in the current frame and the number of current tracks in

the sliding window. Therefore, longer term connectivity does

not necessarily imply an increase in complexity. Indeed, as

there are typically fewer fragmentations (and thus less tracks)

when using longer temporal windows, the complexity might

even be reduced. Similarly, block ICM is optimized using

the Hungarian algorithm, and its complexity is polynomial in

the maximum of the number of tracks before and after the

currently optimized frame in the ICM sweep.

To give an idea about the computational complexity of our

tracking algorithm, we report the following average processing

times per frame on the medium crowded scene of PETS

2009 with an association horizon Tw of 2 seconds, tested

on a 2.9 GHz Intel Core i7 laptop with 8GB of RAM and

assuming detections are available: 150ms for visual motion

estimation and color features extraction; 180ms for computing

the pairwise β terms; 60ms and 280ms for SW and Block ICM

optimization, respectively. Note that we have an unoptimized

implementation in Python with no threading. Online tracking

processing could be achieved by optimizing algorithmic steps

-for instance using simple and quick procedures to trim unnec-

essary links in the graph7 or the time steps at which applying

Block ICM could be useful, or through code optimization

(programming language, multi-threading, etc.) as well as by

processing videos at a lower framerate.

IX. CONCLUSION

We presented a CRF model for detection-based multi-person

tracking. Contrarily to other methods, it exploits longer-term

7For example, by not creating links between detection pairs that are
separated by unrealistic distances.

connectivities between pairs of detections. Moreover, it relies

on pairwise similarity and dissimilarity factors defined at

the detection level, based on position, color and also visual

motion cues, along with a feature-specific factor weighting

scheme that accounts for feature reliability. The model also

incorporates a label field prior penalizing unrealistic solutions,

leveraging on track and scene characteristics like duration and

start/end zones. Experiments on public datasets and compar-

ison with state-of-the-art approaches validated the different

modeling steps, such as the use of a long time horizon Tw

with a higher density of connections that better constrains the

models and provides more pairwise comparisons to assess the

labeling, or an unsupervised learning scheme of time-interval

sensitive model parameters.

There are several possibilities to extend our work. First,

rather than using the same model parameters for the whole

test sequence, unsupervised learning or adaptation of model

parameters could be done online by considering detection

outputs until the given instant while performing tracking

on long videos. Second, in order to handle the high-level

of miss-detections that can negatively impact our algorithm,

short term forward and/or backward propagations of detections

could be generated and directly used as another pairwise

association cue in our framework. Furthermore, to handle long

occlusions (beyond 3s and more), higher order appearance re-

identification factor terms potentially relying on online learned

discriminative models like [5] should be defined and exploited

at another hierarchical level. Finally, to better handle crowd

and small group moving interactions, high-order dynamical

prior model taking into account multiple tracks jointly could

be defined like in [7] and used to constrain the solution space

in the global optimization stage.
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