
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Troyanov, président du jury
Prof. F. Eisenbrand, directeur de thèse

Prof. L. Sanità, rapporteuse
Prof. M. G. Speranza, rapporteuse
Prof. O.N.A. Svensson, rapporteur

Approximation algorithms for regret minimization
in vehicle routing problems

THÈSE NO 6163 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 28 MAI 2014

À LA FACULTÉ DES SCIENCES DE BASE
CHAIRE D'OPTIMISATION DISCRÈTE

PROGRAMME DOCTORAL EN MATHÉMATIQUES

Suisse
2014

PAR

Adrian Aloysius BOCK

Acknowledgements
First and foremost, I would like to thank Fritz Eisenbrand for guiding me through my PhD

studies and for being an advisor also in personal matters. The working environment in his

group at EPFL is truly inspiring. The freedom in the selection of research topics, the flexible

working hours, and the possibility to work from other places than EPFL were of inestimable

value to me.

Next, I am very much indebted to Laura Sanità. This work would not have been possible

without her advice, collaboration, and encouragement. Further thanks go to my co-authors

Karthik Chandrasekaran, Elyot Grant, Jochen Könemann, and Britta Peis. I thank my thesis

committee for their helpful comments on content and presentation. Special thanks go to

Alfonso Cevallos, Martin Niemeier, and Ulrike Schorr for their careful proofreading.

Un grand merci à Jocelyne, who truly is the heart of our group. Furthermore, I am especially

grateful to all current and former members of DISOPT and DCG who made EPFL such an

enjoyable place for work and the starting point of crazy nights and many other activities like

skiing or hiking. I wish to thank my colleagues that I had the pleasure to share an office with

at some point. In many fruitful discussions I learned a great deal about math, intercultural

differences, food, god(s), life, and the universe. Thank you for sharing your knowledge and

opinions, and for the appreciated distraction!

Finally, this thesis has begun how every mathematical essay should begin:

Let ε> 0.

Lausanne, May 2014

Adrian Bock

i

Abstract
In this thesis, we present new approximation algorithms as well as hardness of approximation

results for N P-hard vehicle routing problems related to public transportation. We consider

two different problem classes that also occur frequently in areas such as logistics, robotics,

or distribution systems. For the first problem class, the goal is to visit as many locations in a

network as possible subject to timing or cost constraints. For the second problem class, a given

set of locations is to be visited using a minimum-cost set of routes under some constraints.

Due to the relevance of both problem classes for public transportation, a secondary objective

must be taken into account beyond a low operation cost: namely, it is crucial to design routes

that optimize customer satisfaction in order to encourage customers to use the service. Our

measure of choice is the regret of a customer, that is the time comparison of the chosen route

with the shortest path to a destination.

From the first problem class, we investigate variants and extensions of the Orienteering prob-

lem that asks to find a short walk maximizing the profit obtained from visiting distinct locations.

We give approximation algorithms for variants in which the walk has to respect constraints

on the regret of the visited vertices. Additionally, we describe a framework to extend approx-

imation algorithms for Orienteering problems to consider also a second budget constraint,

namely node demands, that have to be satisfied in order to collect the profit. We obtain

polynomial time approximation schemes for the Capacitated Orienteering problem on trees

and Euclidean metrics.

Furthermore, we study variants of the School Bus problem (SBP). In SBP, a given set of locations

is to be connected to a destination node with both low operation cost and a low maximum

regret. We note that the Orienteering problem can be seen as the pricing problem for SBP and

it often appears as subroutine in algorithms for SBP.

For tree-shaped networks, we describe algorithms with a small constant approximation factor

and complement them by showing hardness of approximation results. We give an overview

of the known results in arbitrary networks and we prove that a general variant cannot be

approximated unless P = N P . Finally, we describe an integer programming approach to solve

School Bus problems in practice and present an improved bus schedule for a private school in

the lake Geneva region.

Key words:

Combinatorial Optimization, Approximation algorithm, Vehicle routing problem, Orienteer-

ing, Set-cover integer linear programming formulation

iii

Zusammenfassung
In dieser Arbeit präsentieren wir Approximationsalgorithmen sowie Nichtapproximierbarkeits-

ergebnisse für N P-schwere Tourenplanungsprobleme, wie sie im öffentlichen Nahverkehr

auftreten. Wir betrachten zwei verschiedene Klassen von Problemen, die auch in Bereichen

wie Logistik, Robotik oder Verteilersystemen häufig vorkommen. Die erste Problemklasse hat

zum Ziel, auf einer Route unter Einhaltung gewisser Zeit- oder Kostenschranken möglichst vie-

le Orte zu besuchen. In der zweiten Problemklasse muss eine vorgegebene Menge von Orten

unter gewissen Bedingungen durch Routen mit möglichst geringen Betriebskosten abgedeckt

werden. Wegen der Relevanz solcher Aufgaben im Bereich des öffentlichen Nahverkehrs muss

außer den Kosten meist noch eine weitere Zielfunktion berücksichtigt werden: Es ist nämlich

entscheidend, auch die Kundenzufriedenheit zu optimieren, um die Kunden zur Nutzung

des Service-Angebots zu motivieren. Unser Maß hierfür ist der Zeitverzug eines Kunden, der

durch den Zeitunterschied zwischen der Busroute und der kürzesten Verbindung zu einem

Zielpunkt bestimmt ist.

Aus der ersten Klasse untersuchen wir Varianten und Erweiterungen des Orienteering-Problems.

Darin wird dazu aufgefordert, einen kurzen Weg mit möglichst großem Profit zu bestimmen,

den man durch den Besuch verschiedener Orte bekommt. Wir entwerfen Approximationsalgo-

rithmen für jene Varianten, in denen der Pfad Bedingungen an den Zeitverzug der besuchten

Punkte einhalten muss. Darüberhinaus beschreiben wir eine allgemeine Konstruktion, wie

Approximationsalgorithmen für Orienteering-Probleme um eine Budgetbedingung erweitert

werden können. Diese Budgetbedingung führt eine Nachfrage an jedem Ort ein, die erfüllt wer-

den muss, um den Profit zu erhalten. Wir erhalten Polynomialzeit-Approximationsschemata

für das kapazitätsbeschränkte Orienteering-Problem, wenn das zugrundeliegende Netzwerk

eine Baumstruktur ist oder die Abstandsfunktion euklidisch ist.

Außerdem befassen wir uns mit Varianten des Schulbus-Problems (SBP). Für dieses Problem

ist eine gegebene Menge von Orten mit sowohl niedrigen Betriebskosten als auch minimalem

Maximal-Zeitverzug an einen Zielpunkt anzubinden. Wir stellen Algorithmen für Netzwerke

mit Baumstruktur vor, deren Approximationsfaktor kleine Konstanten sind, und komple-

mentieren diese mit entsprechenden Nichtapproximierbarkeitsergebnissen. Wir geben einen

Überblick über bekannte Ergebnisse für beliebige Netzwerke und beweisen, dass eine all-

gemeine Variante unter der Annahme P 6= N P nicht approximiert werden kann. Schließlich

beschreiben wir einen auf ganzzahliger Programmierung basierenden Ansatz zum Lösen von

Schulbus-Problemen in der Praxis und präsentieren einen verbesserten Busfahrplan für eine

Schule am Genfer See.

v

Acknowledgements

Schlagwörter:

Kombinatorische Optimierung, Approximationsalgorithmus, Tourenplanung, Orienteering,

Ganzzahliges lineares Programm zur Mengenüberdeckung

vi

Contents
Acknowledgements i

Abstract (English/Deutsch) iii

List of Figures viii

List of Tables ix

1 Introduction 1

2 Orienteering and related variants 7

2.1 Introduction . 7

2.1.1 Related work . 8

2.1.2 Our contribution . 9

2.1.3 Preliminaries . 11

2.2 Capacitated Orienteering on general graphs . 12

2.2.1 A (3+ε)-approximation algorithm for COP 12

2.2.2 Applications of an approximation algorithm for COP 15

2.3 Scaling and Rounding techniques . 16

2.4 Capacitated Orienteering on Euclidean metrics 20

2.4.1 The PTAS for OP in the plane . 21

2.4.2 Our modifications . 23

2.5 Results on tree metrics . 25

2.5.1 COP on tree metrics . 25

2.5.2 Q-path and MEP on tree metrics . 27

2.6 Orienteering on planar graphs . 29

2.7 Orienteering with deadlines . 30

2.7.1 Orienteering with delay factor . 30

2.7.2 Arbitrary deadlines . 34

3 The School Bus problem and related variants 37

3.1 Introduction . 37

3.1.1 Related work . 38

3.1.2 Our contributions . 40

3.1.3 Preliminaries . 42

vii

Contents

3.1.4 Relations of different objectives . 45

3.2 The School Bus problem . 46

3.2.1 General graphs . 46

3.2.2 Tree metrics . 46

3.3 The School Bus problem with regret minimization 54

3.3.1 Tree metrics . 54

3.3.2 General graphs . 60

3.4 Extensions and further variants . 63

3.4.1 Multiplicative regret . 63

3.4.2 Distance-constrained vehicle routing problem (with split-delivery) . . . 66

4 The School Bus problem in Practice 69

4.1 Introduction . 69

4.1.1 Related work . 69

4.1.2 Our results . 69

4.2 A heuristic based on integer programming and column generation 70

4.2.1 Description of the instance . 70

4.2.2 Preliminaries . 70

4.2.3 IP formulation . 71

4.2.4 Practical results . 73

5 Summary and Conclusion 77

Bibliography 84

Curriculum Vitae 85

viii

List of Figures
2.1 Modification along the unique s-t-path. The optimal s-t-walk in the original

instance is indicated in blue whereas the equivalent, optimal closed walk around

s in the modified instance is shown in red. Note that in the modified instance,

the black edges on the unique s-t-path have weight 0. The selected vertices

whose demand is fulfilled and whose profit is thus collected are indicated in

blue, respectively. 26

2.2 Modifications to obtain a binary tree. Profits are indicated in red, demands in

blue and edge weights in black. 26

2.3 Optimal solution P∗ with the vertices arranged by distance from s; its restriction

V ∗
i to the set Vi is indicated in gray. Note that the vertical positioning of P∗ is

only for the sake of exposition. 34

3.1 Example of a tree with unit distance edges and R = 6. A maximal set of anchors

is drawn as square nodes, the corresponding skeleton is shown in solid and the

grey, dashed parts of the tree are the short subtrees. 48

3.2 Example of a tree with unit distance edges and R = 6. Anchors are drawn as

square nodes, junction points as empty circles. 55

3.3 Illustrations for Algorithm 4 . 57

3.4 Gadget for each variable xi and for a clause Ck = xk1 ∨xk2 ∨xk3 , respectively . . 61

4.1 Screenshot from Google Maps showing bus stops (red markers) and the school

(green S-marker). 75

4.2 Screenshot from Google Maps showing the suggested bus routes in different

colors. 75

ix

List of Tables
3.1 Results for variants of DVRP on a tree metric (with unlimited capacity) 39

3.2 Results for variants of SBP on a tree metric with unlimited capacity 41

3.3 Results for variants of SBP . 41

3.4 Results for variants of SBP-mult with unlimited capacity 63

4.1 Overview of the computed bus routes . 73

4.2 Comparison of the previous and our solution . 73

xi

1 Introduction

In this thesis, we present approximation algorithms for several NP-hard vehicle routing prob-

lems on graphs. Such problems fall into the category of combinatorial optimization problems

that ask to find an optimal solution from a finite set of feasible solutions to the problem. For

instance, we could wish to find a solution with minimum cost or maximum profit. Yet the set

of feasible solutions may be very large, and it would be very inefficient and thus impractical to

examine all solutions to find the best one. In order to solve such difficult problems, there is a

need for efficient algorithms that compute a solution whose value may be suboptimal, but

is still provably close to the optimum. For some of these problems, we provide hardness of

approximation results showing that it is impossible to find such an approximation algorithm

with a certain factor or better unless P = N P .

Vehicle routing is an important and active topic in computer science and operations research.

In a vehicle routing problem, the objective typically is to find a minimum-cost set of routes

in a network such that a given set of locations is visited and some constraints are obeyed.

The constraints and cost are often related to the distance travelled, number of routes or

vehicles used, coverage of the network by the routes, etc. Alternatively, the goal can be to

visit a large number of locations subject to constraints, e.g. prescribed start and terminal

locations. Problems of these two kinds are frequent and crucial in areas such as logistics,

robotics, distribution systems, and public transportation (see, e.g., the survey by [TV01]).

A fundamental example of a vehicle routing problem is the Traveling Salesman problem (TSP).

In the TSP, we are given a set of locations to be visited with (metric) distances between them

and the task is to find the shortest tour through all locations. People are working on TSP since

the 1930s [TSP]. There has been a lot of work on efficient approximation algorithms for TSP

[Chr76, Aro98, Mit99, Kle05, SV12] as well as on heuristics to solve TSP close to optimality (see

[TSP] for a bibliography).

TSP has always been a driving force for the development of new algorithmic techniques

that were then successfully applied also to related vehicle routing problems. As a famous

example, we mention the seminal work of Arora and Mitchell [Aro98, Mit99] on TSP in the

plane. Recently, there was improvement made also for further special cases of TSP, namely for

1

Chapter 1. Introduction

planar metrics [Kle05] and for the so called graphical TSP [SV12].

We focus in this thesis on vehicle routing problems relevant to public transportation (e.g. bus

systems) where all customers, situated at different locations in the network, have to be taken to

a common target destination (e.g. a school). For such tasks, a secondary objective often must

be taken into account beyond minimizing operation cost: namely, it is crucial to design routes

that also optimize customer satisfaction in order to motivate customers to use the service.

Customer satisfaction is often measured in the literature by objectives that incorporate the

customer’s waiting time, the latency. For instance, the aforementioned TSP aims at minimizing

the maximum latency of a customer on the tour. However, the latency is independent of the

customer’s home location relative to the target destination. This can lead to an unfairness

perceived by the customers, since a client close to the target destination may be served much

later than a client that is located further away. Therefore, we introduce the notion of regret

which compares the waiting time of a customer to his shortest-path distance from the target

destination. Our concept of regret addresses the described issue and allows for a client-centric

point of view. We distinguish two possibilities of how the comparison of the waiting time and

the shortest-path distance can be made: Namely, we refer to an additive regret if the difference

is considered, and we call multiplicative regret or delay factor the ratio of the two quantities.

We observe that a constraint on the additive regret is more restrictive if the customers are

further away from the target destination, whereas a bound on the delay factor is more limiting

if the customers are situated rather close to the depot.

We consider in the following two general categories of problems: In the first category, a solution

is required to connect all nodes in the network to a destination or depot. The goal is then to

minimize the operation cost while, secondary, maximizing the customer satisfaction. The

second category contains problems that ask to find a single route that connects a subset of

the locations to the destination. Their task is to maximize the customer satisfaction with

minimal operation cost. Both frameworks share the aspect that a trade-off between two

objective functions has to be found: the cost of the solution and its value for the customer

satisfaction. Since the problems in both categories are typically NP-hard, we are interested in

approximation algorithms for them and thus have to make a compromise for one of the two

distinct objectives. Either we approximately maximize the customer satisfaction subject to

an upper bound on the operation cost (budget problem) or we approximately minimize the

operation cost subject to a lower bound on the customer satisfaction (quota problem).

From the first category, we will study variations of the School Bus problem including both

budget and quota problems. The second class of problems we explore, namely Orienteering

problems, falls into the second category. We now present these two problem classes in more

detail.

2

Orienteering

In the Orienteering problem, a single salesman has a travel time budget and might thus not

be able to visit all locations in the network. The natural goal is then to maximize the total

value obtained from visiting a subset of the locations. We note that the travel time budget is

equivalent to a common additive regret threshold for all nodes of the network. The name of

the problem stems from an outdoor sport where the participants are given a topological map

of the terrain and they wish to maximize their individual score obtained from visiting some of

the control points in a limited amount of time.

We describe approximation algorithms and results for the hardness of approximation for

several extensions and variations of the Orienteering Problem. In the Orienteering Problem

with delay factor (OP-R), we enforce that the multiplicative regret of every visited location

does not exceed a given delay factor. Arbitrary deadlines for the locations replace the time

budget for the Orienteering Problem with Deadlines (OPD). We note that these deadlines can

be seen as individual additive regret thresholds.

For any variation of the Orienteering Problem, we can also consider a generalization that

incorporates a second budget constraint: We additionally have to satisfy demands at every

location to obtain the profit. However, the total demand shall not exceed a given capacity

bound. In particular, we study the Capacitated Orienteering Problem (COP): Maximize the

total profit obtained for serving the demands of some locations without exceeding neither the

travel budget nor the capacity bound.

Additionally, we discuss the quota version of the Orienteering problem, the Minimum Excess

Problem (MEP), where we aim at minimizing the maximum regret that incurs by collecting a

certain value from a subset of the locations.

Orienteering problems are frequently used as subroutines in algorithms for problems of the

first category; we will present examples for applications of Orienteering in the School Bus

problem and a related vehicle routing problem.

Following the notation commonly used in the literature, we refer to the maximum additive

regret of a vertex on a path also as excess of the path and we call the target destination also

root. In some cases, it is helpful to specify both endpoints for the Orienteering problem. If

applicable, we state the problems and results in this more general form.

Our contribution

We briefly summarize our main theoretical results for variations of the Orienteering problem.

• A framework that allows to extend an approximation algorithm for any variant of the

Orienteering problem to work also for the capacitated case at a small loss in the approxi-

mation factor.

As a consequence, a (3+ε)-approximation algorithm for COP is obtained.

3

Chapter 1. Introduction

• Polynomial time approximation scheme (PTAS)1 for COP on Euclidean metrics.

• PTAS for COP and MEP on tree metrics.

• O
(
log Xmax

Xmin

)
-approximation algorithm for OPD, where Xmax and Xmin denote the maxi-

mum and minimum additive regret threshold, respectively.

• O
(
log R

R−1

)
-approximation algorithm for OP-R, where R > 1 is a given delay factor.

School Bus problem

The School Bus Problem is an N P-hard vehicle routing problem in which the goal is to route

buses that transport children to a school such that for each child, the distance travelled on the

bus does not exceed the shortest distance from the child’s home to the school by more than a

given additive regret threshold. Subject to this constraint and a bus capacity limit, the goal can

be to minimize the number of buses required (SBP) or to minimize the total length of the bus

routes (SBP-Σ). We call SBP-R the variant where we have a fixed number of buses to use, and

the goal is to minimize the maximum regret of a child.

We present in this thesis an overview of approximation and hardness results for variations

of the School Bus problem and we prove relations between some of the considered variants.

In addition, we study the variations considering a multiplicative regret or delay factor for

approximation algorithms and hardness results. Finally, we describe the natural set-covering

integer programming formulation for SBP and give bounds on the integrality gap of its linear

relaxation. It is then used to obtain an approximation algorithm for a further extension of the

SBP.

School Bus systems are common in countries as Switzerland, Germany or France, since the

school assignment is determined by the home location of the children. The transportation

demand is known in advance and thus there is big need for planning tools that can solve this

complex optimization problem efficiently. We present in Chapter 4 an integer programming

based approach that we used to compute an improved bus schedule for a private school in the

lake Geneva area.

Note that we focus in our description on the setting of a school bus system. This is however not

immanent to the considered problems; they also form the basis of many similar transportation

tasks and the methods we develop can be applied to them just as well.

1See Basics at the of this chapter for a definition.

4

Our contribution

We briefly summarize our main theoretical results for variations of the School Bus problem.

• SBP:

– O(logC)-approximation algorithm, where C denotes the given bus capacity;

hard to approximate with a factor better than 2 unless P = N P ;

– 4-approximation algorithm on tree metrics;

hard to approximate with a factor less than 1.5 unless P = N P ;

– Integrality gap bounds for the natural covering LP formulation:

upper bound of O(logC) on general metrics;

upper bound of 4 and lower bound of 2 on tree metrics.

• SBP-R:

– SBP-R cannot be approximated on general metric graphs unless P = N P ;

– 13.5-approximation algorithm on tree metrics in case of unlimited capacity.

• SBP-Σ:

– 4-approximation algorithm on tree metrics;

hard to approximate with a factor less than 1.5 unless P = N P .

We point out that these School Bus problems have not been studied for approximation algo-

rithms before. Following our work, new results have been obtained in a recent article accepted

for publication in a top-tier conference [FS14].

Organization of this thesis

This thesis has two main parts. First, we present in Chapter 2 several approximation results

for variants of the Orienteering problem. This chapter is based on joint work with Laura

Sanità and discussions with Alfonso Cevallos and Franka Tholen. Our work is reflected in

the publications [BS13, BS14]. Second, variations of the School Bus problem are studied. In

Chapter 3, we present theoretical insights for variants of the School Bus problem and we

give an overview of approximation and inapproximability results. This chapter is joint work

with Laura Sanità, Elyot Grant, and Jochen Könemann and it is based on the publications

[BGKS11, BGKS13, BS13]. A practical application of the School Bus problem in a real-life

setting is presented in Chapter 4.

Both main parts of the thesis are organized to be self-contained and do not build on each

other. The introductory sections of each chapter as well as the following paragraph are advised

to be consulted for notation and fundamental concepts. At several points of this thesis, we also

review work by other authors. These paragraphs are clearly marked as such and we provide

reference to the authors.

5

Chapter 1. Introduction

Basics

All optimization problems considered in this thesis share the property that every feasible

solution has a non-negative objective value. We distinguish minimization and maximization

problems depending on whether the objective is to minimize or to maximize a certain quantity.

An algorithm for an optimization problem is said to be efficient (runs in polynomial time) if its

running time can be bounded by a polynomial of constant degree in the size of the problem

instance. Most of the problems encountered in this thesis are N P-hard, i.e., there exists no

efficient algorithm for those problems unless the complexity classes P and N P are the same.

We refer to the book of Vazirani [Vaz01] for rigorous definitions of P and N P and a more

detailed introduction to complexity theory. The O-notation [Vaz01] is used for the sake of

exposition and readability.

Anα-approximation algorithm for a minimization (resp. maximization) problem is an efficient

algorithm A that for every instance I of the problem returns a feasible solution with objective

value at most α
(

resp. at least 1
α

)
times the optimal value of I . We refer to the parameter α

also as approximation factor or approximation guarantee. Note that α may depend on the

input size |I | and that α≥ 1 holds for any algorithm. An exact algorithm has approximation

factor 1.

A polynomial time approximation scheme (PTAS) for a minimization (resp. maximization)

problem is an algorithm A that, given an instance I of the problem and a value ε> 0, returns

a feasible solution of value at most (1+ε)
(

resp. at least 1
(1+ε)

)
times the optimal value of I .

The running time of A is polynomial in the input size |I | for any fixed constant ε. A fully

polynomial time approximation scheme (FPTAS) requires the running time of the algorithm to

be polynomial in both the input size and 1
ε .

We say that a problem is N P-hard to approximate within a factor of β if the existence of a

β-approximation algorithm for this problem implies P = N P . Furthermore, a problem is

inapproximable if it is N P-hard to approximate within any factor β.

Again, we refer to [Vaz01] for more details about the concepts of approximation algorithms

and the hardness of approximation.

We will make use of basic concepts of graph theory [KV12] and linear programming [BT97].

6

2 Orienteering and related variants

2.1 Introduction

In the Orienteering Problem (OP), we are given an undirected complete graph G = (V ,E) with

metric distances d : E →N on the edges, start and end nodes s, t ∈V , node profits π : V →N

and a length bound D. The goal is to find an s-t path P = (VP ,EP), subject to the length

constraint
∑

e∈EP

d(e) ≤ D , that maximizes the profit
∑

v∈VP

π(v) collected from the visited nodes.

OP is a fundamental network design problem with high theoretical and practical relevance. The

problem is widely studied in the literature for approximation, exact, and heuristic algorithms

([CKP12], [CH08], [FDG05], [VSO11]). There is a long list of vehicle routing problems for which

efficient algorithms rely on applying algorithms for OP as a subroutine (e.g. Deadline-TSP

[BBCM04], Distance-constrained Vehicle Routing Problem [NR12], or the School Bus Problem,

cf. Chapter 3).

Many approximation algorithms for OP rely on results for the closely related Q-path problem:

Given an undirected complete graph G = (V ,E) with metric distances d : E →N, start and end

nodes s, t ∈V , node profits π : V →N and a quota Q, the goal is to find the shortest s-t path

P = (VP ,EP) satisfying the quota constraint
∑

v∈VP

π(v) ≥Q. This problem can be strengthened

to the Minimum Excess Problem (MEP). MEP asks in the same setting as Q-path for an s-t-path

P of minimum excess, i.e., minimizing the length of the path minus the shortest path distance

between s and t (the regret of t). We observe that MEP and the Q-path problem are equivalent

in terms of the optimal solution, however, an α-approximation algorithm for MEP implies an

α-approximation algorithm for the Q-path problem, but not vice versa.

In section 2.2, we focus on a natural generalization of OP in which the selected path has to

satisfy a second budget constraint besides the length bound. Given node demands r : V →N

and a capacity bound C ∈N, we look for a path P that maximizes
∑

v∈VP

π(v) and that satisfies

both constraints
∑

e∈EP

d(e) ≤ D and
∑

v∈VP

r (v) ≤C . We refer to this problem as the Capacitated

7

Chapter 2. Orienteering and related variants

Orienteering Problem (COP).

Furthermore, we consider the Orienteering Problem with deadlines (OPD). For OPD, we are

given undirected complete graph G = (V ,E) with metric distances d : E → N on the edges,

a start node s ∈ V and node profits π : V →N as for OP, but also node deadlines D : V →N.

Instead of a length bounded path, OPD asks for a rooted path that collects maximum profit

from vertices visited before their deadlines. Observe that the special case where all deadlines

are the same corresponds to OP where only the start node is specified.

OPD itself is a special case of the Orienteering Problem with time windows (OP-TW), where in

addition integer release times are given for every vertex. The goal of OP-TW is to find a rooted

path that collects maximum profit from vertices visited in the specified time window.

2.1.1 Related work

In the following, we will report results for Orienteering problems that were mostly given for

unit profit values. However, they can be generalized to arbitrary profits by standard scaling and

rounding techniques [BCK+03] (cf. also Section 2.3) involving an additional (1+o(1))-factor

in the approximation guarantee. We denote by OPT the number of vertices of the optimal

solution.

OP was introduced by Golden et al. [GLV87] and is NP-hard already on a star (cf. [ABST14]

or Section 2.5). Approximation algorithms for OP were designed by Arkin et al. [AMN98]

primarily for given points in the plane. The first constant factor approximation algorithm

for general metrics was obtained by Blum et al. [BCK+03] and subsequently improved to a

(2+ε)-approximation algorithm [BBCM04, CKP12]. OP is NP-hard to approximate within 1069
1068

combining results in [BCK+03] and [KS12]. In the special case of Euclidean metrics, OP admits

a PTAS [CH08], but is NP-hard even for unit profits π≡ 1 [Pap77]. OP on tree metrics admits

an FPTAS based on dynamic programming [ABST14].

Gupta, Krishnaswamy, Nagarajan and Ravi [GKNR12] give approximation algorithms for a

stochastic version of OP. Among their results, they obtain a constant factor approximation

algorithm for COP (which they call Knapsack Orienteering). In particular, they design a

2α-approximation algorithm for COP, relying on an α-approximation algorithm for OP as a

subroutine. Using the currently best known approximation algorithm for OP given by Chekuri

et al. [CKP12] with factor (2+ε), their result translates into a (4+ε)-approximation algorithm

for COP.

The Q-path problem and MEP are usually considered in the unit profit case [CGRT03, BCK+03]

and the Q-path problem is then referred to as k-path or k-stroll problem [Mit99, CGRT03].

Both problems are NP-hard even on star metrics (cf. Section 2.5) and the best known approx-

imation factor in general graphs is (2+ε) for both problems [BCK+03, CGRT03]. As for OP,

both are NP-hard for Euclidean metrics (also with unit profits) and there is a PTAS known

[Aro98, Mit99, CH08]. Angelelli et al. present an FPTAS for Q-path on tree metrics [ABST14].

8

2.1. Introduction

Bansal et al. [BBCM04] introduce OPD and give a O(logOPT)-approximation algorithm that

relies on an approximation algorithm for OP as a subroutine. They also obtain a O(log2 OPT)-

approximation algorithm for OP-TW and a O(logDmax)-approximation using bicriteria op-

timization, where Dmax := maxv∈V D(v) denotes the largest deadline in the instance. These

results can be improved if the number of different time windows is constant [CK04] or if

the length of all time windows is the same and if additionally the endpoints are not speci-

fied, but arbitrary [FW07]. In both cases, a constant factor approximation algorithm is ob-

tained. Furthermore, there is a O
(
α ·max

{
logOPT, log Lmax

Lmin

})
-approximation relying on an

α-approximation for OP [CKP12], where Lmax and Lmin denote the length of the largest and

smallest time window, respectively. We note that OP-TW is NP-hard already on a line [Tsi92]

and a O(logOPT)-approximation algorithm for OP-TW that runs in quasi-polynomial time

can be obtained [CP05].

The time-dependent OP was studied by Fomin and Lingas [FL01]. Broden et al. [BHN04] give

a 4/3-approximation algorithm for the special case of unit profits and distances 1 or 2.

A survey on routing problems with profits is due to Feillet, Dejax, Gendreau [FDG05]. Recently,

Vansteenwegen, Souffriau and Van Oudheusden [VSO11] gave a survey on heuristics for Orien-

teering problems. Butt and Cavalier [BC94] introduced the Multiple Tour Maximum Collection

Problem which is the natural extension to a fleet of vehicles. This problem was first referred to

as Team Orienteering Problem by Chao, Golden and Wasil [CGW96]. Recent heuristics for the

Team Orienteering Problem were presented by Tang, Miller-Hooks [TMH05] and by Archetti,

Hertz and Speranza [AHS07], whereas an exact algorithm was presented by Boussier, Feillet,

Gendreau [BFG07].

The Capacitated Team Orienteering Problem (CTOP) was first studied by Archetti et al. [AFHS09]

where heuristics and a branch-and-price algorithm were proposed. The algorithms were ex-

tended to work also for CTOP if a node demand can be served by several vehicles (split

deliveries) by Archetti et al. [ABSH14]. They also showed that if split deliveries are allowed, the

profit of the optimal solution can be at most twice as large as the optimal profit for CTOP.

Also OP-TW has been studied extensively for heuristics [Sav85, DLSS88, KR92, DDS92, Tha95,

TLZO01].

2.1.2 Our contribution

We present a framework that allows to additionally consider node demands and a capacity

bound in any variation of the Orienteering problem. If an α-approximation algorithm is

known for the variant with unlimited capacity, we obtain a (α+1+ε)-approximation algorithm

respecting the capacity bound. Most interestingly, this implies, using the result in [CKP12], an

approximation guarantee of (3+ε) for COP, improving upon [GKNR12].

Furthermore, we show that there is a Polynomial Time Approximation Scheme (PTAS) for

COP on tree metrics and on Euclidean metrics. Both results rely on dynamic programming

9

Chapter 2. Orienteering and related variants

combined with a feasibilization method introduced by Grandoni and Zenklusen [GRSZ13].

The PTAS for COP on Euclidean metrics builds upon the corresponding known result for OP

by Chen and Har-Peled [CH08].

We also give a PTAS for Q-path on tree metrics and extend this result to MEP.

OP on planar graphs is a topic of ongoing research; we describe the first steps taken and give

an outline on how a PTAS could potentially be obtained.

For the OPD, we obtain a O
(
log Xmax

Xmin

)
-approximation algorithm, where Xmax and Xmin denote

the maximum and minimum individual regret threshold, i.e., the difference of the deadline

and the shortest distance to the root. We also consider the special case where all deadlines are

R times the shortest distance to the root, where R is a delay factor given as part of the input. In

this case, we obtain a O
(
log R

R−1

)
-approximation algorithm. We note that our result for OPD

also extends to the case in which both endpoints of the path are specified.

Additionally, we observe that for some capacitated vehicle routing problems, good approx-

imation algorithms can be built upon the existence of good approximation algorithms for

COP.

A first extension considers a fleet of M capacitated vehicles that can be used to collect profits.

This is the so-called Capacitated Team Orienteering Problem (CTOP), that is motivated by

several applications in logistics [AFHS09]. As an example, consider a carrier that has to select

the most profitable customers whose demands can be served given his capacitated fleet of

vehicles.

Important savings can be achieved if a customer can be served by more than one vehicle

(split delivery). This variant of the problem is called the Capacitated Team Orienteering with

split deliveries (SDCTOP) [ABSH14]. Both CTOP and SDCTOP have been studied in terms of

heuristics and exact algorithms, but there is no rigorous analysis of the complexity of these

problems in terms of approximation algorithms. We give a constant factor approximation

algorithm for both problems, using our approximation results for COP.

A second application concerns the Distance-constrained Vehicle Routing Problem (DVRP)

that we will explore in Section 3.4.2. This problem asks for the minimum number of paths re-

specting both a length bound D and a capacity bound C that is necessary to serve all customer

demands. Nagarajan and Ravi [NR12] described a min
{
O(logn),O(logD)

}
-approximation

algorithm, where n denotes the number of customers. Recently, an O
(

logD
loglogD

)
-approximation

algorithm was presented by Friggstad and Swamy [FS14]. Combining our results with the

greedy algorithm for the set cover problem, we easily obtain an O(logC) approximation.

10

2.1. Introduction

2.1.3 Preliminaries

In the following, we use the notation r (W) := ∑
v∈W

r (v) and analogously π(W) := ∑
v∈W

π(v) for

any subset of nodes W . For a given path P , we denote by VP the nodes of P and by EP its edges.

With a slight abuse of notation, we shorten r (VP) and π(VP) to r (P) and π(P) respectively.

Furthermore, we will use dG (u, v) to refer to the shortest path distance between two vertices

u and v in G . If G is clear from the context, the subscript is omitted. For a path P , we define

d P (u, v) to be the distance along the path between two vertices u, v ∈ VP . The segment of

the path P (or subpath) between u and v is denoted by P (u, v). Furthermore, we denote

`v := d(s, v) for the distance of a vertex v ∈V from the root s.

Given a complete graph G = (V ,E) with metric edge distances d , we say that d is a tree metric

if there exists a spanning tree T = (V ,F) of G with the following property: d(e) = dT (u, v) for

all e = {u, v} ∈ E where dT (u, v) is the length of the unique u-v path in T . Similarly, we say d is

induced by a planar graph, if there exists a planar subgraph G̃ = (V , Ẽ) such that d(e) = dG̃ (u, v)

for all e = {u, v} ∈ E . If the tree metric is induced by a star, then we also refer to it as a star

metric.

When dealing with metrics that are induced by a tree or a planar graph, it is useful to think

about COP in a slightly different but equivalent way.

Given a tree T = (V ,F) with node profits and demands, edge weights d : F →N and two nodes

s and t , COP asks for a walk P between s and t in T that collects maximum profit from (a

subset of) the nodes contained in P and satisfies both a length bound D and the capacity

bound C . It is straightforward to see that this is equivalent to asking for a path between s and

t in the metric closure of (T,d) (cf. [KV12]), i.e., the complete graph (G , d̃) that has an edge

e = {u, v} with d̃(e) = d(u, v) for every u, v ∈V .

In the same way, we can consider a metric induced by a planar graph.

The following proposition is an easy observation that is crucial to most of the approximation

algorithms for Orienteering problems. Recall that the regret of a vertex u on a path P from

v to w is the difference d P (v,u)−d(v,u). Further, we say that a path P from v to w has

excess d P (v, w)−d(v, w). Note that the excess of a path is the maximum regret among the

vertices on the path or equivalently, the regret of the last vertex. This is because the regret is

non-decreasing when traversing a path from one endpoint (cf. 3.1.3 for a formal argument).

The following simple proposition shows that a rooted path can be split into k rooted paths

such that the profit is evenly distributed and one of them has low excess. A similar statement

was implicitly used in [BBCM04].

Proposition 2.1.1. Given an integer k ≥ 1 and a rooted path P with profitΠ and excess X , there

is a rooted path of profit ≥ Π
k and excess at most X

k .

Proof. We define k +1 breakpoints vi (i = 0, . . . ,k) that split the path P into k segments of

11

Chapter 2. Orienteering and related variants

profit ≥ Π
k . This can be achieved by following P starting from v0 = s until a share of profit ≥ Π

k

is visited. Note that the breakpoints are not necessarily distinct. The k new rooted paths Pi

are obtained by connecting each of the segments to the root. Every path has obviously profit

≥ Π
k and it remains to prove that there exists a path with small excess. We show that the sum of

the excess of the paths Pi is exactly X .

Let Xi = d(s, vi)+d P (vi , vi+1)−d(s, vi+1) denote the excess of path Pi for i = 0, . . . ,k −1. This

yields

k−1∑
i=0

Xi =
k−1∑
i=0

d(s, vi)+d P (vi , vi+1)−d(s, vi+1) = d P (s, vk)−d(s, vk) = X

and thus the statement follows.

In Section 2.4 and 2.5, we present polynomial time approximation schemes for COP and MEP

in special metrics. For the sake of readability, we only show that the described algorithms

obtain a value at least (1−ε) times the optimum for any ε> 0 and omit the additional notation

proving that this also implies an (1+ ε̃)-approximation algorithm for every ε̃ := ε
1−ε > 0.

2.2 Capacitated Orienteering on general graphs

In this section, we describe a framework to extend approximation algorithm for variants of

Orienteering to respect also an additional budget constraint for given node demands. For

simplicity of exposition, we focus on the relation of OP and COP.

2.2.1 A (3+ε)-approximation algorithm for COP

We present a (3+ε)-approximation algorithm for COP. This result follows from Theorem 2.2.1

and the (2+ ε)-approximation algorithm for OP [CKP12]. We observe that Theorem 2.2.1

holds in the same way also for any other variation of the Orienteering problem, since the

α-approximation algorithm for OP is used as a subroutine in a black box fashion.

Theorem 2.2.1. Given anα-approximation algorithm for OP and 1 > ε> 0, there is a (1+α+ε)-

approximation algorithm for COP.

Proof. Given an instance (G ,d ,π,r,C ,D) of COP, we let P∗ be an optimal solution. We first set

δ := ε
3 , and δ̂ := δ

1+δ . Clearly, both δ and δ̂ are fixed small constants. Consequently, we observe

that if |VP∗ | ≤ 1
δ̂

, then an optimal solution can be found by enumeration. Therefore, we can

assume |VP∗ | > 1
δ̂

.

As a first step, we guess the 1
δ̂

-cardinality subset S of nodes of highest demand values visited

by P∗ (this can be done in polynomial time by trying out all possibilities). We have S ⊂ VP∗

with |S| = 1
δ̂

and the following property: for any u ∈ S and any v ∈VP∗ \ S, r (v) ≤ r (u).

12

2.2. Capacitated Orienteering on general graphs

Based on this guessing step, we are going to slightly modify our instance. First, we eliminate

all the nodes v ∉ S with r (v) > δ̂C from our instance, as such nodes are surely not contained in

VP∗ : if so, then r (u) > δ̂C for all u ∈ S would hold by our choice of S, leading to a violation of

the capacity bound C . Second, we order all the nodes according to their profit and demand

ratio, i.e. π(1)
r (1) ≥ ·· · ≥ π(n)

r (n) , where n is the total number of nodes left in our instance. By scaling,

we can also assume π(n)
r (n) ≥ 1. Finally, we let k :=

⌊
log(1+δ)

π(1)
r (1)

⌋
. Consider Algorithm 1.

Algorithm 1 (1+α+ε)-approximation algorithm for COP on modified instances

1: Puncap ←;, Pcap ←; and i ←
⌊

log(1+δ)
π(1)
r (1)

⌋
+1.

2: while Pcap =; and i > 0 do

3: i ← i −1.

4: For all v ∈V , define new profit values π(i)(v) :=
{
π(v) if π(v)

r (v) ≥ (1+δ)i

0 otherwise

5: Apply an α-approximation algorithm to the OP instance (G ,d ,π(i),r,D), that returns a

path P .

6: if r (P) ≤C then

7: Puncap ← P

8: else

9: Pcap ← P

10: end if

11: end while

12: if Pcap 6= ; then

13: Remove greedily the node v in Pcap of smallest demand r (v) (and shortcut the resulting

path accordingly), until r (Pcap) ≤C .

14: end if

15: Return argmax
{
π(Puncap),π(Pcap)

}

The algorithm does a number of (at most k +1) iterations. In iteration i , it considers only the

subset of nodes of the graph whose profit per demand ratio is at least (1+δ)i , and computes a

path using an approximation algorithm for OP, therefore ignoring the capacity bound (step 5).

If the resulting path P respects the capacity bound C , then this path will be stored as the last

feasible path (Puncap) found using the approximation algorithm for OP.

In each iteration, the algorithm enlarges the set of nodes to be considered until eventually

r (P) >C holds for the path returned by the approximation algorithm for OP. At this point, the

algorithm stores this path (Pcap) and exits the WHILE loop.

By the end of the WHILE loop execution, the algorithm has stored two paths: Puncap which

is a feasible path for our COP instance, and Pcap which is in contrast not feasible because

the capacity bound is not respected. For this reason, the algorithm modifies Pcap in step 13

13

Chapter 2. Orienteering and related variants

by greedily discarding the nodes of smallest demand until it becomes a feasible path. The

algorithm finally outputs the more profitable path among Puncap and Pcap.

We claim that Algorithm 1 gives a (α+1+ε)-approximation for COP.

Before going into the details of our analysis, note that we do not require Puncap and Pcap to

contain the set S. The reason for guessing S is to ensure that r (Pcap) ≥ (1− δ̂)C holds after step

13: this is because in step 13 of the algorithm we will never discard nodes in S from Pcap, since

those will have a high demand value but r (S) ≤C holds. Consequently, we only discard nodes

v with demand r (v) ≤ δ̂C and therefore r (Pcap) ≥ (1− δ̂)C : this inequality will be used later in

our analysis.

Let i∗ be the value of the variable i at the end of the algorithm. If i∗ = 0, then the path Puncap is

an α-approximation for COP, since it respects the capacity bound and since the profits π(0) ≡π
are considered. Thus we can focus on the case i∗ > 0, i.e., the WHILE loop was exited because

the variable Pcap was set.

We define

V +(i∗) :=
{

v ∈VP∗ :
π(v)

r (v)
≥ (1+δ)i∗+1

}
V −(i∗) :=

{
v ∈VP∗ :

π(v)

r (v)
< (1+δ)i∗+1

}

Trivially, π(P∗) =π(V +(i∗))+π(V −(i∗)). We are now going to give a bound on both π(V +(i∗))

and π(V −(i∗)).

Our first claim is that

π(V +(i∗)) ≤απ(Puncap).

This follows by the approximation guarantee of the algorithm used for the OP instance at step

5. More precisely, note Puncap has been found in iteration i∗+1, and that the optimal solution

P∗ is feasible for the OP instance (G ,d ,π(i∗+1),r,D) considered in that iteration. Therefore,

π(Puncap) ≥ 1

α
π(i∗+1)(P∗) = 1

α
π(V +(i∗)).

Our second claim is that

π(V −(i∗)) ≤ (1+δ)2π(Pcap).

To see this, first observe that π(V −(i∗)) ≤ ∑
v∈V −(i∗)

π(v)

r (v)
· r (v) ≤C · (1+δ)i∗+1 by definition and

feasibility of P∗. Then, observe that π(Pcap) = ∑
v∈VPcap

r (v) · π(v)

r (v)
≥ (1− δ̂)C (1+δ)i∗ , because the

14

2.2. Capacitated Orienteering on general graphs

path Pcap only contains nodes with a profit per demand ratio of at least (1+δ)i∗ and because

its total demand is r (Pcap) ≥ (1− δ̂)C . Therefore,

π(V −(i∗)) ≤C · (1+δ)i∗+1 ≤ 1

1− δ̂ (1+δ)π(Pcap) = (1+δ)2π(Pcap).

Combining the two claims, we now conclude that

π(P∗) =π(V +(i∗))+π(V −(i∗))

≤α ·π(Puncap)+ (1+δ)2 ·π(Pcap)

≤ (1+ε+α)max
{
π(Puncap),π(Pcap)

}

We remark that in our setting the profit of a node is only collected if the corresponding demand

is fulfilled (no partial serving is possible). However, the results above can be easily extended to

also allow partially served nodes.

2.2.2 Applications of an approximation algorithm for COP

In this section, we present an application of our approximation algorithm for COP to a fleet of

vehicles. The Capacitated Team Orienteering problem (CTOP) generalizes the COP and allows

to use M paths respecting both the capacity and the length bound.

Observe that the Capacitated Team Orienteering Problem can be seen as an instance of the

maximum k-coverage problem that is defined as follows (see [Hoc82]): For a universe and set

system on its elements, choose k sets whose union contains as many elements as possible.

With this observation, the following theorem applies to COP what was proved in [HP98] for

maximum k-coverage. This was also noted in [BCK+03] for OP. However, we state its short

proof for completeness.

Theorem 2.2.2. There is a 3.53-approximation for CTOP.

Proof. We show that given an α-approximation algorithm for COP, there is a(
1−e−1/α

)−1
-approximation algorithm for CTOP. This is obtained by applying the greedy

algorithm for maximum k-coverage to our setting. The theorem then follows from α := 3+ε.

• For i = 1 to M do

• Run the α-approximation algorithm for COP to obtain path Pi .

• Remove all covered nodes from the instance.

15

Chapter 2. Orienteering and related variants

• return P1, . . . ,PM

We follow the same steps as for maximum k-coverage to prove the claimed approximation

guarantee [HP98].

Let OPT denote the profit collected by the optimal solution and π(i)
left denote the difference

between OPT and the amount of profit collected until iteration i .

Note that in every iteration i , π(i−1)
left can be collected using M paths, since the optimal solution

does it. Thus the profit of the path that the α-approximation algorithm for COP returns in the

following iteration is π(i)
newly covered ≥ π(i−1)

left
αM .

By induction on i , we have

π(i)
left ≤π(i−1)

left −π(i)
newly covered

≤π(i−1)
left

(
1− 1

αM

)
≤

(
1− 1

αM

)i

OPT

We obtain

π

(
M⋃

i=1
Pi

)
≥OPT −π(M)

left ≥
(
1−

(
1− 1

αM

)M)
OPT ≥ (

1−e−1/α)
OPT

If we now allow node demands to be served by several paths, we can apply the result of Archetti

et al. [ABSH14] to obtain an approximation algorithm for SDCTOP. Namely, they proved that

an α-approximation algorithm for CTOP can be turned into a 2α-approximation algorithm for

SDCTOP. Combining this observation with our results, we have the following corollary.

Corollary 2.2.3. There is a 7.06-approximation algorithm for SDCTOP.

2.3 Scaling and Rounding techniques

Our results for tree metrics and Euclidean metrics developed in the next sections rely on

dynamic programming. However, the running time will depend on the total profit of the nodes

π(V) and the capacity bound C for COP. For Q-path or MEP, the running time will depend on

the sum of the edge lengths. Since these values are in general not polynomial in the input size,

the running time of the dynamic program would not be polynomial. We show in this section

how these obstacles can be overcome.

The first lemma shows that by preprocessing our instance using standard scaling and rounding

techniques (see Knapsack problem in [Vaz01]), we can focus on the case where the profits are

polynomially bounded in the input size at a very small loss. In the following, we denote the

size of a given instance I = (G ,d ,π,r,C ,D) of COP by |I |.

16

2.3. Scaling and Rounding techniques

Lemma 2.3.1. Suppose having an algorithm A that returns for every δ> 0 a feasible solution

to a given instance I = (G ,d ,π,r,C ,D) of COP whose value is at least (1−δ) times the optimal

value and that runs in time polynomial in (|I | ·π(V)) for δ fixed. Then there is a PTAS for COP.

Furthermore, if A runs in time polynomial in (|I | ·π(V)) and 1
δ , then there is an FPTAS for COP.

Proof. In order to show a PTAS for COP, we have to design an algorithm that finds a feasible

path P with π(P) ≥ (1− ε)π(P∗) for a given instance (G ,d ,π,r,C ,D) of COP with optimal

solution P∗ and any fixed ε > 0 and that runs in time polynomial in |I |. We perform the

following steps.

Let πmax := max
v∈V

π(v) and K := επmax

2n
for n = |V |. Observe that every vertex that does not lie on

a feasible s-t-path can be ignored. Therefore, we can rely on the fact that π(P∗) ≥πmax holds.

For each v ∈V , we define π̃(v) :=
⌊
π(v)

K

⌋
. Now consider the instance (G ,d , π̃,r,C ,D) and let P̃∗

denote its optimal solution. Apply algorithm A to (G ,d , π̃,r,C ,D) with δ := ε/2, and let P be

the path output by A . Note that we can assume π(P∗) ≥πmax without loss of generality. Using

π(P∗) ≥πmax, we get

π(P) ≥ K π̃(P) ≥ (1−δ)K π̃(P̃∗) ≥ (1−δ)K π̃(P∗) = (1−δ)K
∑

v∈VP∗
π̃(v)

≥ (1−δ)
∑

v∈VP∗
(π(v)−K) ≥ (1−δ)(π(P∗)−K n)

≥ (1−δ)
(
1− ε

2

)
π(P∗) ≥ (1−ε)π(P∗).

Note that π̃(V) =O
(

n2

ε

)
. Therefore algorithm A applied on our modified instance will have a

running time polynomial in |I |, yielding a PTAS for COP. Observe that if the running time of

algorithm A depends only polynomially on 1
δ , then we obtain an FPTAS for COP.

Following the lines of the previous proof, we also show that we can similarly scale and round

the distances on the edges of the graph.

Lemma 2.3.2. Suppose having an algorithm A that finds the optimal solution to a given

instance I = (G ,d ,π,Q) of Q-path in time polynomial in (|I |·L) where L = ∑
e∈E

d(e). Then there

is a FPTAS for Q-path.

Proof. In order to show a FPTAS for Q-path, we have to design an algorithm that finds a feasible

path P with π(P) ≥Q and d(P) ≤ (1+ε)d(P∗) for a given instance (G ,d ,π,Q) of Q-path with

optimal solution P∗ and any fixed ε> 0 and that runs in time polynomial in |I |.

17

Chapter 2. Orienteering and related variants

We will modify the distances d as follows. We first guess the longest edge in the optimal

solution P∗. In other words, we enumerate all |E | possibilities for such a choice. Let dmax

denote the length of this edge. By assumption, we can remove all edges of length > dmax from

the graph (and thus all components of the graph that become disconnected from s), since the

optimal solution does not consider them either.

Set K := εdmax
n . For each e ∈ E , we then define d ′(e) :=

⌊
d(e)

K

⌋
. Apply algorithm A to (G ,d ′,π,Q)

and let P ′ be the solution output by A . We obtain

d(P ′) ≤ K d ′(P ′)+K |P ′| ≤ K d ′(P ′)+K n ≤ K d ′(P∗)+εdmax ≤ (1+ε)d(P∗).

Observe that L′ = ∑
e∈E

d ′(e) =O

(
n2

ε

)
and thus algorithm A runs in time polynomial in |I | and

1
ε .

We now show how to proceed if the capacity bound C is not polynomially bounded in the

input size. In contrast to the profit values or distances, we cannot apply standard scaling and

rounding techniques directly, since even a small loss of capacity may have a big impact on the

profit value of the solution. To overcome this difficulty, we rely on a feasibilization method

introduced in [GRSZ13]. This approach consists in guessing a constant number of vertices of

highest profit in the optimal solution as a preprocessing step. Like that, we can ensure that the

vertices outside the guessed set of vertices have a small profit in comparison to the optimal

value. Then a scaling and rounding of the demands can be shown to yield a PTAS.

Lemma 2.3.3. Suppose having an algorithm A that returns for every δ> 0 a feasible solution

to a given instance I = (G ,d ,π,r,C ,D) of COP whose value is at least (1−δ) times the optimal

value and that runs in time polynomial in (|I | ·C) for δ fixed. Then there is a PTAS for COP.

Proof. We want to design an algorithm that finds a feasible path P with π(P) ≥ (1−ε)π(P∗)

for a given instance (G ,d ,π,r,C ,D) of COP with optimal solution P∗ and a fixed ε> 0 and that

runs in time polynomial in |I |. We perform the following steps.

First, we set δ := ε/2, and we guess the 1
δ nodes visited by the optimal solution with the largest

profit. Note that we can simply enumerate all possibilities in time O
(
n

2
ε

)
. Let S ⊂VP∗ be the

guessed set of nodes. Knowing S, we will define a modified COP instance (G ,d ,π′,r ′,C ′,D).

The capacity bound and the demands are scaled and rounded as follows. Let C̃ :=C − ∑
v∈S

r (v)

and cmax := max
v∉S:r (v)≤C̃

r (v). For K := δ
n cmax, we set C ′ :=

⌊
(1−δ) min{C̃ ,ncmax}

K

⌋
. Moreover, we

define new demand values for the nodes by setting r ′(v) := 0 for v ∈ S and r ′(v) :=
⌊

r (v)
K

⌋
otherwise. Note that this scaling and rounding operation yields a modified capacity bound

C ′ =O(n2/δ).

18

2.3. Scaling and Rounding techniques

In addition, we define new profit values π′ as follows:

π′(v) :=


0 for all v ∉ S such that π(v) > min

u∈S
π(u)

0 for all v ∉ S such that r (v) > cmax

π(v) otherwise

In words, we set to zero the profits of the nodes that are surely not contained in the optimal

solution P∗. Observe that π′(P∗) =π(P∗) by construction.

Consider the instance (G ,d ,π′,r ′,C ′,D). To this new instance (G ,d ,π′,r ′,C ′,D), we apply

algorithm A with parameter δ to obtain a path P . Without loss of generality, we assume that

P does not contain any node v with π′(v) = 0 (if so, we could remove such a node from P and

shortcut consistently, without affecting value π′(P)).

We are now going to show that P is feasible for the original instance (G ,d ,π,r,C ,D). The

bound on the length is clearly satisfied for P . It remains to show the feasibility with respect to

the capacity constraint.

We have:

r (P) ≤ r (S)+ r (P \ S) ≤ r (S)+K r ′(P \ S)+K n

≤ r (S)+KC ′+δcmax

≤ r (S)+ (1−δ)(C − r (S))+δcmax ≤C .

Finally, we show that P collects profit π(P) ≥ (1−ε)π(P∗). Our analysis follows the steps in

[GRSZ13].

First, we describe how the optimal path P∗ of the original instance can be modified to a path

P ′ that is feasible for the modified instance (G ,d ,π′,r ′,C ′,D) by dropping some selected nodes

of P∗ such that π(P ′) ≥ (1−δ)π(P∗) holds. This follows the ideas of the greedy algorithm for

the Knapsack problem [KV12].

Consider the following process: We remove from P∗ the nodes in P∗ \ S with smallest ratio

π′(v)/r ′(v) until we get a path P ′ that satisfies r ′(P ′) ≤C ′. Let W = P∗ \ P ′ denote the set of

removed nodes and let w∗ ∈W be the last removed vertex.

Observe that
π′(P∗ \ S)

r ′(P∗ \ S)
≥ π′(W \ w∗)

r ′(W \ w∗)
since we remove vertices with the smallest ratio first.

It follows that π′(W \ w∗) ≤ r ′(W \ w∗)

r ′(P∗ \ S)
·π′(P∗ \ S) ≤ δπ′(P∗ \ S) and thus

π′(W) ≤ δπ′(P∗ \ S)+ max
v∈P∗\S

π′(v).

Note that P ′ is a feasible solution for the instance (G ,π′,r ′,C ′,D) which contains the nodes

19

Chapter 2. Orienteering and related variants

P∗ \W . It holds that

π′(P ′ \ S) =π′(P∗ \ (S ∪W))

=π′(P∗ \ S)−π′(W)

≥ (1−δ)(π′(P∗)−π′(S))− max
v∈P∗\S

π′(v)

= (1−δ)(π(P∗)−π(S))− max
v∈P∗\S

π′(v).

We eventually obtain:

π(P ′) =π(S)+π(P ′ \ S) =π(S)+π′(P ′ \ S)

≥π(S)+ (1−δ)(π(P∗)−π(S))− max
v∈P∗\S

π′(v).

Note that max
v∈P∗\S

π′(v) ≤ δπ(S) by construction of S. Therefore

π(P ′) ≥π(S)+ (1−δ)π(P∗)− (1−δ)π(S)−δπ(S) ≥ (1−δ)π(P∗).

Observe that the optimal value of the modified instance (G ,π′,r ′,C ′,D) is thus at least π′(P ′).

By the guarantee of A , we have π(P) =π′(P) ≥ (1−δ)π′(P ′) = (1−δ)π(P ′) and hence

π(P) ≥ (1−δ)π(P ′) ≥ (1−δ)2π(P∗) ≥ (1−ε)π(P∗).

As for the running time, note that A runs in time polynomial in (|I | ·C ′) and therefore in time

polynomial in |I |, and we apply such an algorithm at most O(n
2
ε) times, i.e., once for every

possible modified instance obtained by a different node subset S of cardinality 2/ε. The result

follows.

We conclude this section by observing that the proofs of the two lemmas above can be com-

bined and yield the following corollary, that will be used in the following two sections to show

the existence of a PTAS for COP both on tree metrics and Euclidean metrics.

Corollary 2.3.4. Suppose having an algorithm A that returns for every δ> 0 a feasible solution

to a given instance I = (G ,d ,π,r,C ,D) of COP whose value is at least (1−δ) times the optimal

value and that runs in time polynomial in (|I | ·π(V) ·C) for δ fixed. Then there is a PTAS for

COP.

2.4 Capacitated Orienteering on Euclidean metrics

The aim of this section is to give a PTAS for COP in the plane, extending the result by Chen and

Har-Peled [CH08] who considered the case π≡ 1,r ≡ 1, and C = |V |. They observe that even

this special case is NP-hard in the plane by a reduction from the Traveling Salesman problem.

An instance of OP with unit profits will be denoted by (G ,D). In this section, d(v, w) refers to

the Euclidean distance (in dimension 2) between the points v, w ∈V whereas d P (v, w) refers

20

2.4. Capacitated Orienteering on Euclidean metrics

to the distance between v and w along a path P . We denote n := |V | and we characterize each

point by an x- and a y-coordinate.

2.4.1 The PTAS for OP in the plane

In this section we describe the PTAS for OP in the plane [CH08]. This result is based on

a dynamic programming approach for k-TSP due to Mitchell [Mit99]. In particular, their

algorithm relies on a dynamic program for the k-path problem, the unit profit case of Q-path

problem: Given a graph G with Euclidean distances, nodes s, t ∈V and an integer k ≤ n, find

an s-t path of minimum length visiting at least k nodes.

We sketch the dynamic program in more detail, because it will be crucial for our result. Assume

that all points are contained in an axis-parallel square B. Following Chen and Har-Peled, we

use the notion of a window for a closed axis-parallel rectangle w ⊆B. With this notion and

given a fixed ε> 0, table entries can be defined for the dynamic program, each characterized

by:

(i) a (minimal) window w that contains at least one point of V with its boundaries deter-

mined by (up to) four points of V ,

(ii) integer h ∈ {0,1, . . . , |V |} indicating the number of nodes that should be visited within w ,

(iii) boundary information specifying at most m =O(1
ε) crossing segments (each determined

by a pair of points of V , one inside or on the boundary of w , another outside w) for each

of the four sides of the boundary of w ,

(iv) connectivity constraints indicating which pairs of crossing segments are required to be

connected within w .

Each table entry stores a set of short paths inside w meeting both the boundary and the

connectivity constraints visiting at least h nodes. The stored information can be combined

together in a recursive manner by subdividing each window into smaller windows by cutting

w along a horizontal or vertical line. In the base case, if the window w has at most m points

in its interior, then the problem can be solved by enumerating all possible solutions because

m =O(1
ε) is constant. Otherwise, the algorithm tries all possible cuts for the current window

recursively, enumerating over all possible choices of valid boundary information along this

cut and computing the cheapest option (we refer to [CH08, Mit99] for details).

As shown in [Mit99], this dynamic program yields a PTAS for the k-path problem. The key

insight in [CH08] is that a stronger result can be obtained with a different analysis. To this end,

some more notation is needed.

A path P can be described by listing the nodes it contains in order as P = 〈v1, . . . , vk〉. Let

µ= d2/εe and let 1 = i1 < ·· · < iµ = k be any sequence of µ≤ k integers. The µ-skeleton of P is

the path 〈vi1 , . . . , viµ〉. Clearly, different choices of µ integers yield different µ-skeleton paths.

21

Chapter 2. Orienteering and related variants

The µ-skeleton of P of maximum length is called optimal µ-skeleton of P . The difference

between the length of P and its optimal µ-skeleton is the µ-excess of P , denoted by XP,µ.

The crucial point of the analysis in [CH08] is that the dynamic program for the k-path problem

exceeds the optimal length only in terms of the µ-excess of the optimal path.

Theorem 2.4.1. [CH08] Let P be any s-t-path that visits k nodes. For any fixed ε, the dynamic

program computes a path from s to t that visits k nodes and has length at most d P (s, t)+ XP,µ+1

µ+1 ,

where µ= d2/εe, in time polynomial in n.

We now show how the k-path problem is related to Orienteering.

A feasible solution for an Orienteering instance (G ,D) can be found as follows: starting from

k = 0 up to k = n, apply the dynamic program above for the k-path problem on G and starting

and ending nodes s and t . Let P̃ be the best path (maximum number of visited points) with

length ≤ D found with this procedure. P̃ is then a feasible path for the given Orienteering

instance. If kopt is the number of points visited by an optimal solution P∗ of the Orienteering

instance, the authors in [CH08] show that

Lemma 2.4.2. [CH08] The path P̃ visits at least (1−ε)kopt nodes.

To prove this lemma, the authors show that for k = (1−ε)kopt , the dynamic program has to

find a path of length ≤ D .

The crucial idea is to define a particular (µ+1)-skeleton. Specifically, for a path P with k nodes,

let SP denote the (µ+1)-skeleton of P obtained by subdividing P into segments with a similar

number of nodes. Formally, we can find a sequence 1 = i1 ≤ ·· · ≤ iµ+1 = k of µ+1 integers

such that
∣∣VP (i j ,i j+1)

∣∣≥ k

µ
holds for all j = 1, . . . ,µ, where P

(
i j , i j+1

)= 〈vi j , . . . , vi j+1〉 denotes the

subpath of P from vi j to vi j+1 . Let X (P,SP) := d P (s, t)−dSP (s, t) denote the excess of P with

respect to the (µ+1)-skeleton SP .

Proposition 2.4.3. [CH08] Let µ > 0. Any s-t path P visiting k nodes can be shortcut (by

eliminating some of its nodes) to a path Pcut from s to t that visits ≥ (1− 1
µ)k nodes and that

has length at most d P (s, t)− X (P,SP)
µ such that SP is a (µ+1)-skeleton of Pcut .

Let P∗
cut denote the path that we obtain if we apply Proposition 2.4.3 to P∗ with µ = d2/εe.

Then P∗
cut visits (1− 1

µ)kopt ≥ (1−ε)kopt nodes. Now apply Theorem 2.4.1 on P∗
cut and value

k := (1−ε)kopt . It follows that the dynamic program finds in polynomial time a path of length

≤ d P∗
cut (s, t)+ XP∗

cut ,µ+1

µ+1
≤ d P∗

(s, t)− X (P∗,SP∗)

µ
+ XP∗

cut ,µ+1

µ+1
≤ d P∗

(s, t) ≤ D,

since X (P∗,SP∗) ≥ d P∗
cut (s, t)−dSP∗ (s, t) ≥ XP∗

cut ,µ+1 holds because SP∗ is a (µ+1)-skeleton

for both P∗ and P∗
cut .

In other words, the path P̃ found by the dynamic program visits at least (1−ε)kopt nodes. This

22

2.4. Capacitated Orienteering on Euclidean metrics

completes our review of the PTAS for Orienteering in the plane.

2.4.2 Our modifications

Similarly to the previous algorithm for OP, our result relies on a dynamic program, but for a

more general Capacitated Quota-path Problem (CQPP), a capacitated generalization of the

Q-path problem that is defined as follows: We are given a graph G with Euclidean distances,

nodes s, t ∈V , node profits π : V →N, demands r : V →N, a capacity bound C and an integer

Q ≤ ∑
v∈V

π(v). We want to find an s-t path of minimum length that collects at least profit Q by

serving a total demand ≤C . Clearly, the Capacitated Quota-path problem is a generalization

of the k-path problem that can be obtained by setting π≡ 1, r ≡ 1 and C = |V |. We denote by

(G ,d ,π,r,C ,Q) an instance of the CQPP.

For a given ε> 0, we extend the dynamic program of the previous subsection as follows.

First, instead of remembering an integer indicating the number of nodes that should be visited

within a window w , we rather consider in (ii) a profit threshold to be collected, that is an

integer h in the range {0,1, . . . ,Q}.

Second, we need to handle the demands and the capacity bound. To this end, we additionally

specify in a table entry of the dynamic program

(v) an integer j in the range {0, . . . ,C } indicating that the total demand of the nodes covered

inside the window w should not exceed j .

It is straightforward to show that the stored information can be combined in a recursive

manner, following exactly the same steps in [CH08, Mit99] as previously described, to compute

some s − t path that collects an amount of profit ≥Q from a subset of nodes of total demand

≤C . In particular, Theorem 2.4.1 extends to the theorem below.

Theorem 2.4.4. Let P be an s-t-path that collects a profit ≥Q from a total demand of ≤C . For

any fixed ε > 0, the dynamic program computes a path from s to t that collects a profit ≥ Q

from a total demand of ≤C and has length at most d P (s, t)+ XP,µ+1

µ+1 , where µ= d2/εe, in time

polynomial in (n ·C ·Q).

Proof. First, let us argue about the running time of our modified dynamic program. As in

[CH08], there are O(n4) choices of a (minimal) window w and O(n2m) choices of crossing

segments on each of the four sides of w (recall m = O(1
ε)). Therefore, the total number

of possible entries of the dynamic program is O(n4 · (n2m)4 ·C ·Q), because the number of

possible connectivity constraints is constant (since we assume ε> 0 to be a fixed constant,

we omit dependencies on ε in the discussion of the running time). Moreover, for computing

each entry in a recursive manner, we have to consider O(n) choices of a horizontal/vertical

cut, O(n2m) choices for new boundary information on the cut, O(C ·Q) choices of demand

23

Chapter 2. Orienteering and related variants

bounds and profit quotas on both sides of the cut and O(1) choices of connectivity constraints.

By multiplying the number of entries with the number of choices for the partitioning into

subproblems, we obtain an overall time complexity for the algorithm that is polynomial in

(n ·C ·Q).

Now, let us argue about the length. Consider the instance for the k-path problem defined on

the graph induced by the nodes in VP , and obtained by setting k = |VP |. The dynamic program

used in [CH08] for this k-path problem outputs a path P̃ that visits all nodes in VP and whose

length is at most d P (s, t)+ XP,µ+1

µ+1 . Now observe that P̃ is also a solution to our CQPP instance

since it has a profit ≥Q and total demand ≤C . Moreover, P̃ will be implicitly considered by

our extended dynamic program when applied to our CQPP instance for appropriate choices of

h and j in each table entry. This is because our table entries are defined exactly as in [CH08]

except that the number of nodes is replaced by profits and the extra information about the

capacity is added.

Therefore, our dynamic program will output a path whose length is at most the length of P̃ .

The result follows.

Let us explain how the CQPP is related to COP.

We can find a feasible solution for a COP instance (G ,d ,π,r,C ,D) as follows. For all values of Q

from 0 to π(V), we apply the dynamic program above for CQPP on the instance (G ,d ,π,r,C ,Q).

Let P̃ be the best path (in terms of profit) with length ≤ D found with this procedure. P̃ is then

a feasible path for the given COP instance. If P∗ is the optimal path of our COP instance, then

we obtain

Lemma 2.4.5. π(P̃) ≥ (1−ε)π(P∗).

Proof. We show that for Q = (1−ε)π(P∗), our extended dynamic program has to find a path of

length ≤ D .

Our first claim is that P∗ can be shortcut (by eliminating some of its nodes) to a path P∗
cut

from s to t that collects profit ≥ (1−ε)π(P∗) and has small length. This can be seen as follows:

replace every node v ∈VP∗ with π(v) copies (i.e. π(v) nodes with the same coordinates) and

apply Proposition 2.4.3 to P∗ with k :=π(P∗) and µ= d2/εe.

We thereby obtain a path P∗
cut that collects profit ≥ (1−ε)π(P∗) and has length ≤ d P∗

(s, t)−
X (P∗,SP∗)

µ . Now apply Theorem 2.4.4 for P∗
cut and value Q := (1−ε)π(P∗). It follows that the

dynamic program finds a path of length

≤ d P∗
cut (s, t)+ XP∗

cut ,µ+1

µ+1
≤ d P∗

(s, t)− X (P∗,SP∗)

µ
+ XP∗

cut ,µ+1

µ+1
≤ d P∗

(s, t) ≤ D,

since X (P∗,SP∗) ≥ XP∗
cut ,µ+1 as we have already argued.

In other words, the path P̃ found by our dynamic program collects profit at least (1−ε)π(P∗).

24

2.5. Results on tree metrics

Putting all together, and using Corollary 1 we get

Theorem 2.4.6. There is a PTAS for COP on Euclidean metrics.

2.5 Results on tree metrics

The main result of this section is a PTAS for COP on tree metrics. We extend our results for

COP also to Q-path and MEP.

As pointed out in the preliminaries, we will consider a tree T = (V ,E) with distances d : E →N

instead of the complete graph given by the metric closure of T . We denote in the following

n = |V | and π(V) = ∑
v∈V

π(v). Moreover, for any two nodes u, v ∈V we denote the unique u − v

path in T by Puv .

Lemma 2.5.1. OP, Q-path, and MEP are NP-hard on star metrics.

Proof. We give a reduction from the Knapsack problem: Given non-negative integers n,

c1, . . . ,cn , w1, . . . , wn , W and K , it is NP-hard to decide whether there is a subset S ⊆ {1, . . . ,n}

such that
∑

j∈S c j ≥ K and
∑

j∈S w j ≤ W [GJ79]. We construct a star T with n +1 vertices s,

v1, . . . , vn and set d(ei) := wi for edge ei = {s, vi } and i = 1, . . . ,n. Further, we define profits

π(vi) = ci for i = 1, . . . ,n and π(s) = 0.

It follows that it is NP-hard to decide whether there is a closed walk rooted at s of length ≤ 2W

and profit ≥ K . This implies that OP, MEP and Q-path are NP-hard on star metrics.

We observe that by a straightforward reduction from the Knapsack, COP is already NP-hard on

graphs that are a line.

2.5.1 COP on tree metrics

In the following, we present the PTAS for COP on tree metrics. First, we will describe a dynamic

program of pseudopolynomial size that we can turn then into a polynomial time algorithm at

small loss by the results of section 2.3

Theorem 2.5.2. COP on tree metrics can be solved in time O(nπ(V)2C 2).

Proof. Before describing the algorithm, we need to state some observations.

Suppose having a tree graph T and a walk P that is a feasible solution for our instance. It is

easy to see that P visits the edges of the unique s− t path Pst in T exactly once and every other

edge in P exactly twice. Therefore, we could set the length of the edges of path Pst to zero and

25

Chapter 2. Orienteering and related variants

s

t
(a) original instance

s

t
(b) after modification

Figure 2.1 – Modification along the unique s-t-path. The optimal s-t-walk in the original instance is indicated in
blue whereas the equivalent, optimal closed walk around s in the modified instance is shown in red. Note that in
the modified instance, the black edges on the unique s-t-path have weight 0. The selected vertices whose demand
is fulfilled and whose profit is thus collected are indicated in blue, respectively.

hence reduce the problem to finding a closed walk starting and ending at node s of length

≤ R := D −d P (s, t), that collects maximum profit from nodes whose total demand does not

exceed capacity C (see Fig. 2.1). In the following, such a closed walk will be referred to as a

tour from s. By adding edges of zero length and nodes with zero profit and unit demand (see

Fig. 2.2), we can also assume that tree T is binary.

π5

r5

d5

π6

r6

d6

π0,r0

π1

r1

π2

r2

π3

r3

π4

r4

d1 d2 d3 d4

(a) original tree

0
1

0
1

π2

r2
π1

r1

π0,r0

00

d1 d2

π3

r3

π4

r4

π5

r5

π6

r6

0 1 01

0 0

d3 d4 d5 d6

(b) resultant binary tree

Figure 2.2 – Modifications to obtain a binary tree. Profits are indicated in red, demands in blue and edge weights in
black.

Consider the following dynamic program. We have table entries Av [k,c] storing the length of

the shortest tour from v in the subtree below v that collects profit at least k using at most c

units of capacity. We initialize the table for each v ∈V as follows:

Av [k,c] =


0 if k = 0;

0 if c ∈ {r (v), . . . ,C } and k ≤π(v);

+∞ otherwise

Note that we are interested in values of c up to C , and of k up to π(V) =∑
v π(v). We consider

26

2.5. Results on tree metrics

the tree rooted at s and compute table entries for the node w as soon as the table entries for

its two children v1 and v2 have already been computed. We can either collect the profit of

w and decrease the capacity according to its demand or ignore it. In both cases, we have to

consider all possible ways to split profit k and capacity c among its two children. Let χk be 1 if

k > 0 and 0 otherwise. We set Aw [k,c] = min{Aw [k,c], (A), (B)} where

(A) := min
k ′=0,...,k,
c ′=0,...,c

{
Av1 [k ′,c ′]+2d(v1, w) ·χk ′ + Av2 [k −k ′,c − c ′]+2d(v2, w) ·χk−k ′

}

(B) := min
k ′=0,...,k−π(w),
c ′=0,...,c−r (w)

{
Av1

[
k ′,c ′

]+ Av2

[
(k −π(w))−k ′, (c − r (w))− c ′

]
+2d(v1, w) ·χk ′ +2d(v2, w) ·χ(k−π(w))−k ′

}

Value (A) corresponds to combining tours rooted at v1 and v2 to a cheapest tour of capacity c

and profit k without considering w , while (B) incorporates a profit of π(w) for visiting w .

Once the root of the tree is processed, the maximum value of k is output such that As[k,C] ≤ R .

Every node in the tree is processed exactly once by the dynamic program. The running time

is O(π(V) ·C) to compute the minimum for each table entry and thus we obtain the claimed

overall running time of O(nπ(V)2C 2).

Theorem 2.5.2 and Lemma 2.3.1 imply the following corollary.

Corollary 2.5.3. There is an FPTAS for OP on tree metrics.

Similarly, we can combine Theorem 2.5.2 with Corollary 1 to obtain the main result of this

section.

Theorem 2.5.4. There is a PTAS for COP on tree metrics.

2.5.2 Q-path and MEP on tree metrics

In this section, we show that the roles of profit and length can be exchanged in the dynamic

program used in the proof of Theorem 2.5.2. Thus we obtain a PTAS for Q-path and for MEP

on tree metrics.

We denote in the following L = ∑
e∈E

d(e).

Theorem 2.5.5. Q-path on tree metrics can be solved in time O(nL2).

Proof. We can assume by the modifications presented in the proof of Theorem 2.5.2 that the

given tree graph is binary and the length of the path between s and t is zero.

27

Chapter 2. Orienteering and related variants

Consider the following dynamic program. We have table entries Av [`] storing the maximum

profit of a tour from v in the subtree below v that has length at most `. We initialize the table

for each leaf v ∈V as follows:

Av [`] =
{
π(v) if `≥ 0

0 otherwise

Note that we are interested in values of ` up to L. We consider the tree rooted at s and compute

table entries for the node w as soon as the table entries for its two children v1 and v2 have

been computed. We have to consider all possible ways to split the length budget ` among the

children v1 and v2. We set

Aw [`] := max
`′=0,...,`

{
π(w)+ Av1

[
`′−2d(v1, w)

]+ Av2

[
(`−2d(v2, w))−`′]}

This value corresponds to combining tours rooted at v1 and v2 to the most profitable tour of

length ` considering a profit of π(w) for visiting w .

Once the root of the tree is processed, we output the minimum value of ` such that As[`] ≥Q.

Every node in the tree is processed exactly once by the dynamic program. The running time is

O(L) to compute the minimum for each table entry and thus we obtain the claimed overall

running time of O(nL2).

In order to turn the algorithm from Theorem 2.5.5 into an FPTAS for Q-path, we apply a

standard scaling and rounding technique.

Corollary 2.5.6. There is an FPTAS for Q-path on tree metrics.

We can also extend this result to MEP.

Theorem 2.5.7. There is an FPTAS for MEP on tree metrics.

Proof. We prove that MEP and Q-path are equivalent on trees, i.e there is an α-approximation

algorithm for MEP on trees if and only if there is an α-approximation algorithm for Q-path

on trees. Because the if-part is clear by definition, we only show how MEP can be reduced to

Q-path on trees.

For a given an instance (G ,d ,π,Q) of MEP where G is a tree graph, let P∗ be an optimal solution

for MEP. It is easy to see that P∗ visits the edges of the unique s − t path Pst in T exactly once

and every other edge in P∗ exactly twice. Therefore, we can contract the edges of path Pst and

hence reduce the problem to finding a closed walk starting and ending at node s with profit

≥Q ′ :=Q −π(Pst) of smallest total length. Let G ′ denote the tree graph obtained from T by

28

2.6. Orienteering on planar graphs

contracting the edge of path Pst . We observe that P∗ induces a feasible solution P ′ for Q-path

to the instance (G ′,d ,π,Q ′) with start and end vertex s of length d P∗
(s, t)−d(Ps,t). Hence if we

apply an α-approximation algorithm for Q-path in G ′, we obtain a walk P of length at most

d P (s, t) ≤αd P ′
(s, t) =α(d P∗

(s, t)−d(Ps,t))

which is precisely the excess of the walk P̃ obtain from concatenating P and Pst in G . This

concludes the reduction and with Corollary 2.5.6, we obtained the claimed FPTAS for MEP.

2.6 Orienteering on planar graphs

In this section, we consider OP on a metric induced by a planar graph. Since OP can be seen

as a prize collecting network design problem, the recent results for prize collecting Steiner

Tree, prize collecting Steiner Forest and prize collecting Stroll [BCE+11] on planar graphs give

rise to the question whether there exists a PTAS for OP as well. As pointed out in [BCE+11],

the techniques developed for those prize collecting problems do not easily generalize for OP.

We outline here the main ideas of their techniques and show a roadmap of the challenges to

overcome for Orienteering.

The concept of the treewidth of a graph is crucial for many algorithms on planar graphs.

Definition 2.6.1. Given a graph G, a tree decomposition of G is a pair (T, X) of a tree T and

a function X : V (T) → 2V (G) (each node i of the T is associated to a subset X (i) ⊂ V (G) of the

vertices in G) with the following properties:

• Every vertex v ∈V (G) is contained in at least one set X (i) for a node i of T .

• Every edge {u, v} ∈ E(G) is a subset of at least one set X (i) for some node i of T .

• If v ∈ X (i)∩X (j), then v ∈ X (h) for every node h of T on the unique path from i to j in T .

The width of a tree decomposition (T, X) of G is the maximum cardinality of a vertex sub-

set minus one, i.e. maxi∈V (T) |X (i)| −1. The treewidth of G is the minimum width of a tree

decomposition of G. We say the treewidth of a family of graphs is bounded if it is O(1).

The problem of determining the treewidth of a graph is NP-hard [ACP87]. However, there is a

polynomial time algorithm that decides for a fixed constant γ whether a graph has treewidth

at most γ [Bod96]. The seminal work by Baker [Bak94] introduces the concept of reducing a

problem on a planar graph to the corresponding problem on a subgraph of constant treewidth.

Using this technique, she obtained PTAS’s for Minimum Vertex Cover and Maximum Indepen-

dent Set. A similar framework was recently used to reduce several prize-collecting problems

on planar graphs to their corresponding versions on graphs with bounded treewidth [BCE+11].

More precisely, an α-approximation algorithm for graphs of bounded treewidth implies an

29

Chapter 2. Orienteering and related variants

(α+ε)-approximation algorithm on planar graphs for each of those prize-collecting problems.

The basic step to apply this framework also to OP hence is to consider graphs with bounded

treewidth. We observe that our results from section 2.5 for OP and MEP extend to this graph

class. In particular, the problems remain NP-hard, but we can use dynamic programming to

obtain a PTAS for OP and MEP.

Theorem 2.6.2. There is a PTAS for OP and MEP on a metric induced by a graph with bounded

treewidth.

We focus on the general strategy and refer to the technical report [BC14] for the proof and

further details.

Solving OP on graphs with bounded treewidth is only a preliminary step towards a potential

PTAS for OP on planar graphs. The challenging difficulty lies in finding a suitable reduction

of the planar instance to one or several graphs whose treewidth is bounded. In [BCE+11],

the crucial step in the reduction to graphs with bounded treewidth presented is to restrict

the instance at a small loss in the objective function to a subgraph with a spanning tree

of very small total edge distance. This is achieved by a clever application of a primal-dual

approximation algorithm for the respective prize-collecting problem in general graphs. How a

similar result can be obtained for OP or MEP is the subject of ongoing research. It remains a

challenging open question whether a PTAS for OP or MEP on planar graphs can be found.

2.7 Orienteering with deadlines

Recall that the Orienteering problem with deadlines (OPD) asks to find a rooted path that

collects as much profit as possible by visiting vertices before their deadline. We observe that

the result for OPD obtained in this section can be extended to hold also in the more general

case in which both endpoints s and t of the path are specified. This variant is referred to as

point-to-point (P2P). First, we consider an interesting special case where the deadlines are

proportional to the root distance of the vertices and then we present the approximation result

for OPD.

2.7.1 Orienteering with delay factor

We consider the special case in which we are given a graph G = (V ,E) with metric distances

d : E → N, node profits π : V → N, a root node s and a delay factor R. Every vertex is to be

visited by time D(v) = R ·`v to obtain its profit (recall that `v denotes the shortest distance

from v to the root s). We refer to this problem as Orienteering with delay factor (OP-R).

The case R = 1 can be solved by using dynamic programming techniques: First, we consider

only edges that lie on some shortest path to the root. We orient those edges towards the

endpoint that is farther from the root and obtain a directed acyclic graph (DAG). A topological

order on this DAG (cf. [KV12]) can be used to devise a dynamic program that computes the

30

2.7. Orienteering with deadlines

optimal profit in polynomial time. We therefore assume in the remainder of this section that

R > 1 holds.

Tree metrics

In her master thesis, Tholen [Tho14] observed that OP-R is NP-hard already on tree metrics.

We refer to this thesis for the details of the reduction from Knapsack to OP-R. We note that

P2P-OP-R is NP-hard already on star metrics, i.e., if both endpoints of the path are specified.

Proposition 2.7.1. OP-R is NP-hard on tree metrics.

Furthermore, there is an FPTAS for OP-R on star metrics based on dynamic programming

[Tho14] that can easily be extended to hold also for P2P-OP-R.

General graphs

The idea of our algorithm for general graphs is based on partitioning the vertices according to

their shortest distance from the root. This approach has been successfully applied to several

vehicle routing problems before [NR12, CKP12, FS14]. The main result of this section is as

follows.

Theorem 2.7.2. If R > 1, there is a O
(
log R

R−1

)
-approximation algorithm for OP-R.

Proof. Intuitively, our algorithm first partitions the vertex set into O(log`max) subsets ac-

cording to their distance from the root and then we apply on each set of the partition an

α-approximation algorithm for OP with a suitable length bound. Note that this strategy im-

mediately yields a O(α log`max)-approximation algorithm. However, by carefully choosing

the length bound, we can turn the paths into rooted tours and concatenate several of them

together. The details are presented in Algorithm 2. Let us argue that the path P returned by

the algorithm visits every vertex before its deadline. We prove this by induction on k (cf. step

10), the case k = 0 being obvious by the choice of the length bound in step 5 of the algorithm.

For every k > 0, j = 1, . . . , M and w ∈ P̃ j+kM we get

d P (r, w) ≤ `w + (R −1)2 j+kM−2 + ∑
k ′<k

(R +1)2 j+k ′M

≤ `w

(
1+ R −1

2

)
+ (R +1)

2 j+kM

2M −1

≤ `w

(
1+ R −1

2
+ R −1

2

)
= R`w .

The first inequality follows from the length bound in step 5 and the induction hypothesis,

since every path P̃ j+k ′M can be turned into a tour of length at most R2 j+k ′M +2 j+k ′M . The

bound for finite geometric series implies the second inequality, whereas the last inequality is

direct from our choice of M .

31

Chapter 2. Orienteering and related variants

Algorithm 2 O
(
α log R

R−1

)
-approximation algorithm for OP-R

1: Vi := {s}∪{
v ∈V : 2i−1 ≤ `v < 2i

}
for all i ≥ 1.

2: M ← 4+⌈
log2

(R
R−1

)⌉
3: for i = 1 to

⌈
log2`max

⌉+1 do

4: for every vertex w ∈Vi \ {s} do

5: Compute a path P̃i (w) from s to w of length ≤ `w + (R −1)2i−2 using

the α-approximation algorithm for OP on G[Vi].

6: Set P̃i to be the maximum profit path among P̃i (w) for w ∈Vi .

7: end for

8: end for

9: for j = 1, . . . , M do

10: Obtain a path P j by concatenating the paths P̃ j+kM for k ≥ 0 using shortest paths

between their endpoints.

11: end for

12: P ← P j∗ for j∗ := argmax j=1,...,Mπ(P j).

13: Return P

The running time is obviously given by O(n log`max) many calls of the OP subroutine and M

path concatenations. Since M =O
(
log R

R−1

)
and log2`max are polynomial in the input size, our

algorithm for OP-R runs in polynomial time.

It remains to show the quality of the path P with respect to the optimal solution P∗.

Claim: π(P) ≥ 1
4Mαπ(P∗)

We prove the claim in several steps. First, we show that we obtain a 1
4α fraction of the profit

of the optimal solution restricted to Vi for all i ≥ 1. Second, we show that some segments of

the optimal solution can be concatenated as in step 10 and thus third, we output at least a
1

M -fraction of the total profit of the concatenated paths.

Let V ∗
i := Vi ∩V (P∗) denote the intersection of every Vi with the optimal solution for i ≥ 1.

Further, we shortcut the optimal path P∗ to contain only the vertices V ∗
i and denote this path

by P̂∗
i . As the sets Vi form a partition of the non-root vertices, we have π(P∗) = ∑

i≥1π(P̂∗
i)

(w.l.o.g. π(s) = 0). Every path P̂∗
i has excess at most (R −1)2i by the feasibility of the optimal

solution. Using Proposition 2.1.1, the path P̂∗
i can thus be shortcut to a path P̃∗

i that has profit

at least 1
4π(P̂∗

i) and excess at most (R −1)2i−2. This implies that the path P̃i found in step 6

of Algorithm 2 has profit at least 1
απ(P̃∗

i) = 1
4απ(P̂∗

i) by the appoximation guarantee of the OP

subroutine.

These paths P̃∗
i can be concatenated as in step 10 to M paths P∗

j for j = 1, . . . , M . Each such

path P∗
j visits all vertices before their deadline as shown for every P j in the beginning of the

proof.

32

2.7. Orienteering with deadlines

We conclude the proof of the claim by observing that the M paths P∗
j have a total profit of

1
4απ(P∗).

It follows that Algorithm 2 is a O
(
log R

R−1

)
-approximation algorithm for OP-R using the (2+ε)-

approximation algorithm for OP [CKP12].

We remark that this result implies a constant factor approximation algorithm if R = 1+Ω(1).

We complement Theorem 2.7.2 with the following observation that rules out a PTAS for OP-R.

Theorem 2.7.3. OP-R is NP-hard to approximate to within a factor of 2138
2137 .

Proof. We consider the following special case of OP that we call OP-cycle: Given a complete

graph G with metric distances on the edges, a root node s and a length bound D, we want

to find the cycle rooted at s with a maximum number of vertices that has length at most D.

OP-cycle is clearly the special case of OP where both endpoints are the same and the profits

are π≡ 1. From the work of Blum et al. [BCK+03] and a stronger inapproximability result for

the TSP with edge lengths 1 or 2 [KS12], it follows that OP-cycle is NP-hard to approximate

with a factor better than 1069
1068 .

We reduce OP-cycle to OP-R. Let k∗ be the number of vertices in the optimal solution of

OP-cycle (we simply try all n = |V (G)| possibilities). Suppose there is a (1+β)-approximation

algorithm for OP-R with β ≤ 1
2137 . We construct a new graph G ′ by adding a supersource s′

that is connected only to s by an edge of length 2D 1. Furthermore, we add an extra vertex t at

distance 10D from s′ that is the designated endpoint of the solution to OP-R. The profit of t

is set to k∗, π(s) := 0, and the profits of all other vertices are 1. We set R = 1.5 and apply the

(1+β)-approximation algorithm to G ′ with start vertex s′.

We observe that every tour around s in G of length at most D that visits k ′ vertices corresponds

to a walk from s′ that visits s′, t and the k ′ vertices on the tour before their deadlines, and has

profit k∗+k ′. Conversely, let P ′ be a solution to OP-R on G ′. By construction, P ′ restricted to

G is a tour C ′ around s. In particular, if P ′ ends in t and thus has length at most 15D , then C ′

has length at most D .

Let P denote the output of the (1+β)-approximation algorithm applied to G ′ with start vertex

s′. Since β< 1, the path P has to visit t . As we previously observed, this means that P restricted

to G is a tour C around s with length at most D . Let k be the number of vertices on C . We have

that

k =π(P)−k∗ ≥ 1

1+β2k∗−k∗ = 1−β
1+βk∗ ≥ 1068

1069
k∗,

so we get a 1069
1068 -approximation algorithm for OP-cycle, a contradiction.

1In order to obtain a complete metric graph, we can consider the metric closure of G ′, cf. Section 2.1.3.

33

Chapter 2. Orienteering and related variants

We remark that the result can be extended to OP-R with unit profits π≡ 1.

2.7.2 Arbitrary deadlines

We define the individual excess or regret X (v) := bD(v)−`vc of a vertex v ∈ V . Further, let

Xmax = maxv∈V X (v) and Xmin = minv∈V ,X (v)>0 X (v) denote the maximum and minimum

individual regret, respectively. We can assume the total profit of all vertices to be polynomially

bounded (otherwise we can apply the scaling and rounding techniques presented in the proof

of Lemma 2.3.1 and we lose at most a small constant factor in the approximation guarantee).

Theorem 2.7.4. There is a O
(
log Xmax

Xmin

)
-approximation algorithm for OPD.

Proof. We partition the vertices as follows

V0 := {s}∪ {v ∈V : X (v) = 0}

Vi := {s}∪
{

v ∈V : 2i−1 ≤ X (v) < 2i
}

for all i ≥ 1.

We observe that a rooted path that visits as many vertices in V0 as possible can be found in

polynomial time by dynamic programming. Our idea consists in applying anα-approximation

algorithm for OP to every vertex set Vi (i ≥ 1) with length bound D = `w +2i−1 between s

and any vertex w ∈Vi . We output the best path that we can find with this procedure over all

i ≥ 0. Let M denote the number of non-empty sets V0,Vi for i ≥ 1. We show that the previous

strategy (summarized in Algorithm 3) yields an α2M-approximation algorithm.

s

0 1 2 4
.

2i2i−1

v

Figure 2.3 – Optimal solution P∗ with the vertices arranged by distance from s; its restriction V ∗
i to the set Vi is

indicated in gray. Note that the vertical positioning of P∗ is only for the sake of exposition.

Let P∗ denote the optimal solution and V ∗
i the vertices in Vi visited by P∗. We fix an index i

with V ∗
i 6= ;. Let v denote the vertex in V ∗

i visited last on P∗ (starting from the root). Figure 2.3

reflects the situation and notation. By definition of Vi , the excess of the path from s to v along

P∗ has excess at most 2i . This means that with Proposition 2.1.1 we can split this path into

two parts in order to obtain two rooted paths each having profit at least 1
2π(V ∗

i) from vertices

in Vi . One of those paths has at most excess 2i−1, so the α-approximation algorithm for OP

has to find eventually a path with profit ≥ 1
α2π(V ∗

i) (for some choice of the end node w ∈Vi).

We observe that every path Pw for w ∈Vi has excess at most 2i−1 (i.e. w has regret ≤ 2i−1). By

the monotonicity of the excess/regret, every vertex v ∈Vi on Pw has regret at most 2i−1 and

thus all deadlines of the vertices on Pw are met. Furthermore, we can assume that Xmax >

34

2.7. Orienteering with deadlines

Algorithm 3 O
(
α log Xmax

Xmin

)
-approximation algorithm for OPD

1: V0 := {s}∪ {v ∈V : X (v) = 0}

2: Vi := {s}∪{
v ∈V : 2i−1 ≤ X (v) < 2i

}
for all i ≥ 1

3: Compute optimal solution P0 for OPD restricted to V0 by dynamic programming.

4: for i = 1 to
⌈

log2 Xmax
⌉

do

5: for every w ∈Vi \ {s} do

6: Find maximum profit path P̃w from s to w in G[Vi] of length at most `w +2i−1

using the α-approximation algorithm for OP.

7: end for

8: Pi ← argmaxw∈Vi \{s}π
(
P̃w

)
.

9: end for

10: P̃ ← argmaxi≥0π(Pi).

11: P ← P̃

12: Return P

2Xmin holds as otherwise only two sets Vi and Vi+1 are non-empty and thus we immediately

obtain a constant factor approximation algorithm.

It remains to show that there are at most M =O
(
log Xmax

Xmin

)
non-empty sets Vi . Let imin denote

the minimum index ≥ 1 with 2imin−1 ≤ Xmin < 2imin and analogously imax such that 2imax ≤
Xmax < 2imax+1. Then there are at most

imax − imin +1 = log2

(
2imax

2imin

)
+1 ≤ log2

Xmax

Xmin
+1 =O

(
log

Xmax

Xmin

)
non-empty sets Vi .

We conclude that Algorithm 3 is a O
(
log Xmax

Xmin

)
-approximation algorithm for OPD using a

(2+ε)-approximation algorithm for OP [CKP12].

As we observed previously, this result can be easily extended to the point-to-point case as well.

Corollary 2.7.5. There is a O
(
log Xmax

Xmin

)
-approximation algorithm for P2P-OPD.

Proof. The only small modifications that are necessary in Algorithm 3 consist of adapting the

length bounds in steps 3 and 6 where the Orienteering subroutine is applied. In the dynamic

program used for step 3, we ensure that the computed path can be extended to the endpoint

t such that the deadline of t is met. In step 6, we set the length bound to the minimum of

`w +2i−1 and D(t)−d(w, t) for a vertex w ∈Vi . Note that this quantity may be negative; in this

case we continue the FOR-loop with the next choice of a vertex in Vi . The rest of the algorithm

remains unchanged and the analysis works out as before. To see this, note that the optimal

35

Chapter 2. Orienteering and related variants

solution ends in t and restricted to each interval, it can be split into two s-t-paths with half of

the total profit each by connecting simply the rooted paths obtained from Proposition 2.1.1 to

t . Clearly, the deadline of t is met for both such paths. We conclude that Algorithm 3 outputs

a solution with profit at least half of the maximum profit of the optimal solution restricted to

some interval.

The challenging question for OPD is whether a constant factor approximation can be achieved.

We observe that the analysis of the O(logOPT)-approximation algorithm for OPD presented in

[BBCM04] is tight, i.e., there is an instance on which their algorithm obtains only a logarithmic

fraction of the optimal profit [Tho14].

It is conjectured that OP-TW has a O(logOPT)-approximation algorithm [CKP12] and they

observe that an α-approximation algorithm for OP-TW with Lmax ≤ 2Lmin implies an α-

approximation algorithm for OPD. Furthermore, an α-approximation algorithm for OPD

implies a O(α logOPT)-approximation algorithm for OP-TW in general. In other words, an

O(1)-approximation algorithm for OPD would prove the conjecture for OP-TW.

36

3 The School Bus problem and related
variants

3.1 Introduction

In the School Bus Problem (SBP), we have to route buses that pick up children and take them

from their homes to a school. However, parents do not want their children to spend too much

time on the bus relative to the time required to transport them to school by car along a shortest

path. In fact, if the additional distance travelled by the bus exceeds a certain regret threshold,

the parents would rather drive their children to school by themselves, which is unacceptable.

Subject to this, the goal is to cover all of the children using a minimum number of buses.

Recall that the setting of a school bus system is not intrinsic to the considered problems or to

the methods we develop for them. The observations and statements presented in this section

translate directly to other transportation or vehicle routing tasks.

Formally, we are given an undirected network G = (V ,E) with metric distances on the edges

d : E →N, a depot or root node s ∈V representing the school, and a set W ⊆V representing

the houses of children. Additionally, we are given a bus capacity C ∈N, and a regret bound

R ∈N. The aim is to construct a minimum cardinality set P of walks ending at s (bus routes)

and assign each child w ∈W to be the responsibility of some bus p(w) ∈P such that (i) for

each walk P ∈P , the total number of children w with p(w) = P is at most the capacity C ; (ii)

for every child the regret bound is respected, that is: d P (w, s) ≤ d(w, s)+R , where d P (w, s)

is the distance from the child w to the school s on the walk p(w), and d(w, s) is the shortest

distance from w to s in the graph G .

In an additional variation of the problem, the goal is to minimize the total length of the walks

instead of their number. We refer to this variant of the School Bus Problem as SBP-Σ. The

School Bus Problem with Regret Minimization (SBP-R) is a further variation where we have a

fixed number N of buses we can use, and the goal is to minimize the maximum regret R.

For these variants of the School Bus problem, the regret bound is added to the shortest

distance from the root to obtain a deadline for each vertex. However, it is also very interesting

to consider a regret deadline that is a multiple of the shortest distance from the root. In that

37

Chapter 3. The School Bus problem and related variants

case, we are given a delay factor R ≥ 1 instead, and again we ask to minimize the number of

routes (SBP-mult) or the total length (SBP-Σ-mult). SBP-R-mult refers to the variation in which

the number of bus routes is given and we seek to minimize the maximum delay factor R.

Like many vehicle routing problems, all mentioned variants of the School Bus problem are

strongly NP-hard, even on the simplest of graphs. To see this, consider a star centered at the

school s with children located at all other vertices. If k of the edges are very long, say longer

than R
2 , then in any feasible solution we need at least k buses: one bus starting at each of

these k endpoints. Then, determining if such k buses are sufficient with a regret bound R is

precisely equivalent to solving the bin-packing decision problem with k bins of capacity R
2

and objects sized according to the distances from the remaining children to the school. It

follows that bin-packing can be reduced to SBP and SBP-R on stars. We show in Section 3.4.1

that also SBP-mult and SBP-R-mult are NP-hard on stars. Observe that SBP-Σ and SBP-Σ-mult

are trivial on stars, since the optimal solution just sends a new bus for every leave. However,

we show in Section 3.4.1 and 3.2.2 that both problems are NP-hard already on trees of height 2.

Many variants of vehicle routing have been studied in the context of exact, approximate, and

heuristic algorithms. For variations of the School Bus Problem, heuristic methods for practical

applications have been examined (see the survey in [PK10]), but there was no literature

concerning formal approximability and inapproximability results prior to our work. Our goal

is to advance the state of the art in this perspective.

3.1.1 Related work

There is an enormous number of results concerning vehicle routing problems; we refer to the

survey in [TV01] and briefly discuss previous work on the School Bus problem and related

questions.

The Capacitated Vehicle Routing Problem (CVRP) enforces a limit C on the number of visited

locations in each route, and the goal is the minimization of the total length of all the routes.

The paper [HRK85] establishes a strong link to the underlying Travelling Salesman Problem

(TSP) by giving an approximation algorithm that relies on approximation algorithms for TSP.

Their result is a (1+α)-approximation, where α is the factor of an approximation algorithm for

TSP. Interestingly, the formulation of CVRP as a covering integer linear program has integrality

gap at most 2.5 [TV01]. In the special case of Euclidean metrics, Das and Mathieu [DM10]

found a quasi-polynomial approximation scheme for CVRP. Depending on the capacity bound

C , it is possible to obtain a PTAS in the euclidean plane for some special cases (if the capacity

is either small [ACL09], or very large [AKTT97]). For tree metrics, there is a 2-approximation

[LLM91].

The Capacitated Vehicle Routing Problem with delay factor (CVRP-R) additionally considers

a delay factor R ∈ R+ and requires every vertex v to be visited before R ·d(s, v). There is

a (1+α+ 3
R−1)-approximation algorithm for CVRP-R by Gørtz et al. [GNR11] that can be

38

3.1. Introduction

approximation hardness

DVRP 2 1.5

DVRP-Σ 4 1.5

DVRP-D 2 NP-hard

Table 3.1 – Results for variants of DVRP on a tree metric (with unlimited capacity)

strengthened to a (1+ 2
R−1)α-approximation in case of unlimited capacity, where again α

denotes the factor of an approximation algorithm for TSP. Typically, the CVRP-R asks to find

tours as bus routes. We observe that CVRP-R is the variant of SBP-Σ-mult considering tours

instead of walks. However, the results in [GNR11] also hold in case of walks and thus imply the

same approximation results for SBP-Σ-mult.

The SBP is closely related (but not equal) to the Distance Constrained Vehicle Routing Problem

(DVRP). DVRP enforces a bound D on the length of a vehicle tour, and the goal is the minimiza-

tion of the number of tours used to visit all locations. It was raised and studied for applications

in [LDN84] and [LSLD92]. Routing problems like the DVRP can directly be encoded as in-

stances of Minimum Set Cover, and thus often admit logarithmic approximations. Nagarajan

and Ravi [NR12] give a careful analysis of the set cover integer programming formulation of the

DVRP and bound its integrality gap by O(logD) on general graphs and by O(1) on a tree. They

also obtain a constant approximation for the DVRP on a tree and a O(logD) approximation in

general. We remark here that, despite the similarity of the two problems, a straightforward

adaptation of their methods to the SBP does not work. Friggstad and Swamy [FS14] recently

improved the approximation factor for DVRP to O
(

logD
loglogD

)
.

As for SBP, the roles of the objective and the length bound can be exchanged. DVRP-D denotes

the variant that asks to cover all vertices by N tours whose maximum length is minimized.

DVRP-D admits a (2.5− 1
N)-approximation algorithm [FHK76] and a O(1)-approximation

algorithm in case a capacity bound is considered [GMNR11]. Since DVRP-D clearly gen-

eralizes TSP, it is NP-hard to approximate within a factor of 123
122 [KLS13]. We will prove in

Theorem 3.1.6 an approximation-preserving reduction from DVRP-D to DVRP. Together with

the 2-approximation algorithm by Nagarajan and Ravi [NR12] for DVRP, this implies a 2-

approximation algorithm for DVRP-D on tree metrics.

DVRP is also studied with respect to minimizing the total length of the tours instead of their

number. We denote this variant by DVRP-Σ. Li et al. [LSLD92] show that DVRP and DVRP-Σ are

closely related (cf. Lemma 3.1.5). Combining this result with the 2-approximation algorithm

for DVRP [NR12], we obtain a 4-approximation algorithm for DVRP-Σ on trees.

In terms of hardness results for tree metrics, is has been observed in [NR12] that DVRP cannot

be approximated within a factor < 1.5 unless P=NP by a reduction from the partition problem

[GJ79]. A very similar construction yields that also DVRP-Σ is NP-hard to approximate to a

39

Chapter 3. The School Bus problem and related variants

factor better than 1.5 (cf. SBP-Σ). DVRP-D is clearly NP-hard. We summarize the results for

DVRP, DVRP-D and DVRP-Σ on tree metrics in table 3.1.

In the Minimum Latency problem (MLP, also known as Traveling Repairman problem), we are

given an undirected graph with metric distances on the edges and a root vertex. The goal is

to find a rooted walk that visits all vertices and minimizes the sum of arrival times. There is

a 3.59-approximation algorithm [CGRT03] known. However, MLP admits a PTAS for special

cases like Euclidean metrics or metrics induced by a tree or a planar graph [Sit14]. We note

that MLP is NP-hard even on trees [Sit02]. The k-Traveling Repairman problem considers k

walks that cover all vertices while minimizing the sum of all arrival times. We observe that this

problem is equivalent to a variation of the School Bus problem in which we minimize the total

sum of the regret at all vertices for a given number of buses. A combination of the results in

[FHR07] and [CGRT03] yields a 8.49-approximation algorithm.

Our publications on the School Bus problem [BGKS11, BGKS13] inspired Friggstad and Swamy

[FS14] to study this problem as well. They obtain a constant factor approximation algorithm for

SBP in general graphs and they also bound the integrality of the natural set cover formulation to

a small constant. In addition, they present a O(N 2)-approximation algorithm for SBP-R in case

of unlimited capacity, where N denotes the given number of buses. For multiplicative regret,

they give a O(log R
R−1)-approximation algorithm for SBP-mult and a O(1)-approximation

algorithm for SBP-R-mult with unlimited capacity. Furthermore, they obtain approximation

results for bus routing problems with asymmetric distance metrics.

Many practical problems involving school buses have been studied, but primarily within

the context of heuristic methods for real-life instances. We refer to [PK10] for a thorough

survey of possible formulations and heuristic solution methods. Our notion of regret was first

introduced as a vehicle routing objective in [SBL05]. They considered a more general problem

involving time windows for customers and applied metaheuristics to produce solutions to

real-life instances.

In a further variant that generalizes both SBP and SBP-mult, we consider deadlines D : V →N

for all vertices. The task is then to find the minimum number of rooted walks that cover all

vertices before their deadlines. There is a O
(
log Rmax

Rmin

)
-approximation algorithm [FS14], where

Rmax = maxv D(v)−d(v, s) and Rmin = minv D(v)−d(v, s).

This variant can be seen as a special case of the Vehicle Routing with time windows (VRP-TW),

where every node is associated with a time interval in which it must be visited [DDS92]. There

is a O(log3 |V |) approximation algorithm for VRP-TW based on a O(log2 |V |)-approximation

for Orienteering with time windows [BBCM04].

3.1.2 Our contributions

The main focus of our work lies on tree metrics. If we restrict the input to this case, we can

achieve constant factor approximation algorithms for SBP, SBP-Σ and SBP-R. Table 3.2 gives

40

3.1. Introduction

an overview of our results on tree metrics with unlimited capacity. Specifically, we will give a

approximation hardness

SBP 3 1.5

SBP-Σ 3 1.5

SBP-R 13.5 NP-hard

Table 3.2 – Results for variants of SBP on a tree metric with unlimited capacity

simple combinatorial 4-approximation algorithm for SBP on trees. The approximation factor

reduces to 3 in the case of unlimited capacity. Our algorithm for SBP also implies an integrality

gap bound matching the approximation factor. Namely, we will show that the integrality gap of

the natural set-cover formulation of the SBP on trees is at most 4. In case of unlimited capacity,

the gap is at most 3. Furthermore, the same algorithm as for SBP yields a 3-approximation

algorithm for SBP-Σ in case of unlimited capacity.

On the negative side, we prove in section 3.2.2 an inapproximability factor of 1.5 for the SBP on

trees. Using a very similar reduction as for DVRP-Σ, we can show that SBP-Σ is also NP-hard to

approximate within a factor of 1.5.

Furthermore, we give a combinatorial 13.5-approximation for the SBP-R on trees in the case

of unlimited capacity.

approximation hardness

SBP 32 2

SBP-R inapproximable

Table 3.3 – Results for variants of SBP

As we will show, the SBP can be formulated as a set covering problem. With this observation,

we will easily derive a O(logC)-approximation to SBP in general graphs, as well as a O(logC)

upper bound on the integrality gap of the natural set-cover formulation applied to the SBP.

We note that in [FS14], a 32-approximation algorithm for SBP as well as an upper bound of

16 on the integrality gap of this formulation is shown. Further, we prove that unless P = N P ,

SBP-R is inapproximable for general metric graphs, since we show that it is NP-hard to check

whether an instance of SBP-R has regret 0 or strictly positive. An overview of the known results

for general graphs is presented in Table 3.3.

Finally, we give an overview of new and known results for the School Bus problem with multi-

plicative regret and we present an application of our approximation algorithm for Capacitated

Orienteering to a generalized version of DVRP with node demands.

41

Chapter 3. The School Bus problem and related variants

3.1.3 Preliminaries

Let us recall some definitions and notation. We denote by d(s, v) the shortest path distance of

a vertex v ∈V from the root s. For a given path P , we denote by VP the nodes of P and by EP

its edges. With a slight abuse of notation, we shorten d(EP) to d(P). Furthermore, we define

d P (u, v) to be the distance along the path between two vertices u, v ∈VP . The segment of the

path P (or subpath) between u and v is denoted by P (u, v).

Given a complete graph G = (V ,E) with metric edge distances d , we say that d is a tree metric

if there exists a spanning tree T = (V ,F) of G with the following property: d(e) = dT (u, v) for

all e = {u, v} ∈ E where dT (u, v) is the length of the unique u-v path in T . If the tree metric

is induced by a star, then we also refer to it as a star metric. As pointed out in Section 2, we

will simply consider rooted walks in the underlying tree graph instead of, equivalently, rooted

paths in the complete graph obtained by taking the metric closure [KV12].

We first observe that the capacity bound can be neglected for a slight loss in the approximation

factor for both the SBP and SBP-Σ. This fact was also observed in [HRK85, GNR11] for the

similar problems CVRP and CVRP-R.

Lemma 3.1.1. Given an α-approximation algorithm to the SBP-Σwith unlimited capacity for

each bus, there is an (α+1)-approximation to the SBP-Σwith capacity bound C .

Proof. Given an instance of the SBP-Σ with capacity bound C , we first ignore the capacity

bound and run theα-approximation algorithm for the resulting SBP-Σ instance with unlimited

capacity. The output will be a set of walks P1, . . . ,Pk covering vertices W . Note that by short

cutting, we can assume that two walks P j and Pi have only the root node s in common for all

i 6= j and that every P j contains only vertices from W . The idea is to cut each walk into parts

of capacity C and connect them directly to the root node s.

For j = 1, . . . ,k and each walk P j , we index the vertices in the order in which they appear on

P j . Let n j := |V (P j)|. By adding dummy vertices on P j at distance 0 from s, we can assume

that n j is a multiple of C . We partition the vertices into groups of C consecutive vertices and

start a new walk from the root for each group. Starting with the first vertex, a group is formed

with the following C −1 vertices. We now shift the indexing of the vertices by shifting the initial

vertex along the walk P j . Note that we consider the sequence of vertices on P j to be cyclic, i.e

we wrap around and start again from s whenever the other endpoint of P j is reached. Hence

we obtain n j possibilities for grouping the vertices of P j into portions of C vertices. For each

partitioning into groups, we connect the first vertex of each group to the root s and then follow

P j . In case a group of vertices is formed by some vertices from the end and some from the

beginning of P j , we construct two walks to cover them: One connects s to the first vertex of

the group and then follows P j , and the second follows P j from s until the last vertex of the

group. The set of walks covering P j with smallest total length among the n j possibilities is

output. We employ a simple averaging argument described in [HRK85] to bound the total

length of the resulting walks.The total length of all walks in the n j possibilities of grouping the

42

3.1. Introduction

vertices is at most
n j

C

∑
v∈V (P j)∩W

d(s, v)+n j ·d(P j). The first term reflects that every vertex is

first in a group for
n j

C possibilities and the second term says that every edge of the walk P j is

used at most once in each possibility. Since we output the shortest among the n j sets of walks

covering the vertices on P j , its total length is at most
∑

v∈V (P j)∩W

d(s, v)

C
+d(P j).

Summing up over j , we obtain a solution for SBP-Σ respecting the capacity bound C of total

length at most

k∑
j=1

d(P j)+
k∑

j=1

∑
v∈V (P j)∩W

d(s, v)

C
=

k∑
j=1

d(P j)+ 1

C

∑
v∈W

d(s, v)

Since the term 1
C

∑
v∈W d(s, v) is a well known lower bound for CVRP (called Radius lower

bound [HRK85]), it is also a lower bound on the optimal value of SBP-Σ. Let AP XC denote

the total length of the walks that we output in case of capacity C and let OPTC , OPT∞ denote

the optimal values of the capacitated and uncapacitated case of SBP-Σ, respectively. Clearly,

OPT∞ ≤OPTC holds and thus we obtain

AP XC ≤
k∑

j=1
d(P j)+ 1

C

∑
v∈W

d(s, v) =αOPT∞+OPTC ≤ (α+1)OPTC .

The proof of the result for SBP is essentially identical to that of a similar statement proven in

[NR12] for the DVRP, but we recall the proof for the sake of completeness.

Lemma 3.1.2. Given an α-approximation algorithm to the SBP with unlimited capacity for

each bus, there is an (α+1)-approximation to the SBP with capacity bound C .

Proof. Given an instance of the SBP with capacity bound C , we first ignore the capacity bound

and run the α-approximation algorithm for the resulting SBP instance with unlimited capacity.

The output will be a set of walks P1, . . . ,Pk covering all vertices W . Note that by short cutting,

we can assume that two walks P j and Pi have only the root node s in common for all i 6= j .

The idea is to cut each walk into parts of capacity C and connect them directly to the root

node s. Let AP XC denote the number of buses output in case of capacity C and OPTC , OPT∞
the optimal solutions of the capacitated and uncapacitated case, respectively. We obtain

AP XC ≤
k∑

i=1

(|{w ∈W : w is covered by Pi }|
C

+1

)
≤ |W |

C
+αOPT∞ ≤ (1+α)OPTC .

If P is a walk ending at s and covering a subset S of nodes, then we say that P has regret R if

a regret bound of R is respected for all children in S. The following useful fact holds for all

variants of the School Bus problem with additive regret:

43

Chapter 3. The School Bus problem and related variants

Proposition 3.1.3. Let P be a walk starting at some node v and ending at s. For all nodes

covered by P the regret bound R is respected if and only if it is respected for v.

Proof. Assume for contradiction that there is a node w ∈ S with d P (w, s) > d(w, s)+R while

d P (v, s) ≤ d(v, s)+R. The triangle inequality then implies

d P (v, s) ≥ d P (w, s)+d(v, w) > R +d(w, s)+d(v, w) ≥ R +d(v, s),

a contradiction.

We note that such a statement is not true in case of multiplicative regret.

Furthermore, a simple observation shows that a walk with too high regret can be split into a

few walks of small regret.

Proposition 3.1.4. Let P be a walk rooted at s with regret βR for some β> 1. Then the vertices

V (P) on P can be covered using dβe walks rooted at s with regret at most R.

Proof. Let t be the other endpoint of P . Intuitively, we traverse P starting from s and stop

whenever the regret would exceed R and start a new walk. Let u → v denote the shortest

connection, i.e. an edge, between u and v , whereas u v denotes the path between u and v

along P . Further, let v1 be the first vertex on P such that d P (s, v1) > d(s, v1)+R and by u1 the

immediate predecessor of v1 on P . By construction, d P (s,u1)−d(s,u1) ≤ R holds. Analogously,

we find vertices s = v0, v1, . . . , vk on the walk P such that the walk s → vi−1 vi has regret

> R for all i = 1, . . . ,k. For the immediate predecessor ui of vi on P , we obtain a rooted walk

s → vi−1 ui with regret at most R for all i = 1, . . . ,k. It remains a last piece between vk and t

that is used to form the walk s → vk t with regret ≤ R. It follows from the additivity of the

regret that k is less than β:

βR = d P (s, t)−d(s, t) = d P (vk , t)−d(s, t)+
k∑

i=1
d P (vi−1, vi)

≥
k∑

i=1
d(s, vi−1)+d P (vi−1, vi)−d(s, vi)

> kR

The second inequality follows by construction and the first from d(s, t) ≤ d(s, vk)+d P (vk , t).

We conclude that we obtain k +1 ≤ dβe walks that cover all vertices of P .

This proposition was generalized in [FS14] as follows: The set of vertices on any k walks ending

at s with total regret β ·kR can be covered using at most (β+1)k walks ending at s with regret

at most R.

44

3.1. Introduction

3.1.4 Relations of different objectives

We first state a well known result for DVRP.

Lemma 3.1.5. [LSLD92] Let N],L] denote the number of tours and the total sum of the tour

lengths, respectively, in case of DVRP. Let NΣ,LΣ denote the number of tours and the sum of the

tour lengths for DVRP-Σ. We have

1

2
N∗D ≤ L∗ ≤ N∗D

for ∗=Σ,]. It follows NΣ ≤ 2N] and L] ≤ 2LΣ.

We note that a similar relation between SBP and SBP-Σ is not true. Simple examples show that

an optimal solution to one problem can be arbitrarily bad with respect to the objective of the

other problem.

Next, we observe a simple relation between DVRP and DVRP-D.

Theorem 3.1.6. An α-approximation algorithm for the DVRP implies an dαe-approximation

algorithm to DVRP-D.

Proof. Let N denote the number of tours prescribed in the DVRP-D instance and let D∗ denote

its optimal value. Using binary search, we find in polynomial time the minimum length bound

D ≤ D∗ such that the α-approximation algorithm for DVRP outputs at most αN tours. From

those tours, we concatenate every dαe tours at the root to a single tour. In that way, we obtain

N tours of maximum length dαeD ≤ dαeD∗.

Finally, we give a approximation preserving reduction from SBP-R to SBP.

Theorem 3.1.7. An α-approximation algorithm for the SBP-R implies an dαe-approximation

algorithm for SBP.

Proof. Let R denote the regret bound of a given SBP instance with n vertices and let N∗ be its

optimal value.

Suppose we are given an α-approximation algorithm for SBP-R. We compute the minimum

number N ′ of bus routes such that the maximum regret is bounded by α ·R by trying all n

possible choices of the parameter N for SBP-R. We observe that N ′ ≤ N∗ holds because the

approximation algorithm for SBP-R finds N∗ routes with maximum regret at most αR.

Using Proposition 3.1.4, we obtain at most dαeN ′ ≤ dαeN∗ routes of regret R and thus a

dαe-approximation algorithm for SBP.

45

Chapter 3. The School Bus problem and related variants

3.2 The School Bus problem

3.2.1 General graphs

We present a covering integer linear programming formulation of the SBP. Let S be the family

of all sets of C or fewer children that can be covered by a single walk ending at s having regret

at most R. We introduce a variable xS for each S ∈S and give the following formulation:

min
∑

S∈S

xS (IP)

s.t.
∑

S:w∈S
xS ≥ 1 ∀w ∈W

xS ∈ {0,1} ∀S ∈S .

The greedy strategy for Set Cover implies a O(logC)-approximation to SBP using a constant

factor approximation algorithm for capacitated Orienteering (cf. Section 2.2) as a subroutine.

The technique of Dual-Fitting for Set Cover (cf. [Vaz01]) lets us bound the integrality gap of

the LP relaxation of (IP) by O(logC). However, we omit the details of these results, since the

analysis is pretty standard and a better bound of 16 was described in [FS14] for the integrality

gap as well as a 32-approximation algorithms based on this formulation. There is a lower

bound of 2 on the integrality gap already on star graphs.

On the negative side, we observe the following inapproximability result that was independently

noted in [FS14].

Theorem 3.2.1. There is no approximation algorithm for SBP with a factor less than 2 unless

P=NP.

Proof. We provide a simple reduction from the following NP-hard decision problem of a

variant of TSP [GJ79]: Given a graph G and an integer L, is there a Hamilton path including all

vertices of length at most L?

We add a new root vertex s at distance L from every vertex in G and we set the regret bound

R = L. We observe that the optimal solution of SBP in the new graph has one bus route if

and only if there is a Hamilton path in G of length at most L. Note that any α-approximation

algorithm with α< 2 would thus allow us to decide the Hamilton path problem.

3.2.2 Tree metrics

For the SBP on trees, we first present a 4-approximation algorithm and from that, we derive a

4-approximation for SBP-Σ on trees. Afterwards, we show that the integrality gap of the natural

set cover formulation for SBP on trees can be bounded by 4 as well. Finally, we prove that both

SBP and SBP-Σ on trees are hard to approximate within a factor 1.5.

In this section, we will mainly focus on the infinite capacity version of the SBP and SBP-R on a

46

3.2. The School Bus problem

tree T with root s. We denote by P (u, v) and d(u, v) the unique path from u to v in T , and its

corresponding length. For a subset of edges F ⊆ ET , we let d(F) :=∑
e∈F d(e). For a connected

set of edges, we call a walk that visits each edge exactly twice an Euler tour. In the following, a

subtree of T denotes a tree consisting of a node v of T and all vertices w such that the path

between w and s contains v . We also say that such a subtree is rooted at v .

We note that subtrees of T that contain no vertices in W will never be visited by a bus in

any optimal solution, and thus we can assume without loss of generality that all leaves of T

represent the location of children. In such an instance, a feasible solution will simply cover all

of T with bus routes. Moreover, when assuming infinite capacity, any solution is still feasible

if every node of T represents a child location and we can therefore assume, without loss of

generality, that W =V .

A 4-approximation for SBP

Our main result for SBP on tree metrics is the following.

Theorem 3.2.2. There exists a polynomial time 4-approximation for the SBP on trees. The

approximation factor reduces to 3 in the case of unlimited capacity.

We prove Theorem 3.2.2 by first giving a combinatorial 3-approximation for the SBP with

unlimited capacity on graphs that are trees, and subsequently applying Lemma 3.1.2. Our

algorithm is based on the following intuitive observations:

• When the input tree is very short (say, of height at most R
2 on an instance with regret R),

then it is relatively easy to obtain a 2-approximation for the SBP by simply cutting an

Euler tour of the tree into short pieces and assigning each piece to a bus.

• General trees can be partitioned into smaller pieces (subtrees) such that at least one bus

is required for each piece, but each piece can be solved almost optimally via a similar

Euler tour method.

We begin with some definitions. We call a set of vertices {a1, . . . , am} ⊆V R-independent if for

all ai 6= a j , we have d(ai , lca(ai , a j)) > R
2 , where lca(ai , a j) is the lowest common ancestor of

the vertices ai and a j in T . By iteratively marking the leaf in T furthest from the root such

that R-independence is maintained among marked leaves, we can obtain, in polynomial

time, an inclusion-wise maximal R-independent set of leaves A such that all vertices in T are

within a distance of R
2 from a path P (s, a) for some a ∈ A. We shall call A a set of anchors. By

construction, no two distinct anchors ai and a j can both be covered by a walk of regret at

most R, immediately yielding the following lower bound:

Proposition 3.2.3. The size |A| of the set of anchors is a lower bound on the number of buses

that is needed in any feasible solution.

47

Chapter 3. The School Bus problem and related variants

We now give a second useful lower bound. Let Q := ⋃
a∈A

P (s, a). We call Q the skeleton of T ,

noting that Q is a subtree of T whose leaves are the anchors. Observe that all edges in the

skeleton Q will automatically be covered if a bus visits each anchor. Since each anchor must

be visited at least once, it suffices to only consider covering the anchors and the non-skeletal

edges of T , i.e. the edges in T \ Q. The edges in T \ Q form a collection of disjoint subtrees,

each of which has height at most R
2 . We call these short subtrees. See figure 3.1 for an example

tree visualizing these definitions.

s

Figure 3.1 – Example of a tree with unit distance edges and R = 6. A maximal set of anchors is drawn as square
nodes, the corresponding skeleton is shown in solid and the grey, dashed parts of the tree are the short subtrees.

Suppose that a feasible walk starts at a vertex v in a short subtree T . It will cover all the edges

in P (s, v), and may possibly cover some additional detour edges having total length at most
R
2 . Since T is a short subtree, the non-skeletal edges in P (s, v) have total length at most R

2 . It

follows that:

Observation 1. The set of non-skeletal edges covered by any feasible walk P must have total

length at most R: at most R
2 in length along the path from its starting vertex to the root, and at

most R
2 length in edges covered by detours.

From this, we can observe the following lower bound on the number of buses:

Proposition 3.2.4. The number
1

R

∑
e∈T \Q

d(e) is a lower bound on the number of buses that are

needed in any feasible solution.

We build our 3-approximation from these two lower bounds by partitioning the edges of T into

a family of subtrees each containing a single anchor, and approximating the optimal solution

well on each of these subtrees. For anchors A = {a1, . . . , am}, we define associated paths of

edges {P1, . . . ,Pm} as follows: (i) P1 = P (s, a1), and (ii) Pi = P (s, ai)\

(
i−1⋃
j=1

{P j }

)
for 2 ≤ i ≤ m. The

edges in {P1, . . . ,Pm} form a partition of the skeleton Q into paths (not necessarily ending at s),

each of which starts at a different anchor.

We then let Ti be the set of all edges in both the path Pi and the set of all short subtrees

attached to Pi . If a short subtree is attached to a junction point where two paths Pi and P j

48

3.2. The School Bus problem

meet, we arbitrarily assign it to either Pi or P j so that the sets {T1, . . . ,Tm} form a partition of

all of the edges of T into a collection of subtrees, each containing a single anchor.

For each 1 ≤ i ≤ m we define a directed walk Wi that starts at the anchor ai , proceeds along Pi

in the direction toward the root s, and collects every edge in Ti by tracing out an Euler tour

around each of the short subtrees in Ti that are attached to Pi . One may easily verify that it is

always possible to quickly find such a walk such that the following properties are satisfied:

• Wi contains each edge in Pi exactly once and always proceeds in the direction toward s

when collecting each edge in Pi .

• Wi contains each edge in Ti \ Pi exactly twice: once proceeding in the direction away

from s, and once in the direction toward s.

We now greedily assign the edges in the short subtrees in Ti to buses by simply adding edges

to buses in the order in which they are visited by Wi . We first initialize a bus β1 at the anchor

ai and have it travel along Wi until the total length of all of the edges it has traversed in the

downward direction (away from the root s) is exactly R
2 . At this point, we assume it lies on some

vertex v1 (if not, we may imagine adding v1 to the middle of an existing edge in Ti , although

this will not be relevant to our solution as there are then no children at v1). We send bus β1

from v1 immediately back to the root s and create a new bus β2 that starts at v1 and continues

to follow Wi until it too has traversed exactly R
2 length in edges of Ti in the downward direction.

We assume it then lies at a vertex v2, create a new bus β3 that starts at v2 and continues to

follow Wi , and so on. Eventually, some bus βk will pick up the last remaining children and

proceed to the root s, possibly with leftover detour to spare. We observe that the number of

buses used is exactly
⌈2

∑
e∈Ti \Pi

d(e)

R

⌉
, since each bus other than the last one consumes exactly

R
2 of the downward directed edges in Wi , and Wi proceeds downward along each edge in

Ti \ Pi exactly once. We also note that this is a feasible solution since a bus travelling a total

downward direction of R
2 must make a detour no greater than R.

Doing this for each edge set Ti yields a feasible solution to the original instance using exactly∑m
i=1

⌈2
∑

e∈Ti \Pi
d(e)

R

⌉
buses. This is at most

m + 2

R

m∑
i=1

∑
e∈Ti \Pi

d(e) = m +2

∑
e∈T \Q d(e)

R
≤ 3OPT

by Proposition 3.2.3 and Proposition 3.2.4, where OPT is the optimal number of buses required

in any feasible solution. Together with Lemma 3.1.2, this proves Theorem 3.2.2.

Interestingly, the same algorithm also gives a 3-approximation algorithm for SBP-Σ in case of

unlimited capacity.

Theorem 3.2.5. There is a 3-approximation algorithm for SBP-Σwith unlimited capacity on

tree metrics.

49

Chapter 3. The School Bus problem and related variants

Proof. Assuming unlimited capacity for the buses, we consider again the previous algorithm

that gives a 3-approximation algorithm for SBP. We first observe that the total sum of edge

distances in the tree clearly is a lower bound on the optimal value of SBP-Σ. In order to argue

that the total length of the computed solution is at most three times the optimal value, we

show that every edge is used at most three times as often as in an optimal solution. Recall

that the algorithms finds first a maximal set of anchors and then covers the short subtrees

gradually.

Let {u, v} denote an edge in the tree and let w.l.o.g. v be the vertex closer to the root. We

distinguish two cases.

• If {u, v} is an edge of the skeleton, then it follows as in the proof of Theorem 3.2.2 that

the algorithm covers the subtree rooted at u using at most three times the minimum

number of rooted paths needed to do so. We observe that each of those paths traverses

the edge {u, v} exactly once.

• If {u, v} is an edge in a short subtree, then there is no anchor in the subtree rooted at u.

Let k denote the minimum number of rooted paths needed to cover the subtree rooted

at u with paths of regret ≤ R . It follows from observation 1 that the algorithm covers the

subtree rooted at u using at most 2k such paths. However, exactly one of those paths

traverses the edge {u, v} twice, all other paths traverse {u, v} once. This means that {u, v}

is used at most 2k +1 ≤ 3k times.

Finally, we note that any solution of SBP-Σ has to use at least the minimum number of rooted

paths to cover the subtree rooted at u. This concludes the proof of the theorem.

Together with Lemma 3.1.1, this implies a 4-approximation algorithm for the capacitated case.

Corollary 3.2.6. There is a 4-approximation algorithm for SBP-Σ on tree metrics.

Integrality gap of set-cover formulation

We will next show that the bounds given in Propositions 3.2.3 and 3.2.4 are necessarily also

respected by fractional solutions to the LP relaxation (LP) of (IP). Together with the argument

above, this immediately implies that (LP) has an integrality gap of at most 4 (and 3 in the case

of infinite capacities).

Theorem 3.2.7. The integrality gap of the natural set-cover formulation of the SBP on trees is

at most 4. In case of unlimited capacity, the gap is at most 3.

Proof. The dual of (LP) is a packing problem with a variable yv for each v ∈V ; we think of yv

as the profit of child v . The dual then has an exponential number of constraints bounding the

50

3.2. The School Bus problem

total profit of each feasible set of children that can be picked up in a single walk.

max
∑

v∈V \{s}
yv (D)

s.t.
∑
v∈S

yv ≤ 1 ∀ feasible sets of children S

yv ≥ 0 ∀v ∈V \ {s}.

To prove our bound, we need to state the following lemma proven in [NR12]:

Lemma 3.2.8. [Distribution Lemma] For any tree H with root s and distance function d on

the edges, it is possible to distribute a total profit of K among the leaves of H such that the profit

contained in any connected subgraph F of T containing s is at most d(F)
d(H) ·K .

There are three things to prove for a feasible fractional solution to the LP relaxation of (IP):

i) The number |V |
C is a lower bound on the value of any fractional solution.

This lower bound is trivial. We assign a profit of 1
C to every node v ∈V \ {s}. Any walk that

collects profit > 1 has to visit more than C nodes.

ii) The size |A| of the set of anchors is a lower bound on the value of any fractional solution.

The profit function that assigns a profit 1 to every anchor and 0 to all other vertices is a

feasible solution to (D), since a feasible walk can never visit more than one anchor and

thus collects profit at most 1.

iii) The lower bound of Proposition 3.2.4 holds for all fractional solutions.

In order to show this, we apply the distribution lemma to every short subtree H from the

collection H of short subtrees that form T \Q. On each subtree H , an amount of d(H)/R

is distributed among its leaves. Every other vertex gets profit 0. Therefore we distribute in

total a profit of
∑

e∈T \Q d(e)/R over the vertices of T .

It remains to prove the feasibility of this dual solution. Consider a feasible walk P in T

and assume that it collects a profit > 1. P visits the following length among edges of short

subtrees:

∑
e∈(T \Q)∩P

d(e) = ∑
H∈H

∑
e∈H∩P d(e)

d(H)
d(H) = ∑

H∈H

∑
e∈H∩P d(e)

d(H)
profit(H) ·R

By the distribution lemma, we know that

∑
H∈H

∑
e∈H∩P d(e)

d(H)
profit(H) ·R ≥ profit(P) ·R > R

This is a contradiction to Observation 1, since we would have length more than R of

non-skeletal edges in P .

51

Chapter 3. The School Bus problem and related variants

Now we bring the three lower bounds together to obtain the claimed result. Let AP X denote

the feasible integer solution that we obtain from the 3-approximation algorithm in the proof

of Theorem 3.2.2 combined with Lemma 3.1.2. Combining their proofs, we have:

AP X ≤ |V |
C

+|A|+2

∑
e∈T \Q d(e)

R
≤ 4 ·OPT f .

Note that in case of unlimited capacity, the term |V |
C is omitted and we obtain an integrality

gap of at most 3.

The worst example that we are aware of has integrality gap 2. It consists of a star with n +1

nodes and edges of unit distance from the center. Set R := 2(n−2) and the capacity C =∞. The

best integer solution uses exactly two routes while the fractional solution considers n routes

(each possible route that skips exactly one leaf) with 1
n−1 fraction. This yields a fractional

solution close to 1 for n big enough and thus the claimed result.

Hardness results

Theorem 3.2.9. The SBP is NP-hard to approximate within a factor better than 3
2 .

Proof. We reduce partition to SBP. In an instance I of the partition problem, we are given a

collection {a1, . . . , am} of m non-negative integers with
∑m

i=1 ai even and B := 1
2

∑m
i=1 ai . The

goal is to determine whether there exists a subset S ⊆ [m] such that
∑

i∈S ai = B . This problem

is known to be NP-complete [GJ79].

To complete our inapproximability proof, we construct an instance of SBP on trees as follows.

The root s has 2 children c1,c2 and m additional children with labels 1 to m. The edges (s,c1)

and (s,c2) have length 2B , while for each j = 1, . . . ,m, edge (s, j) has length a j . The regret

bound is R := 2B . Note that the size of the SBP instance is polynomial in the size of I , and

the construction runs in polynomial time.

Suppose I is a yes-instance; that is, there is some subset S ⊆ [m] with
∑

j∈S a j = B . Then we

can construct one walk starting at c1 and ending at s visiting vertices { j : j ∈ S}, and one walk

starting at c2 and ending at s visiting vertices { j : j ∈ [m] \ S}). Note that the regret of each walk

is exactly 2B .

Conversely, suppose I is a no-instance. Then we claim that the optimal value of the SBP

instance is at least 3. Due to the length of the edges (s,c1) and (s,c2), the nodes c1 and c2 must

be the starting nodes of two different walks, since otherwise we will exceed the regret bound.

On the other hand, each of these 2 walks can only cover a subset S ⊆ [m] with
∑

j∈S a j ≤ B ,

otherwise the regret bound will be exceeded. Since
∑m

i=1 ai = 2B , but there is no valid walk

covering a subset S ⊆ [m] such that
∑

j∈S a j = B , we require at least 3 walks to cover all nodes.

The result follows.

52

3.2. The School Bus problem

We note that the NP-hardness of SBP-Σ on trees of height 2 can be shown by a reduction from

bin packing. However, we omit the details and present instead a stronger inapproximability

result for SBP-Σ similar to the one for SBP.

Theorem 3.2.10. The SBP-Σ is NP-hard to approximate within a factor better than 3
2 .

Proof. The reduction is again from the NP-complete partition problem [GJ79]: Given m non-

negative integers {a1, . . . , am} with even total sum
∑m

i=1 ai and let B := 1
2

∑m
i=1 ai . The goal is to

determine whether there exists a subset S ⊆ [m] such that
∑

i∈S ai = B . Let I denote such an

instance of the partition problem.

We construct an instance of SBP-Σ as follows. The root s has 1 child c at distance L for a

parameter L À B whose precise value is determined later. The node c has two children

t1, t2 at distance B +1 and m additional children connected using edges (c, j) of length a j for

j = 1, . . . ,m. The regret bound is R := 2B . Note that the size of the SBP-Σ instance is polynomial

in the size of I , and the construction runs in polynomial time.

Suppose I is a yes-instance; that is, there is some subset S ⊆ [m] with
∑

j∈S a j = B . Then we

can construct one walk starting at t1 and ending at s visiting vertices { j : j ∈ S}, and one walk

starting at t2 and ending at s visiting vertices { j : j ∈ [m] \ S}). Note that the regret of each walk

is exactly 2B . The total length of each walk is L+B +1+2B . So the optimal value of SBP-Σ is

(at most) 2L+6B +2.

Conversely, suppose I is a no-instance. We first observe that the optimal solution of the SBP-Σ

instance uses at most 3 walks, since the extra cost outbalances the possible saving (ai < L

holds for all i = 1, . . . ,m). Next, we claim that the optimal value is at least 3L+5B +2. Due to

the length of the edges (c, t1) and (c, t2), the nodes t1 and t2 must be the starting nodes of two

different walks, since otherwise we will exceed the regret bound. On the other hand, each of

these 2 walks can only cover a subset S ⊆ [m] with
∑

j∈S a j ≤ B , otherwise the regret bound

will be exceeded. Since
∑m

i=1 ai = 2B , but there is no valid walk covering a subset S ⊆ [m]

such that
∑

j∈S a j = B , we require at least 3 walks to cover all nodes. The third walk starts at a

node j ∈ [m] at distance at most B from c. Thus the total length of the three walks is at least

3L+5B +2.

Suppose there is an α-approximation algorithm for SBP-Σ with α < 1.5. Then we choose

the parameter L big enough, namely L > (6α−5)B+(α−1)2
3−2α , and thus we are able to decide the

partition instance I using this algorithm. The result follows.

53

Chapter 3. The School Bus problem and related variants

3.3 The School Bus problem with regret minimization

In the School Bus problem with regret minimization (SBP-R), we are given a complete undi-

rected graph G = (V ,E) with general metric distances d : E → N, a node s representing the

school, and a set W ⊆ V representing children’s locations. Additionally, we are given a bus

capacity C ∈N, and a number N ∈N of available buses. We want to select N paths ending at s

(that correspond to bus routes) such that each child is covered by at least one path and the

total number of children covered by each path is at most C . The goal is to minimize the regret

value R, defined as follows.

For a given set of paths covering all children, denote by P w the path covering a child w and by

d P w
(w, s) the distance between w and s along the path P w . Then

R := max
w∈W

{
d P w

(w, s)−d(w, s)
}

.

We first describe a 13.5-approximation for SBP-R on trees with unlimited capacity. We show

that SBP-R cannot be approximated in general graphs since it is NP-hard to decide whether

the optimal regret value is zero or strictly positive.

3.3.1 Tree metrics

First, SBP-R is considered on tree metrics. Recall that SBP-R differs from SBP because of the

exchanged roles of maximum regret and number of bus routes. In case of SBP-R, the number

of routes is bounded by a given parameter N ∈Nwhile the maximum regret is to be minimized.

We present here a polynomial time 13.5-approximation algorithm for SBP-R on tree metrics in

case of unlimited capacity. The notation and definitions introduced in Section 3.2.2 are also

employed in the following.

Without loss of generality, we may assume the tree T to be binary. Suppose we can fix a value

R for the regret. We will develop an algorithm that, given an instance and the value R, either

outputs a set of at most N bus routes, with a maximum regret of 13.5R, or asserts that every

solution with at most N buses must have a regret value > R . Then, we can do binary search on

the regret values and output the best solution found.

Suppose we have guessed a value for R . We begin by finding a set of anchors A with respect to

R as described in section 3.2.2. Our algorithm shall only generate solutions where each bus

begins its journey at an anchor. As it turns out, this restriction will be very helpful and causes

only a small loss in the approximation factor that we obtain. By assigning a bus to start at each

of the anchors, we can ensure that the anchors and skeleton will be covered. However, this

time, covering the short subtrees (as defined for SBP in section 3.2.2) is much trickier because

the number of buses we may use is limited. In fact, it may be the case that all feasible solutions

using N buses require some bus to travel from an anchor, up one part of the skeleton, and

then down another part of the skeleton some way towards a different anchor, before returning

54

3.3. The School Bus problem with regret minimization

upward to travel to the root. Consequently, greedy assignments of short subtrees to buses

using methods like those used in section 3.2.2 do not work for SBP-R.

We introduce a few additional definitions to help us describe how we get around this difficulty.

Every vertex v of the skeleton is called a junction point if it is either the root s or if v has degree

more than 2 in Q. Let J be the set of junction points. The skeleton Q can be split at its junction

points into a set of edge-disjoint paths, which we will call core segments. Formally, a path in Q

is a core segment if and only if its endpoints are anchors or junction points and it contains no

junction points in its interior. See figure 3.2 for an example tree visualizing these definitions.

s

Figure 3.2 – Example of a tree with unit distance edges and R = 6. Anchors are drawn as square nodes, junction
points as empty circles.

Now, we employ the fact that, in a solution of regret R using N buses, no bus starting at some

anchor a ∈ A may travel too far off from the path from a to the root s; in particular, it may

not travel a distance of more than R
2 along core segments not contained in the path from a

to s. As intuition for how our algorithm exploits this, imagine taking each short subtree in T ,

detaching it from the skeleton Q, and then reattaching it to Q at some point R
2 closer to the

root s from its original point of attachment in T . In the resultant tree T ′, a short subtree T ′

will be attached to the skeleton Q along the path from an anchor a to the root s if and only if

the root of the corresponding short subtree T in T could be reached by a bus starting at a

having regret at most R. Accordingly, by relocating all of the short subtrees, we effectively get

rid of the need to consider buses that travel downward along portions of the skeleton. We will

show that this relocation results only in a small loss in the approximation guarantee.

However, we must also ensure that the short subtrees themselves can be collected efficiently

by a small number of buses. To do this, we cluster and cut the short subtrees into suitable

pieces (called tickets), each of which can be collected efficiently by a bus starting at some

particular anchor. By sizing the tickets appropriately, we also obtain a lower bound on the

number of buses with regret R that are required to cover all of the points.

The next lemma shows how we obtain suitable tickets from a collection of short subtrees.

Lemma 3.3.1. There exists a polynomial-time algorithm that, given a rooted path P in the

skeleton Q, and a collection C of short subtrees whose roots lie on P, produces a partition of the

edges of C into tickets EC
1 , . . . , EC

k with k ≤
⌊∑

T ∈C d(T)
R

⌋
and an overhead ticket EC

0 such that:

55

Chapter 3. The School Bus problem and related variants

(P1) All of the edges in EC
0 can be collected with an additional regret ≤ 2.5R by a single bus

whose route contains P.

(P2) For all 1 ≤ i ≤ k, all the edges in EC
i can be collected with an additional regret at most 3R

by a single bus whose route contains P.

Proof. First, we identify the roots of all short subtrees with the lowest node v of path P . The

idea is to cut the Euler tour of all short subtrees in C into suitable pieces. Starting from v , cut

it at the first node such that the current piece has length > 2R. Continue like this to obtain

k +1 walks. Denote by EC
1 , . . . , EC

k all but the last piece. The last part of the Euler tour defines

the overhead ticket EC
0 . Note that k ≤

⌊∑
T ∈C d(T)

R

⌋
, and that every cutting point is endpoint

of a ticket and starting point of another ticket, thus it is covered by exactly two tickets. Since

every node needs to be covered only once in a solution, we can ignore the last edge in each set

EC
i (1 ≤ i ≤ k). By construction, the resulting length is at most 2R. Both the starting and the

end point of each ticket EC
i (1 ≤ i ≤ k) are at distance at most R

2 from v (cf. the definition of

a short subtree). Since the Euler tour goes back to v after one subtree is finished, we obtain

from a ticket a set of tours of total length at most 3R. Note that we can arrange those tours in

bottom-up order of the roots of visited short subtrees on the skeleton. A bus whose root walk

contains P can then cover all edges corresponding to a ticket with regret at most 3R. The last

piece EC
0 of the Euler tour remaining from the cutting procedure certainly has length ≤ 2R.

Since the Euler tour goes back to v , only the distance to the starting point of the last piece

has to be connected to v in order to obtain a set of tours. As in the previous case, one bus can

cover these tours with regret 2.5R, since the height of each subtree is at most R
2 .

This strategy fulfills the properties (P1) and (P2) and runs in polynomial time.

The next simple lemma will be useful later when we assign the overhead tickets to buses.

Lemma 3.3.2. One can find a mapping φ : J −→ A from junction points to anchors in polyno-

mial time with the following properties:

(i) Every junction point j ∈ J is mapped to an anchor φ(j) down in the subtree rooted at j .

(ii) For all a ∈ A, there is at most one junction point j ∈ J with φ(j) = a.

Proof. We construct φ by iteratively considering anchors A = {a1, . . . , am} and building the

skeleton Q using paths from anchors to junction points. We begin with the path P (s, a1) and

set φ(s) = a1. When each new path P (s, ai) is added, a new junction point ji is formed, namely

the lowest intersection point of P (s, ai) with the previous paths. We set φ(ji) = ai for the

remaining i , and we easily see that the resulting mapping φ satisfies properties (i) and (ii).

Now, for our final algorithm, we don’t actually detach, move, and reattach all of the short

subtrees in T . Instead, we employ a bit more care and cleverness to combine this step with

the ticketing process. For every core segment S, let t(S) and b(S) be the top and the bottom

junction points in S. Furthermore, let r (S) be the highest junction point at distance at most

56

3.3. The School Bus problem with regret minimization

S

s

r (S)

t (S)

b(S)

(a) notation

s

j

S j

C2

Sl

C1

Sr

C3

(b) situation in step 4

Figure 3.3 – Illustrations for Algorithm 4

R/2 from t(S) (see figure 3.3a). The junction point r (S) represents the common ancestor of

all anchors from which a bus could reach S without exceeding the regret R. Our algorithm

essentially deals with all short subtrees on S by converting them to tickets, and then ‘placing’

all of these tickets on r (S), where they will be collected by buses travelling through the junction

r (S).

Algorithm 4 describes this procedure formally.

Let B be the number of bus routes output by the algorithm. We show:

(i) the regret of each route output by the algorithm is at most 13.5 ·R and

(ii) B is a lower bound on the number of buses with regret at most R that are needed to cover

all nodes.

Lemma 3.3.3. Algorithm 4 outputs a set of buses with maximum regret 13.5R.

Proof. Any bus starting at an anchor a collects at most 4 different regret amounts:

• at most one non-overhead ticket in step 5. Suppose that the ticket corresponds to short

subtrees with roots on core segment S. We claim that these roots are at distance at most

R from P (s, a). To see this, note that the ticket might have been placed at r (S) in step 3(f)

of the algorithm. In this case, P (s, a) is by definition at distance at most R/2 from the

top end point t (S) of segment S, and from there the short subtrees hanging off S can be

reached within an additional distance of at most R/2. The claim follows and, together

with property (P2) from lemma 3.3.1, we can cover a ticket with a walk of regret ≤ 5R.

• at most two remaining pieces of the Euler tour in step 3(e). There is at most one junction

point j with φ(j) = a by (ii) of lemma 3.3.2. For a junction point j , each part E0 and

F0 can be covered with regret ≤ 2.5R by (P2). Note that an additional regret R can be

necessary to get to the roots of the short subtrees in either E0 or F0 that do not lie on the

path from a to the root.

• at most one remaining piece of the Euler tour at a assigned in step 4(b). This ticket K0

can be covered with regret ≤ 2.5R by (P2).

57

Chapter 3. The School Bus problem and related variants

Algorithm 4 13.5-approximation algorithm for SBP-R

1: Find a maximal R-independent set of anchors A, i.e. leaves such that a feasible bus can
visit at most one of them. This defines a skeleton Q of the instance T .

2: Initialize a default bus at each anchor a ∈ A.
3: for each junction point j ∈ J in bottom-up order do
4: Assign an arbitrary left-to-right ordering of the two segments Sl ,Sr with t (Sl) = j = t (Sr).

If j = s, then Sl = Sr is possible. See also figure 3.3b.
5: Let C1 be the collection of short subtrees whose root node lies in the left core segment

Sl at distance ≤ R/2 from j . Denote by S j the core segment with b(S j) = j , and let C2 be
the collection of short subtrees whose root node lies on S j at distance > R/2 from t (S j).
Note that C2 =; is possible.

6: Apply Lemma 3.3.1 to C1 ∪C2 on P = Sl ∪S j , and obtain tickets E1, . . . ,Ey and overhead
ticket E0.

7: Let C3 be the collection of short subtrees whose root node lies in the right core segment
Sr at distance ≤ R/2 from j .

8: Apply Lemma 3.3.1 to C3 on path P = Sr , and obtain tickets F1, . . . ,Fz and overhead
ticket F0.

9: Assign E0 and F0 to the default bus at φ(j).
10: Place the y tickets E1, . . . ,Ey and z tickets F1, . . . ,Fz at r (Sl) = r (Sr).
11: end for
12: for each anchor a ∈ A do
13: Let Ca be the collection of short subtrees whose root node lies in the core segment Sa

with b(Sa) = a at distance > R/2 from t (Sa).
14: Apply Lemma 3.3.1 to Ca on P = Sa , and obtain tickets K1, . . . ,Kw and overhead ticket

K0.
15: Assign K0 to the default bus at a.
16: Place the w tickets K1, . . . ,Kw at a.
17: end for
18: Assign every bus greedily the lowest ticket available on its path to the root.
19: Add a new bus for each unmatched ticket.

In total, the bus from anchor a collects regret of at most 5R +5R +R +2.5R = 13.5R.

In the following, we refer to the non-overhead tickets that are assigned in step 6 of the algorithm

as unmatched tickets. Let B be the number of bus routes output by the algorithm. We obtain:

Lemma 3.3.4. B is a lower bound on the number of buses with regret at most R needed to cover

all points.

Proof. We can interpret B as the number of anchors plus the number of unmatched tickets.

We traverse the tree now bottom up from the anchors and inductively compute at each anchor

or junction point a lower bound on the number of buses needed to cover some subtree below.

58

3.3. The School Bus problem with regret minimization

Let j be a node that is either an anchor or a junction point. Denote by T j the subtree of the

skeleton rooted at j , together with all the (non-overhead) tickets placed within this subtree.

Our claim is that the number of buses with regret R needed to cover T j is at least the number

of anchors in T j plus the number of unmatched tickets in T j . We distinguish two cases at j :

Case 1: There is at least one unmatched ticket placed at j . In T j , the number of non-overhead

tickets clearly exceeds the number of anchors by exactly the number of unmatched tickets

within T j . However, the number of non-overhead tickets is a lower bound by observation 1

and our claim holds.

Case 2: There is no unmatched ticket placed at j . If j is an anchor, we clearly need one bus to

pick up j . Otherwise, we can focus on the lower bounds at the two successor junction points

j1, j2 below j . We claim that a bus starting in the subtree T j2 cannot go to the subtree T j1 to

pick up edges from a ticket (and vice versa). To prove this, we can assume that a ticket T is

placed at j1. Consider an edge e ∈ T \Q that is contained in T . We distinguish the cases how

the ticket T was formed to prove that every bus that covers e cannot start in T j2 . Let Te denote

the short subtree containing e.

• Te is rooted at a core segment S at distance greater than R/2 from t (S) = j , i.e. Te ∈C2

for j1 (Te ∈Ca if j1 is an anchor a). Then a bus starting in T j2 can not pick up an edge of

Te , since the regret of the corresponding walk would be > R.

• Te is rooted on a core segment S with r (S) = j1, i.e. Te ∈C1 ∪C3 for some junction point

j ′ (possibly j ′ = j1). By the definition of r (S), it follows that Te is rooted at distance

greater than R/2 from j . Therefore, a bus starting in T j2 can not pick up an edge of Te ,

since the regret of the corresponding walk would be > R.

It follows that the lower bound at j is the sum of the buses needed at each of the disjoint

subtrees rooted at j1 and j2. Note that the number of anchors (unmatched tickets, resp.)

within T j is exactly the sum of the anchors (unmatched tickets, resp.) within T j1 and T j2 . This

proves our induction step, and therefore our claim.

Theorem 3.3.5. There exists a 13.5-approximation algorithm for the SBP-R on trees in the case

of unlimited capacity.

Proof. Observe that lemma 3.3.3 and 3.3.4 yield a 13.5-approximation algorithm for SBP-R on

trees: Given a value for R , we find a feasible solution to the SBP-R with value at most 13.5 ·R if

B ≤ N holds. If not, then lemma 3.3.4 ensures that OPT > R. Thus doing binary search for R

yields the result.

59

Chapter 3. The School Bus problem and related variants

3.3.2 General graphs

In this section, we present an inapproximability result for the SBP-R that is based on a re-

duction of an NP-hard Satisfiability problem to SBP-R. The main idea of the reduction is

to construct an instance of SBP-R where every node in W can be covered via a path that is

a shortest path from its location to the school (and therefore we can have a solution with

maximum regret 0) if and only if there is a satisfying truth assignment for the Satisfiability

problem.

In our construction, the capacity bound C will play a crucial role: we ensure that N ·C = |W |,
and therefore each bus must pick up exactly C children. This implies that the problem reduces

to partitioning the children among the buses. In particular, we will introduce a set of children

for each clause, and two sets of nodes for each variable, namely a “true” set and a “false” set.

A bus route from a node of the “true” set via a vertex from the clause set to the school for

example corresponds to setting the variable to true to satisfy the clause.

By carefully constructing the graph, we can ensure that, in order to have regret zero, the set of

children corresponding to a clause must be picked by a bus together with one set of variable

nodes corresponding to one of the literals in the clause. Furthermore, by introducing a special

gadget graph, we can ensure that for every variable, either the “true” set or the “false” set can

be picked together with sets corresponding to clauses, but not both. This implies that each

child can be picked up by a bus that never deviates from the shortest path to the school if and

only if there is a truth assignment satisfying the given Satisfiability formula.

Theorem 3.3.6. It is NP-hard to distinguish whether an instance of SBP-R has optimal regret

value 0 or strictly positive.

Proof. The reduction is from a variant of the Satisfiability problem, namely (3,4)-SAT. Formally,

we are given n variables x1, . . . , xn and m clauses c1, . . . ,cm , where each variable appears in

at most 4 clauses and each clause contains exactly 3 literals. The task of deciding if a truth

assignment exists that satisfies all clauses is NP-complete [Tov84].

We construct an instance of SBP-R for a given instance of (3,4)-SAT as follows.

For every variable xi , introduce 16 nodes, namely the nodes xi [j], xi [j] and ai [j],bi [j] ∀1 ≤
i ≤ n, j = 1, ..,4. Note that the total number of those nodes is 4 ·2n +2 ·4n. We add edges

between xi [j] and ai [j], xi [j] and ai [j], ai [j] and bi [j] as well as ai [j] and bi [(j +1) mod 4].

All nodes bi [j] are connected to a root node s. We will refer to variable nodes for the nodes

xi [j], xi [j], 1 ≤ i ≤ n, j = 1, ..,4. Figure 3.4 shows on the left this part of the construction.

Additionally, we create two nodes ck and ∆k for every clause, 1 ≤ k ≤ m. Every ∆k is connected

to the root s and to ck . The node ck is connected to all literals that it contains, e.g. to xi [j] for

exactly one j ∈ {1,2,3,4} if the literal xi is part of the k-th clause. We remark that for every i

and j , either xi [j] or xi [j] can be connected to a clause ck , but never both and never to more

than one clause. In other words, the connection of the clause nodes to pairs of vertices xi [j]

60

3.3. The School Bus problem with regret minimization

and xi [j] is one-to-one. Finally, we add 4n −m nodes g`, each connected to all xi [j], xi [j]

and ∆k , 1 ≤ i ≤ n,1 ≤ j ≤ 4,1 ≤ k ≤ m. An additional node ? is connected to the root s and all

g`, 1 ≤ `≤ 4n −m. See figure 3.4 on the right for the second part of the construction.

All edges have unit weight and we set W =V in our construction, i.e. all vertices correspond to

locations of children.

s

xi[1]
A

xi[1]
B

xi[2]
B

xi[2]
A

xi[3]
A

xi[3]
B

xi[4]
B

xi[4]
A

ai[1]

1

ai[2]

1

ai[3]

1

ai[4]

1

bi[1]
A-1

bi[2]

B-1

bi[3]

A-1

bi[4]

B-1

s

xk1
[j1]

A

xk1
[j1]

B

xk2
[j2]

B

xk2
[j2]

A

xk3
[j3]

A

xk3
[j3]

B

ck

B

∆k

A − B

gl

B ?

(2n − m)(A − B)

Figure 3.4 – Gadget for each variable xi and for a clause Ck = xk1
∨xk2

∨xk3
, respectively

To simplify the construction, we define node demands r : V →N that represent node copies

connected by zero weight edges1. Let A := 3 and B := 2 be constants that we use for the

further description.On the variable nodes, we set demands in an alternating way, namely

r (xi [1]) = r (xi [2]) = r (xi [3]) = r (xi [4]) := A and r (xi [1]) = r (xi [2]) = r (xi [3]) = r (xi [4]) := B .

Furthermore, we set r (ai [j]) := 1 for j = 1,2,3,4, r (bi [2]) = r (bi [4]) := B −1 and r (bi [1]) =
r (bi [3]) := A−1. Finally, we set r (gl) = r (ck) := B , r (∆k) := A−B and r (?) := (2n −m)(A−B)

for `= 1, . . . ,4n −m and k = 1, . . . ,m. Note that r (?) > 0, since A > B and m ≤ 4n
3 .

The total demand that we distribute is
n∑

i=1

4∑
j=1

r
(
xi [j]

)+ r
(
xi [j]

) = 4n A +4nB on the nodes

for the appearances of variables,
n∑

i=1

4∑
j=1

r
(
ai [j]

)+ r
(
bi [j]

)= 2n A+2nB on the a and b nodes,

m∑
i=k

r (ck)+ r (∆k) = mB +m(A −B) on the clause nodes,
4n−m∑

l=1
r (gl) = (4n −m)B and r (?) =

(2n − m)(A − B). In total, we have a demand of 8n(A + B). Recall that this construction

involving node demands corresponds to an equivalent construction with 8n(A +B) nodes

without demands where some nodes are connected by zero weight edges.

We set N := 8n to be the number of bus routes and the capacity bound to be C := A+B . Since

the total demand equals the total capacity of the buses, every bus clearly has to be full. We

now make several observations for a solution to SBP-R with regret value 0.

Clearly, every node must be covered via one of its shortest paths to the root. In other words,

every node x must be a starting point of one path of length 3. Observe that a single bus

1Observe that instead of zero weight edges, one can think of a path with edges of length γ for γ> 0 a sufficiently
small constant.

61

Chapter 3. The School Bus problem and related variants

starts from every x-node. This is simply by the choice of the number N of buses, since there

are N variable nodes. Further, since there is a bus starting at every x-node and there are

exactly N nodes at distance 2 from the root s, the solution induces a perfect matching on the

x-nodes and the a, c, g -nodes. In particular, each clause node is mapped to an x-node that

corresponds to a literal in that clause. Similarly, there is exactly one bus passing through each

a-node.

This implies that there is just one bus for every b-node, thus the demand at each b-node

is satisfied by a single bus. By construction, a gadget subgraph on ai and bi vertices for

some variable xi is covered by either 4 paths containing the edges between ai [j] and bi [j] for

1 ≤ j ≤ 4, or 4 paths containing only the edges between ai [j] and bi [(j +1) mod 4]. This can

be seen by the fact that an SBP-R solution of regret 0 induces a maximum matching2 in the

gadget subgraph. Note that in the gadget subgraph, there are exactly two perfect matchings,

namely those mentioned previously.

Using these observations, we are able to prove the statement in two steps. First, we show that

a satisfying truth assignment for the (3,4)-SAT instance can be used to find N paths of regret 0.

Second, we show that a solution of N paths with regret 0 to the SBP-R gives rise to a satisfying

truth assignment of the (3,4)-SAT instance.

Let us first assume to have a satisfying truth assignment. If variable xi is set to true in this

assignment, we choose the paths
{

xi [j], ai [j],bi [j], s
}

for all 1 ≤ j ≤ 4. Otherwise, we choose

the paths
{

xi [j], ai [j],bi [(j +1) mod 4], s
}

for all 1 ≤ j ≤ 4. In both cases, note that those 4n

paths have a total demand of A+B each and have regret 0.

For every clause ck , we select one node that corresponds to a literal that makes the clause

satisfied. We start a path from that node to ck . If that variable node has demand B , we pick up

the demand at the node ∆k as well before ending the path at s, otherwise we route from ck

directly to s since the bus is full. This procedure defines m paths of regret 0 and demand A+B .

For the (4n −m) variable nodes that remain, we choose paths via the (4n −m) nodes g using a

perfect matching between them and such that all remaining demands at the ∆-nodes and the

? are satisfied. This is clearly possible since both the ∆-nodes and the ? node are connected

to all g -nodes. Hence we obtain 4n −m paths of regret 0 and demand A+B , since the total

remaining demands for those paths was (4n −m)(A+B).

In total, we construct N paths of demand A+B covering all vertices, thus we have a solution

for SBP-R of value 0.

Now suppose that we have solution for SBP-R of regret 0. Recall that in such a solution, there

is a one-to-one correspondence of the clause vertices ck and the variable vertices. That means

that for every clause ck , there is a path covering ck that starts at a node xi or xi . Set the

2Here and in the following, this matching is with respect to the graph without the demands, i.e. ignoring the A
node copies for a node of demand A.

62

3.4. Extensions and further variants

corresponding literal to true. It remains to show that this choice is never conflicting for a

variable.

Suppose that there is a conflict for variable xi , i.e. we chose xi [j] and xi [j ′]. Because of the

one-to-one correspondence, there is either an edge between xi [j] and a clause or between

xi [j] and a clause, but not for both. Thus j 6= j ′. Note that due to the tight capacity constraint,

we must have a path from xi [j] to ai [j], bi [j] and the root. Analogously, we must have a

path from xi [j ′] to ai [j ′], bi [(j ′+1) mod 4] and the root. However, this is impossible due to

the construction of the bipartite graph between the nodes ai and bi , since every path in the

solution has length 3 and regret 0.

Note that every approximation algorithm for SBP-R with a finite approximation factor has to

find an optimal solution if the optimal regret value is 0.

Corollary 3.3.7. Unless P=NP, SBP-R is not approximable within any function f (n), where n

denotes the size of the input of SBP-R.

We remark that this result does not hold in case of unlimited capacity.

3.4 Extensions and further variants

3.4.1 Multiplicative regret

In this section, we study variants of the School Bus problem with multiplicative regret. We

consider a delay factor R ≥ 1. A rooted walk P is feasible, if the regret bound d P (s, v) ≤
R ·d(s, v) holds for all vertices v on this walk. Recall that for unlimited capacity, SBP-mult

admits a O
(
log R

R−1

)
-approximation and a O(1)-approximation algorithm for SBP-R-mult

[FS14]. Furthermore, a (1+ 2
R−1)αT SP -approximation is known for SBP-Σ-mult with unlimited

capacity [GNR11], whereαT SP denotes the approximation factor for TSP. Together with Lemma

3.1.1, this result implies a constant approximation for the capacitated case (cf. [GNR11]).

We present several hardness and inapproximability results for variants of the School Bus

problem with multiplicative regret. An overview of the known results can be found in Table 3.4.

approximation hardness

SBP-mult O(log R
R−1) 2

SBP-Σ-mult (1.5+ 3
R−1) 123

122

SBP-R-mult O(1) NP-hard

Table 3.4 – Results for variants of SBP-mult with unlimited capacity

63

Chapter 3. The School Bus problem and related variants

We prove first that SBP-mult and SBP-R-mult are NP-hard on stars even with unlimited capac-

ity.

Lemma 3.4.1. SBP-mult with unlimited capacity is NP-hard on metrics induced by a star.

Proof. We give a reduction from the 3-partition problem [GJ79]: Given 3m integers a1, . . . , a3m

and an integer B , decide whether there are m disjoint triples of size B each. This problem is

NP-hard even if B
4 < ai < B

2 holds for all i = 1, . . . ,3m.

We construct an instance of SBP-mult with unlimited capacity as follows. Let s be the center

of a star with 3m branches of length a1, . . . , a3m and m branches of length B
2 each connecting

s to m extra vertices v1, . . . , vm . Note that this star graph has 4m +1 vertices. We set R = 5.

We first observe that we can without loss of generality restrict our attention to rooted walks

whose vertices are traversed in order such that the distance from the root is non-decreasing.

Furthermore, any such rooted walk that visits at most 3 vertices is clearly feasible.

The first claim is that every feasible rooted walk visits at most 4 vertices except for the root.

To show this, consider a rooted closed walk that visits 4 vertices apart from the root. The

minimum length of such a walk is > 2B , since every vertex is at distance > B
4 from the root3.

This means that this path cannot be prolonged in a feasible way, because the next vertex would

have to be at distance > B
2 from the root, but there is no such vertex in the instance.

The second claim is that every feasible rooted walk visiting (at least) two extra vertices vi , v j for

1 ≤ i < j ≤ m visits at most 3 vertices except for the root. Without loss of generality, suppose v j

is visited after vi . Analogously to the previous argument, every rooted closed walk that visits 2

vertices apart from the root has length > B . The regret bound of v j imposes the condition that

the length of the closed walk before visiting v j is at most 2B . This implies that the length of

the closed walk before visiting vi is at most B and thus the second claim is proved.

Finally, we claim that there is a solution for SBP-mult using m walks if and only if there is a

solution to the 3-partition instance.

Suppose we have a solution to the 3-partition instance. Then we create for every triple in

the 3-partition a rooted walk that traverses the vertices corresponding to the elements in the

triple such that the distance from the root is non-decreasing and ends in an extra vertex. This

walk is feasible by construction and visits 4 vertices apart from the root. This means there is a

solution for SBP-mult with m walks.

Now suppose that there is a solution for SBP-mult using m walks. To show that these walks

define a solution to the 3-partition instance, we employ a cardinality argument. Combining

the first claim with the fact that there are 4m vertices plus the root s in the instance, all of the

m walks in the solution of SBP-mult have to visit exactly 4 vertices except the root. Together

with the second claim, this implies that every walk contains exactly one extra vertex. Because

3We note that the minimum length is actually > 9
4 B if we take the feasibility of the last vertex into account.

64

3.4. Extensions and further variants

of the regret bound imposed at the extra vertex, the length of the closed walk before traversing

the last edge to the extra vertex is at most 2B . In other words, the walks in the solution of

SBP-mult define a 3-partition of the elements a1, . . . , an .

A corollary is the NP-hardness of SBP-R-mult, since the decision problem for SBP-R-mult and

SBP-mult is the same.

Corollary 3.4.2. SBP-R-mult with unlimited capacity is NP-hard even on metrics induced by a

star.

As observed in the introduction, SBP-Σ-mult has a trivial optimal solution on a star. However,

it is NP-hard already on trees of height 2.

Lemma 3.4.3. SBP-Σ-mult with unlimited capacity is NP-hard on tree metrics.

Proof. We have to alter the construction in the proof of Lemma 3.4.1 only slightly. Given an

instance of the 3-partition problem, we construct an instance of SBP-Σ-mult as for SBP, except

that we add a new root vertex s′ that is connected to the center s of the star by an edge of

length B
2 . We set the delay factor R := 3. Note that we can restrict ourselves again to walks

that traverse the vertices in order such that the distance from the root is non-decreasing.

Furthermore, every rooted walk with at most 3 vertices except for s and s′ is feasible, i.e.

respects the deadlines imposed by the delay factor. Observe that, as before, every feasible

rooted walk has at most 4 vertices and that every feasible rooted walk with 4 vertices contains

at most one extra vertex vi .

Given a 3-partition, we can easily construct m rooted walks of length 3B that cover each exactly

4 vertices except for s, s′. Conversely, an analogous cardinality argument as for SBP shows that

a solution for SBP-Σ-mult of total length 3mB allows to derive a 3-partition. It follows that

SBP-Σ-mult with unlimited capacity is NP-hard on trees of height 2.

Additionally, we obtain the following inapproximability result for SBP-mult similarly to Theo-

rem 3.2.1 that was also independently observed in [FS14].

Lemma 3.4.4. There is no approximation algorithm for SBP-mult with a factor less than 2

unless P=NP.

Proof. We provide a simple reduction from the following NP-hard decision problem [GJ79]:

Given a graph G and an integer L, is there a Hamilton path including all vertices of length at

most L?

We add a new root vertex s at distance L from every vertex in G and we set the regret factor to

R = 2. We observe that the optimal solution of SBP-mult in the new graph has one bus route if

65

Chapter 3. The School Bus problem and related variants

and only if there is a Hamilton path in G of length at most L. Note that any α-approximation

algorithm with α< 2 would thus allow us to decide the Hamilton path problem.

Clearly, SBP-Σ-mult also generalizes TSP (unlimited regret factor) and thus SBP-Σ-mult is

NP-hard to approximate within a factor of 123
122 [KLS13]. For SBP-R-mult, Theorem 3.3.6 implies

the following corollary.

Corollary 3.4.5. There is no approximation algorithm for SBP-R-mult with a factor less than 5
3

unless P=NP.

Proof. If the Satisfiability instance in the proof of Theorem 3.3.6 is satisfiable, then there is a

solution for SBP-R-mult using only paths of length 3. However, if the formula is not satisfiable,

observe that every solution for SBP-R-mult must employ at least one path of length ≥ 5.

3.4.2 Distance-constrained vehicle routing problem (with split-delivery)

In this section, we present an application of our result for Capacitated Orienteering (COP)

to a generalization of the distance-constrained vehicle routing problem (DVRP) that we call

DVRP+. We additionally consider node demands r : V → N and the task is still to find the

smallest number of rooted tours such that each demand is fulfilled and both a length bound

D ∈N and a capacity bound C ∈N is respected for each tour. Note that every node can only be

served by exactly one vehicle.

We observe that a O(logC)-approximation for this generalization of DVRP follows from the

existence of an O(1)-approximation algorithm for COP. Together with the previously known

results, this implies a min
{
O(logC) , O(logn),O(logD

loglogD)
}

-approximation for DVRP+. It is still

open whether a constant factor approximation algorithm can be achieved for DVRP+.

Theorem 3.4.6. There exists a O(logC)-approximation algorithm for DVRP+.

Proof. A greedy algorithm, applied to a DVRP+ instance, repeatedly searches for a feasible

tour that respects both the capacity bound and the length bound while maximizing the total

demand of the visited nodes, until every demand node is satisfied. It turns out that the

problem we want to solve in each step of such a greedy algorithm is exactly a COP instance

where s = t and π(v) = r (v) for all nodes v . Thus we use the constant factor approximation

algorithm for COP from Theorem 2.2.1 as subroutine for a greedy algorithm. The result then

follows by applying the classical Dual-Fitting analysis for the Set Cover problem [Vaz01].

66

3.4. Extensions and further variants

DVRP+ can easily be formulated as a covering integer program. We present the linear relaxation

min
∑

T feasible
xT (LP)∑

T :v∈T
xT ≥ 1 ∀v ∈V

xT ≥ 0 ∀ feasible tour T.

and its dual linear program

max
∑

v∈V
yv (D)

s.t.
∑

v∈T
yv ≤ 1 ∀ feasible tour T

yv ≥ 0 ∀v ∈V.

Note that a tour T is feasible if it starts and ends at the root, its length does not exceed D and

the satisfied demands are at most C .

The dual fitting approach runs the greedy algorithm for Set Cover and then constructs a

feasible dual solution of value at most O(logC) times the number of tours in the greedy output.

Observe that we thereby obtain an upper bound of O(logC) on the integrality gap of (LP) as

well as the claimed O(logC)-approximation algorithm.

The greedy algorithm we run works as follows:

1. Set L =; and profits π= r .

2. While L 6=V do

3. Find (approximately) the feasible tour T with highest profit.

4. Set pr i ce(v) = π(v)
π(T) for all newly covered nodes v ∈V (T) \ L.

5. Set π(v) = 0 for v ∈V (T) \ L and L = L∪V (T)

Observe that step 3 of the greedy algorithm is precisely to solve an instance of COP (where the

start and the end node coincide). In the following, we will use Lv to denote the set of nodes

covered before the iteration in which v was covered.

We construct the dual solution

yv = 1

αHC
pr i ce(v),

where α is the (constant) approximation factor for COP and HC = 1+ 1
2 +·· ·+ 1

C .

Before we show that this dual solution y is feasible, let us make the following useful observa-

tions:

67

Chapter 3. The School Bus problem and related variants

(i)
∑

v∈V pr i ce(v) = Gr eed y , where Gr eed y denotes the number of tours output by the

greedy algorithm. This fact follows simply from step 4 of the greedy algorithm, where

we distribute a value of 1 among the newly covered nodes.

(ii) We can upper bound the price of any node v as follows. Let Q be any feasible tour

that covers v and let T denote the tour selected by the greedy algorithm to cover v . We

obtain:

pr i ce(v) = r (v)

r (T \ Lv)
≤α r (v)

r (Q \ Lv)

since Q had a profit of r (Q \ Lv) in the iteration when v was covered and thus r (T \ Lv) =
π(T) ≥ 1

α
π(Q) = 1

α
r (Q \ Lv).

Now consider a feasible tour Q and an ordering of its vertices v1, . . . , v|Q| according to the order

in which they were covered by the algorithm. We get that the dual solution y is indeed feasible,

since

∑
v∈V (Q)

yv ≤ 1

αHC

∑
v∈V (Q)

α
r (v)

r (Q \ Lv)
= 1

HC

|Q|∑
i=1

r (vi)

r (Q)−∑
1≤ j<i r (v j)

≤ 1

To see the last inequality, notice that for every i

r (vi)

r (Q)−∑
1≤ j<i r (v j)

≤
r (vi)−1∑

h=0

1

r (Q)−∑
1≤ j<i r (v j)−h

and therefore

|Q|∑
i=1

r (vi)

r (Q)−∑
1≤ j<i r (v j)

≤
r (Q)−1∑

h=0

1

r (Q)−h
≤ HC ,

since r (Q) ≤C .

The feasibility of the dual solution y together with observation (i) proves that the greedy

algorithm is in fact a O(logC)-approximation algorithm for DVRP+. Note that this result also

bounds the integrality gap of (LP) by O(logC).

We observe that this result holds as well if a node can be served by several vehicles. Archetti et al.

[ASS06] proved that the optimal solution to the DVRP+ with split delivery can be transformed

into a solution for DVRP+ with at most twice as many routes where every node is served

exactly once. Therefore, our results also imply a O(logC)-approximation for DVRP+ with split

delivery.

68

4 The School Bus problem in Practice

4.1 Introduction

After studying the School Bus problem for approximation algorithms and theoretical hardness

results, we present in this chapter an application of the School Bus problem in practice.

Based on an integer programming formulation of the School Bus problem, we implemented a

heuristic using column generation to solve a real-life instance provided by a private school in

the lake Geneva region. Our results show that our approach yields a big improvement in terms

of customer satisfaction when compared to the previously used bus schedule.

4.1.1 Related work

Many variants of School Bus routing problems have been studied in the literature. We refer to

the surveys by Park and Kim [PK10] and the book by Toth and Vigo [TV01], as well as references

therein. The PhD thesis of Spada [Spa04] considers a school bus routing problem combined

with a scheduling problem. She presents approaches based on simulated annealing and tabu

search and variable neighbourhood search. She further introduces the notion of regret (service

level) as a quality measure, namely the difference of the time spent in the bus compared to

the time needed in the parents’ car. She provides results on two real-life instances from the

Lausanne area. The main ideas of her work are presented in [SBL05].

An approach based on solving the LP relaxation of a set cover integer programming formulation

with column generation has been shown to be very efficient and successful in practice for the

vehicle routing problem with time windows [DDS92].

4.1.2 Our results

We describe a framework for maximizing the customer satisfaction that we measure using the

notion of regret. The regret minimization and the usage of the minimum number of buses

form two opposing objectives. We observe that we can equivalently assume a bound on one

and minimize the other and vice versa. However, it is much simpler to solve an integer linear

69

Chapter 4. The School Bus problem in Practice

programming formulation for minimizing the number of buses assuming a bound on the

maximum regret. The covering integer linear program that we have discussed in Section 3.2.1

is known to have a small integrality gap of 4 on tree metrics and of 16 in general. Its resolution

relies on solving an Orienteering problem (cf. Chapter 2) as a subroutine.

Eventually, we describe a solution for the bus system of the private school that uses exactly the

same buses with their respective capacities and reduces the maximum regret by 20%.

4.2 A heuristic based on integer programming and column genera-

tion

We propose an approach that is based on solving an integer linear programming formulation

approximately. Before presenting this method in more detail, we first describe the setting of

the real-life instance and our quality measure.

4.2.1 Description of the instance

Based on the existing timetable for the school bus system of the private school in the lake

Geneva area, we extracted the following general information.

REAL-LIFE INSTANCE

• 1 school and 139 different bus stops

• 283 pupils to be picked up at the bus stops

• 11 buses of various capacities

We are modelling this instance using a complete, undirected graph G = (V ,E) with 140 nodes,

where a root node s represents the school. The number of pupils to be picked up at the bus

stops is represented by a node demand function r : V → N. A distance function d : E → N

on the edges indicates the travel time between two nodes. For a path P , we will denote by

d P (s, v) the distance between s and v along the path P , whereas d(s, v) is the shortest distance

between s and v .

Since the task of taking the pupils to school in the morning and the task of taking them home

in the afternoon are symmetric, we focus in the following on the prior. Our approach can be

applied in the same way also to the latter task.

4.2.2 Preliminaries

In order to establish distances between all locations, we implemented a script sending requests

to Google Maps. The Google Maps API answers such a request with a distance and a duration

70

4.2. A heuristic based on integer programming and column generation

of an optimal route. Each request was considered in default mode, i.e. travel mode is driving

with average speed and the use of highways is allowed. We store all pairwise travel times. Since

Google Maps uses an objective that takes both the length and the duration of a route into

account, both the distances and the durations can be non-metric (in particular, inserting a

point to a route can shorten it in either distance or travel time). However, our algorithm that

we will describe in the next section relies on metric weights on the edges of a graph, so the

Google Maps output was adjusted to form a metric: First, it was made symmetric by keeping

only the shorter of the two directions and second, the output was transformed into a metric

by iteratively adapting the length of an edge that does not satisfy the triangle inequality.

Our goal is to minimize what we call the regret of a child, namely the comparison of the travel

time to school on the bus and in a private car. This comparison can be made in terms of

either subtracting or dividing the travel times using the car and the bus, respectively. The first

variant is referred to as additive regret, whereas the second is called multiplicative regret. In

the following, we will focus on minimizing the maximum additive regret, i.e the maximum

time difference between the travel on the bus and on the shortest path.

The purpose of our approach is to keep the same setting as the previously implemented bus

system. In particular, we aim at using exactly the same buses with their various capacities

in order to facilitate the comparison and as well as the adoption of the proposed solution.

However, if we allow modifications of the instance, it is also of economical interest to see if

one can reduce the number of used buses for a limited maximum regret.

4.2.3 IP formulation

In this section, we present the integer linear programming formulation that we used for our

heuristic. We recall that the goal is to minimize the maximum additive regret for a given

number of buses. However, it turns out that an integer linear program for minimizing the

total number of bus routes for a fixed upper bound R on the maximum regret is much simpler

to formulate and solve. Since the optimum solutions of these two optimization problems

coincide for the correct parameter setting, we can use this simpler formulation to devise a

good solution for our actual problem.

We have to do one more modification. Namely, we will ignore the node demands for our

integer linear programming formulation and instead consider a parameter C that bounds the

number of bus stops on a bus route. In this way, we can ensure that every bus stop is visited

exactly once.

The following covering integer linear programming formulation has variables for every feasible

path and asks to minimize the total number of feasible paths that are necessary to cover all

vertices. A feasible path P in this formulation is rooted at the vertex s representing the

school, visits at most C bus stops and the maximum additive regret max
v∈V (P)\{s}

d P (v, s)−d(v, s)

71

Chapter 4. The School Bus problem in Practice

is bounded by R.

min
∑

P feasible
xP (IP)∑

P :v∈V (P)
xP ≥ 1 ∀v ∈V

xP ∈ {0,1} ∀ feasible path P.

We first observe that this formulation has an exponential number of variables. We can therefore

not simply apply an integer programming solver to compute a solution. We overcome this

difficulty by using a column generation approach to solve the linear relaxation of (IP) in

CPLEX 12. A column generation approach consists in generating only those path variables that

potentially reduce the objective value, i.e. total number of path variables set to 1. These paths

can be found by iteratively solving the separation problem of the dual linear program. We

refer to [Fei10] for an excellent introduction into the usage of column generation approaches

for vehicle routing problems. The linear relaxation of (IP) simply considers the range [0,1] for

rational path variables xP instead of binary variables, i.e. the discrete range {0,1}. In order to

solve the linear relaxation of (IP), we use the interplay of the column generation approach

with solving the separation problem of the dual linear program (cf. [GLS88]). The dual linear

program is

max
∑

v∈V
yv (D)

s.t.
∑

v∈V (P)
yv ≤ 1 ∀ feasible path P

yv ≥ 0 ∀v ∈V.

The separation problem for (D) is thus to find a feasible path with maximum y-value. In

order to solve the separation problem, we solve several Orienteering problems. For every

node v ∈V \ {s}, we consider the Capacitated Orienteering problem between s and v in the

graph G with profits y , unit demands and capacity bound C , where the length bound is given

by d(s, v)+R. Since the approximation algorithm that we devised in Chapter 2.2 is not very

practical, we implemented the local search heuristic for the Orienteering problem presented

by Chao et al. [CGW96] that repeatedly tries to insert and remove nodes to improve the total

profit. The only modification was to limit the number of nodes in a solution to C .

After finding a solution to the linear relaxation of (IP), we let CPLEX find a solution to (IP) on

the generated set of variables.

Using this solution of (IP), we reintroduce the node demands and assign to each path of the

solution a bus with a suitable capacity.

We note that the solution that we compute with our approach is in general not optimal. This is

mostly due to the fact that we use a fast heuristic as a subroutine for the Capacitated Orien-

72

4.2. A heuristic based on integer programming and column generation

teering problem. Furthermore, even with an exact algorithm for Capacitated Orienteering as

a subroutine, we would obtain an optimal solution of the linear relaxation of (IP), but not of

(IP) itself. This is because the variables that we generated for the solution may not contain the

variables needed for the optimal solution of (IP).

4.2.4 Practical results

In our previous formulation, we set the parameters R = 28 (maximum regret in minutes) and

C = 25 (maximum number of visited bus stops). Our approach yields a solution that we can

translate to a set of bus routes for the real-life instance using the same given set of buses. The

solution was computed in less than 15 hours on a MacBook Pro with 2.6 Ghz and 4GB RAM.

The bus routes are described in table 4.1. Based on the distances obtained from GoogleMaps,

Bus no. 1 2 3 4 5 6 7 8 9 10 11

children 32 18 26 26 14 21 34 24 49 21 18
Bus capacity 47 22 45 33 22 23 49 24 49 24 23
Max. add. regret [min] 25 25 27 28 19 26 28 26 24 23 26
Max. mult. regret 2.1 2.1 2.2 1.9 1.9 3.0 2.5 2.2 3.0 2.3 2.3

Table 4.1 – Overview of the computed bus routes

we can compare the previously existing timetable to our solution. We remark that in the

previous timetable, the maximum additive regret is 35 minutes compared to 28 minutes in our

solution. This implies an improvement of 20% on the maximum difference between the bus

tour and the shortest path. A similar result is even achieved for the maximum multiplicative

regret, where we have a worst ratio of 3.0 compared to 3.66 in the previous schedule, although

the regret ratio was not part of the objective. Table 4.2 summarizes the results.

previous solution new solution
max. additive regret 35 min 28 min
max. regret ratio 3.66 3.0
number of buses 11 11

Table 4.2 – Comparison of the previous and our solution

We note that the average additive regret per child is below 11 minutes in our solution, whereas

the multiplicative regret is 1.66 on average. Figure 4.2 shows an excerpt of the proposed output

based on the locations of the bus stops indicated in Figure 4.1.

We observe that for a smaller regret value than R = 28 minutes (and C = 25), a solution would

need at least 12 bus routes. However, it is of course also possible to reduce the number of

bus routes below 11 by allowing for a higher maximum regret. Finally, we remark that service

times, i.e waiting times at the bus stops, are not considered, since the number of stops on

the bus routes with maximum regret are roughly the same for both the previous and the new

73

Chapter 4. The School Bus problem in Practice

timetable.

Our approach has to ignore several obstacles like country borders and bus provider specific

requirements, since their incorporation would render the problem too complicated and too

large for an efficient handling using an integer programming formulation. The bus schedule

that we computed with our heuristic could thus not be implemented directly in practice. The

private school opted for a commercial implementation that used our solution as a guideline

for an improved bus service.

74

4.2. A heuristic based on integer programming and column generation

Figure 4.1 – Screenshot from Google Maps showing bus stops (red markers) and the school
(green S-marker).

Figure 4.2 – Screenshot from Google Maps showing the suggested bus routes in different
colors.

75

5 Summary and Conclusion

In this thesis, we studied several vehicle routing problems related to public transportation.

Using the notion of regret as measure for customer satisfaction, we discussed variants of

the Orienteering problem (Chapter 2) and the School Bus problem (Chapter 3). We finally

described in Chapter 4 an integer linear programming approach for solving the School Bus

problem in practice and presented results on a real-life instance.

For the studied problems, we designed approximation algorithms and proved hardness of

approximation results. We are the first to analyse in a mathematically rigorous way the com-

putational complexity of capacitated variants of Orienteering problems and their extensions.

Previous works on these variants were looking for heuristics to solve them in practice. A

general framework was developed to extend an approximation algorithm for any variant of

Orienteering to respect an additional capacity constraint at a small loss in the approximation

guarantee. Furthermore, we proved that the polynomial time approximation schemes for the

Orienteering problem on trees and in the plane can be generalized to the capacitated case.

Finally, new approximation algorithms for Orienteering with delay factor and Orienteering

with deadlines were obtained.

We considered several variations of the School Bus problem. Subject to a regret threshold,

the goal can be to minimize the number of bus routes or their total length. Conversely, the

maximum regret is to be minimized using a given number of buses in an additional variant.

For each of those problem variants, we provided theoretical lower and upper bounds on the

approximation guarantee an algorithm can achieve; though there sometimes remains a gap

between the hardness results and the best known approximation algorithm. Furthermore, we

observed that one can often improve the approximation guarantee significantly if the focus is

directed to interesting special cases of the more general problem. For instance, the School Bus

problem with regret minimization can be approximated in case of unlimited capacity within

O(N 2) in general graphs (N denotes the given number of buses), whereas we have shown an

elegant 13.5-approximation-algorithm on trees. We refer to Table 3.2 for an overview of our

results for the variants of the School Bus problem on tree metrics.

77

Chapter 5. Summary and Conclusion

In addition to the theoretical analysis of approximation algorithms, we also investigated their

applicability to real-life scenarios. For a real-life instance provided by a private school in

the lake Geneva region, we computed an improved bus schedule using the natural set cover

integer linear programming formulation of the School Bus problem that we solved using a

column generation approach. However, we note that our results are preliminary and have

to be seen as a proof of concept, since the flexibility and the applicability of our approach in

practice are rather limited.

At this point, we mention also a few questions for further research. It would be very interesting

to study if a constant factor approximation algorithm can be found for the Orienteering

problem with deadlines, maybe first considering the special case where the deadlines are

proportional to the root distances. Furthermore, we have outlined a possible approach to

obtain a polynomial time approximation scheme for the Orienteering problem on planar

graphs, but the outcome is still unclear. Concerning the School Bus problem where we

minimize the total length of the walks, the question for approximation algorithms in general

graphs is left for future studies. Finally, it is open whether the School Bus problem with

multiplicative regret admits a constant factor approximation on tree metrics.

Summing up, we gave combinatorial approximation algorithms and polynomial time approxi-

mation schemes based on dynamic programming for variations of the Orienteering and the

School Bus problem. Additionally, we provided simple constructions that prove the hardness

of approximation for some variants. We obtained several nice theoretical insights and thus

gained a deeper understanding of these problems. Yet, many questions are still open and new

questions came up during our studies, leaving room for further investigation and research.

78

Bibliography

[ACL09] Anna Adamaszek, Artur Czumaj, and Andrzej Lingas. PTAS for k-Tour Cover Prob-

lem on the Plane for Moderately Large Values of k. In Algorithms and Computation,

LNCS 5878, pages 994–1003. Springer, 2009.

[ABST14] Enrico Angelelli, Cristina Bazgan, Maria Grazia Speranza, and Zsolt Tuza. Complex-

ity and approximation for Traveling Salesman Problems with profits. Theoretical

Computer Science, 531(0):54 – 65, 2014.

[ABSH14] Claudia Archetti, Nicola Bianchessi, Maria Grazia Speranza, and Alain Hertz. The

split delivery capacitated team orienteering problem. Networks, 63(1):16–33, 2014.

[AFHS09] Claudia Archetti, Dominique Feillet, Alain Hertz, and Maria Grazia Speranza. The

capacitated team orienteering and profitable tour problems. JORS, 60(6):831–842,

2009.

[AHS07] Claudia Archetti, Alain Hertz, and Maria Grazia Speranza. Metaheuristics for the

team orienteering problem. Journal of Heuristics, 13(1):49–76, 2007.

[ASS06] Claudia Archetti, Martin W. P. Savelsbergh, and Maria Grazia Speranza. Worst-

Case Analysis for Split Delivery Vehicle Routing Problems. Transportation Science,

40(2):226–234, 2006.

[AMN98] Esther M. Arkin, Joseph S. B. Mitchell, and Giri Narasimhan. Resource-constrained

Geometric Network Optimization. In Proceedings of the Fourteenth Annual Sym-

posium on Computational Geometry, SCG ’98, pages 307–316, New York, NY, USA,

1998. ACM.

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of

Finding Embeddings in a K-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284,

April 1987.

[Aro98] Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling

Salesman and Other Geometric Problems. J. ACM, 45(5):753–782, September 1998.

[AKTT97] Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points

in the plane by k-tours: towards a polynomial time approximation scheme for

79

Bibliography

general k. In ACM symposium on Theory of computing (STOC), pages 275–283,

1997.

[Bak94] Brenda S. Baker. Approximation Algorithms for NP-complete Problems on Planar

Graphs. J. ACM, 41(1):153–180, January 1994.

[BBCM04] Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation

algorithms for deadline-TSP and vehicle routing with time-windows. In ACM

symposium on Theory of computing (STOC), pages 166–174, 2004.

[BCE+11] MohammadHossein Bateni, Chandra Chekuri, Alina Ene, Mohammad T. Haji-

aghayi, Nitish Korula, and Dániel Marx. Prize-collecting Steiner Problems on

Planar Graphs. In Proceedings of the Symposium on Discrete Algorithms, SODA ’11,

pages 1028–1049. SIAM, 2011.

[BT97] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization.

Athena Scientific, 1st edition, 1997.

[BCK+03] Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and

Maria Minkoff. Approximation Algorithms for Orienteering and Discounted-

Reward TSP. In Proceedings of the 44th Annual IEEE Symposium on Foundations

of Computer Science, FOCS ’03, pages 46–, Washington, DC, USA, 2003. IEEE

Computer Society.

[BC14] Adrian Bock and Alfonso Cevallos. Orienteering on planar graphs. Technical

report, in preparation, EPFL, 2014.

[BGKS11] Adrian Bock, Elyot Grant, Jochen Könemann, and Laura Sanità. The School Bus

Problem on Trees. In ISAAC, pages 10–19, 2011.

[BGKS13] Adrian Bock, Elyot Grant, Jochen Könemann, and Laura Sanità. The School Bus

Problem on Trees. Algorithmica, 67(1):49–64, 2013.

[BS13] Adrian Bock and Laura Sanità. On the approximability of two capacitated vehicle

routing problems. Electronic Notes in Discrete Mathematics, 41:519–526, 2013.

[BS14] Adrian Bock and Laura Sanità. Capacitated Orienteering. submitted, 2014.

[Bod96] Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions

of Small Treewidth. SIAM J. Comput., 25(6):1305–1317, December 1996.

[BFG07] Sylvain Boussier, Dominique Feillet, and Michel Gendreau. An exact algorithm for

team orienteering problems. 4OR, 5(3):211–230, 2007.

[BHN04] Björn Brodén, Mikael Hammar, and Brengt J. Nilsson. Online and Offline Algo-

rithms for the Time-Dependent TSP with Time Zones. Algorithmica, 39(4):299–319,

2004.

80

Bibliography

[BC94] Steven E. Butt and Tom M. Cavalier. A Heuristic for the Multiple Tour Maximum

Collection Problem. Comput. Oper. Res., 21(1):101–111, January 1994.

[CGW96] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. The team orienteering

problem. European Journal of Operational Research, 88(3):464 – 474, 1996.

[CGRT03] Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees,

and minimum latency tours. In Foundations of Computer Science (FOCS), pages

36 – 45, 2003.

[CKP12] Chandra Chekuri, Nitish Korula, and Martin Pál. Improved Algorithms for Ori-

enteering and Related Problems. ACM Trans. Algorithms, 8(3):23:1–23:27, July

2012.

[CK04] Chandra Chekuri and Amit Kumar. Maximum coverage problem with group

budget constraints and applications. In PROC. OF APPROX, SPRINGER LNCS,

pages 72–83, 2004.

[CP05] Chandra Chekuri and Martin Pál. A Recursive Greedy Algorithm for Walks in Di-

rected Graphs. In Proceedings of the 46th Annual IEEE Symposium on Foundations

of Computer Science, FOCS ’05, pages 245–253, Washington, DC, USA, 2005. IEEE

Computer Society.

[CH08] Ke Chen and Sariel Har-Peled. The Euclidean Orienteering Problem Revisited.

SIAM Journal on Computing, 38(1):385–397, 2008.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-

man problem. Technical report, Graduate School of Industrial Administration,

Carnegie Mellon University, 1976.

[DM10] Aparna Das and Claire Mathieu. A quasi-polynomial time approximation scheme

for Euclidean capacitated vehicle routing. In Proceedings of the Twenty-First

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 390–403,

Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.

[DDS92] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A New Optimization

Algorithm for the Vehicle Routing Problem with Time Windows. OPERATIONS

RESEARCH, 40(2):342–354, 1992.

[DLSS88] Martin Desrochers, Jan K Lenstra, Martin WP Savelsbergh, and Francois Soumis.

Vehicle routing with time windows: optimization and approximation. Vehicle

routing: Methods and studies, 16:65–84, 1988.

[FHR07] Jittat Fakcharoenphol, Chris Harrelson, and Satish Rao. The K-traveling Repairmen

Problem. ACM Trans. Algorithms, 3(4), November 2007.

[Fei10] Dominique Feillet. A tutorial on column generation and branch-and-price for

vehicle routing problems. 4OR, 8(4):407–424, 2010.

81

Bibliography

[FDG05] Dominique Feillet, Pierre Dejax, and Michel Gendreau. Traveling Salesman Prob-

lems with Profits. Transportation Science, 39(2):188–205, 2005.

[FL01] Fedor V. Fomin and Andrzej Lingas. Approximation Algorithms for Time-

Dependent Orienteering. In Fundamentals of Computation Theory, LNCS 2138,

pages 508–515. Springer, 2001.

[FHK76] Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Approximation algo-

rithms for some routing problems. Foundations of Computer Science, Annual IEEE

Symposium on, 0:216–227, 1976.

[FW07] Greg N. Frederickson and Barry Wittman. Approximation algorithms for the

traveling repairman and speeding deliveryman problems with unit-time windows.

In In APPROX-RANDOM, volume 4627 of LNCS, pages 119–133. Springer, 2007.

[FS14] Zachary Friggstad and Chaitanya Swamy. Approximation Algorithms for Regret-

Bounded Vehicle Routing and Applications to Distance-Constrained Vehicle Rout-

ing. Symposium on Theory of Computing (STOC), 2014.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman, 1979.

[GLV87] Bruce L. Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval

Research Logistics (NRL), 34(3):307–318, 1987.

[GMNR11] Inge Li Gørtz, Marco Molinaro, Viswanath Nagarajan, and R. Ravi. Capacitated

Vehicle Routing with Non-uniform Speeds. In Integer Programming and Combi-

natoral Optimization (IPCO), LNCS 6655, pages 235–247. Springer, 2011.

[GNR11] Inge Li Gørtz, Viswanath Nagarajan, and R. Ravi. Minimum Makespan Multi-

vehicle Dial-a-Ride. CoRR, abs/1102.5450, 2011.

[GRSZ13] Fabrizio Grandoni, R. Ravi, Mohit Singh, and Rico Zenklusen. New approaches to

multi-objective optimization. Mathematical Programming, pages 1–30, 2013.

[GLS88] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms

and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.

Springer, 1988.

[GKNR12] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi.

Approximation Algorithms for Stochastic Orienteering. In Symposium on Discrete

Algorithms (SODA), pages 1522–1538, 2012.

[HRK85] M. Haimovich and Alexander H. G. Rinnooy Kan. Bounds and Heuristics for

Capacitated Routing Problems. MATHEMATICS OF OPERATIONS RESEARCH,

10(4):527–542, 1985.

82

Bibliography

[Hoc82] Dorit S. Hochbaum. Approximation Algorithms for the Set Covering and Vertex

Cover Problems. SIAM J. Comput., 11(3):555–556, 1982.

[HP98] Dorit S. Hochbaum and Anu Pathria. Analysis of the greedy approach in problems

of maximum k-coverage. Naval Research Logistics (NRL), 45(6):615–627, 1998.

[KR92] Marisa G. Kantor and Moshe B. Rosenwein. The Orienteering Problem with Time

Windows. The Journal of the Operational Research Society, 43(6):pp. 629–635, 1992.

[KLS13] Marek Karpinski, Michael Lampis, and Richard Schmied. New Inapproximability

Bounds for TSP. CoRR, abs/1303.6437, 2013.

[KS12] Marek Karpinski and Richard Schmied. On Approximation Lower Bounds for TSP

with Bounded Metrics. CoRR, abs/1201.5821, 2012.

[Kle05] Philip N. Klein. A linear-time approximation scheme for planar weighted TSP. In

FOCS, pages 647–657, 2005.

[KV12] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo-

rithms. Springer, 5th edition, 2012.

[LLM91] Martine Labbe, Gilbert Laporte, and Helene Mercure. Capacitated Vehicle Routing

on Trees. OPERATIONS RESEARCH, 39(4):616–622, 1991.

[LDN84] Gilbert Laporte, Martin Desrochers, and Yves Nobert. Two exact algorithms for

the distance-constrained vehicle routing problem. Networks, 14(1):161–172, 1984.

[LSLD92] Chung-Lun Li, David Simchi-Levi, and Martin Desrochers. On the Distance

Constrained Vehicle Routing Problem. Operations Research, 40(4):pp. 790–799,

1992.

[Mit99] Joseph S. B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions:

A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and

Related Problems. SIAM J. Comput., 28(4):1298–1309, March 1999.

[NR12] Viswanath Nagarajan and R. Ravi. Approximation algorithms for distance con-

strained vehicle routing problems. Networks, 59(2):209–214, 2012.

[Pap77] Christos H. Papadimitriou. The Euclidean travelling salesman problem is NP-

complete. Theoretical Computer Science, 4(3):237 – 244, 1977.

[PK10] Junhyuk Park and Byung-In Kim. The school bus routing problem: A review.

European Journal of Operational Research, 202(2):311 – 319, 2010.

[Sav85] Martin W. P. Savelsbergh. Local search in routing problems with time windows.

Annals of Operations Research, 4(1):285–305, 1985.

[SV12] András Sebö and Jens Vygen. Shorter Tours by Nicer Ears:. CoRR, abs/1201.1870,

2012.

83

Bibliography

[Sit02] René Sitters. The Minimum Latency Problem Is NP-Hard for Weighted Trees. In

Integer Programming and Combinatorial Optimization (IPCO), pages 230–239.

Springer, 2002.

[Sit14] René Sitters. Polynomial time approximation schemes for the traveling repairman

and other minimum latency problems. In SODA, pages 604–616, 2014.

[Spa04] Michela Spada. Sur la planification de tournées de véhicules scolaires. PhD thesis,

EPFL, Lausanne, 2004.

[SBL05] Michela Spada, Michel Bierlaire, and Thomas M. Liebling. Decision-Aiding

Methodology for the School Bus Routing and Scheduling Problem. TRANSPORTA-

TION SCIENCE, 39(4):477–490, 2005.

[TLZO01] Kay Chen Tan, Loo Hay Lee, Kenny Qili Zhu, and Ke Ou. Heuristic methods for

vehicle routing problem with time windows. Artificial Intelligence in Engineering,

15(3):281 – 295, 2001.

[TMH05] Hao Tang and Elise Miller-Hooks. A {TABU} search heuristic for the team orien-

teering problem. Computers & Operations Research, 32(6):1379 – 1407, 2005.

[Tha95] Sam R. Thangiah. Vehicle Routing with Time Windows using Genetic Algorithms,

1995.

[Tho14] Franka Tholen. The Traveling Salesman Problem with deadlines and its subprob-

lems. Master’s thesis, EPFL, Lausanne, Switzerland, 2014.

[TV01] Paolo Toth and Daniele Vigo, editors. The vehicle routing problem. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[Tov84] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied

Mathematics, 8(1):85 – 89, 1984.

[Tsi92] John N. Tsitsiklis. Special cases of traveling salesman and repairman problems

with time windows. Networks, 22:263–282, 1992.

[TSP] The Traveling Salesman Problem. http://www.math.uwaterloo.ca/tsp/.

[VSO11] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The orien-

teering problem: A survey. European Journal of Operational Research, 209(1):1 –

10, 2011.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New

York, NY, USA, 2001.

84

http://www.math.uwaterloo.ca/tsp/

Adrian Bock

Contact
Information

Route de Genève 101 office: +41 21 693 27 39
1026 Denges mobile: +41 76 622 96 24
Switzerland e-mail: adrianaloysius.bock@epfl.ch

Education École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

PhD candidate, Mathematics March 2010 – present

• Thesis Topic: Approximation algorithms for regret minimization in vehicle routing problems
• Advisor: Professor Friedrich Eisenbrand

University of Bonn, Bonn, Germany

Diploma in Mathematics February 2010

Scientific
Publications (1) A. Bock, L. Sanità, Capacitated Orienteering, submitted.

(2) A. Bock, Y. Faenza, C. Moldenhauer, A. Ruiz Vargas, Approximating stable set in terms of the
odd cycle packing number, submitted.

(3) A. Bock, K. Chandrasekaran, J. Könemann, B. Peis, L. Sanità, Finding small stabilizers for
unstable graphs, Integer Programming and Combinatorial Optimization (IPCO), 2014.

(4) A. Bock, L. Sanità, On the approximability of two capacitated vehicle routing problems,
International Network Optimization Conference (INOC), 2013.

(5) A. Bock, E. Grant, J. Könemann, L. Sanità, The School Bus Problem on Trees,
Algorithmica, 2012.

(6) A. Bock, E. Grant, J. Könemann, L. Sanità, The School Bus Problem on Trees,
International Symposium on Algorithms and Computation (ISAAC), 2011.

Research
Visits

University of Waterloo, Kitchener-Waterloo, Ontario, Canada

Hosts: Laura Sanità, Jochen Könemann July 2013

University of Waterloo, Kitchener-Waterloo, Ontario, Canada

Host: Laura Sanità April 2012 – Mai 2012

Teaching
Experience

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Teaching Assistant March 2010 – present

• Fall 2013

– Lineare Algebra (main assistant)

– master thesis project on Orienteering with deadlines

• Spring 2013

– Optimisation discrète (main assistant)

– semester project on time tabling (ctd.)

• Fall 2012

– Algèbre linéaire pour GC, MX (main assistant)

– semester project on time tabling

• Fall 2011

– Combinatorial Optimization (main assistant)

– semester project on real root finding

85

• Spring 2011

– Optimisation discrète (main assistant)

– semester project on Support Vector Machines

• Fall 2010

– Algèbre linéaire pour GC, SIE (assistant)

• Spring 2010

– Algèbre linéaire II pour mathématiciens (assistant)

– Discrete Optimization (assistant)

Technische Universität Berlin, Berlin, Germany

Teaching Assistant March 2012 – August 2012

• Spring 2012

– Algorithmic (real-) algebraic geometry

Professional
Experience

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Assistant-doctorant September 2012 – present

Technische Universität Berlin, Berlin, Germany

Wissenschaftlicher Mitarbeiter March 2012 – August 2012

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Assistant-doctorant March 2010 – February 2012

Research Institute for Discrete Mathematics, Bonn, Germany

Studentische Hilfskraft (SHK) October 2008 – February 2010

Siemens Corporate Technology, Munich, Germany and Beijing, China

Werkstudent 2005 – 2007

86

	Cover page

	Acknowledgements
	Abstract (English/Deutsch)
	Zusammenfassung

	Contents

	List of Figures

	List of Tables

	Introduction
	Orienteering and related variants
	Introduction
	Related work
	Our contribution
	Preliminaries

	Capacitated Orienteering on general graphs
	A (3 +)-approximation algorithm for COP
	Applications of an approximation algorithm for COP

	Scaling and Rounding techniques
	Capacitated Orienteering on Euclidean metrics
	The PTAS for OP in the plane
	Our modifications

	Results on tree metrics
	COP on tree metrics
	Q-path and MEP on tree metrics

	Orienteering on planar graphs
	Orienteering with deadlines
	Orienteering with delay factor
	Arbitrary deadlines

	The School Bus problem and related variants
	Introduction
	Related work
	Our contributions
	Preliminaries
	Relations of different objectives

	The School Bus problem
	General graphs
	Tree metrics

	The School Bus problem with regret minimization
	Tree metrics
	General graphs

	Extensions and further variants
	Multiplicative regret
	Distance-constrained vehicle routing problem (with split-delivery)

	The School Bus problem in Practice
	Introduction
	Related work
	Our results

	A heuristic based on integer programming and column generation
	Description of the instance
	Preliminaries
	IP formulation
	Practical results

	Summary and Conclusion
	Bibliography
	Curriculum Vitae

