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Problem Statement

Measurements of numbers of moles n(t), mass m(t) and
reactor temperature T (t) are available
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Assumption: Stoichiometry, inlet composition and initial
conditions are known but no information is available on
the reaction kinetics

Can we detect faults using only data from the current
batch?

The answer is Yes, using the extent-based approach...
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Material Balance Equations

For a reaction system with S species, R reactions, p inlets
and one outlet,

Mole balances for S species

ṅ(t) = NT V (t) r(t) + Win uin(t) − uout (t)
m(t)

n(t), n(0) = n0

(S) (S × R) (R) (S × p) (p)

where,

ṁ(t) = 1T
puin(t)− uout(t), m(0) = m0,

ω(t) = −uout(t)

m(t)
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Energy Balance Equations

The energy balance equation can be written as:

Heat balance

Q̇(t) = (−∆H)T rv (t) + qex (t) + ŤT
in uin(t)− ω(t) Q(t) Q(0) = Q0

where Q(t) = m(t)cpT (t) is the heat power

ŤT
in contains the specific heats of the inlet streams
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Balance Equations

Combining both equations

Combined material and energy balance

ż(t) = A rv (t) + b qex (t) + C uin(t)− ω(t) z(t)

z =

[
n
Q

]
and z0 =

[
n0

Q0

]
.

A =

[
NT

(−∆H)T

]
, b =

[
0S
1

]
, C =

[
Win

ŤT

in

]
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Linear Transformation

The linear transformation T =
[
A b C z0 P

]−1
gives,

xr(t)
xex(t)
xin(t)
xic(t)
xiv(t)

 = T z(t)

The matrix P describes the q-dimensional null space of
the matrix

[
A b C z0

]
, with q = S − R − p − 1 .
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Linear Transformation

The transformed system reads

ẋr(t) = rv (t) − ω(t) xr(t) xr(0) = 0R

ẋex(t) = qex(t) − ω(t) xex(t) xex(0) = 0

ẋin(t) = uin(t) − ω(t) xin(t) xin(0) = 0p

ẋic(t) = −ω(t) xic(t) xic(0) = 1

xiv(t) = 0q ,

The numbers of moles n(t) and the heat Q(t) can be
reconstructed from the transformed variables:[

n(t)
Q(t)

]
=

[
NT

(−∆H)T

]
xr(t) +

[
0S
1

]
xex(t) +

[
Win

ŤT

in

]
xin(t) +

[
n0

Q0

]
xic(t).
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Fault Detection

Objective Use extents to identify faults in:

1 Outlet flowrates uout(t)

2 Inlet flowrates uin(t)

3 Heat exchange qex(t)

Note: In order to identify faults in reactions, we need
either historical data or a kinetic model
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Fault Detection - Fault in Flowrates

Compute the reference mass mref (t)

ṁref (t) = 1Tp uin,ref (t)− uout,ref (t) mref (0) = mref ,0

Compare mref (t) with the measured mass m(t) using
either z-test or t-test

If an error is detected, fault either in uin(t) and/or uout(t)
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Fault Detection - Fault in Flowrates

Compute the extents by applying the linear transformation

Compute xic,ref (t)

xic,ref (t) = −
uout,ref (t)

mref (t)
xic,ref (t)

Compare xic,ref (t) with xic(t) - Error in outlet flowrate?

Compute xin,ref (t)

xin,ref (t) = uin,ref (t)−
uout,ref (t)

mref (t)
xin,ref (t)

Compare xin,ref (t) with xin(t) - Error in inlet flowrates?
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Fault Detection - Fault in Heat transfer

Compute xex ,ref (t)

xex ,ref (t) = qex ,ref (t)−
uout,ref (t)

mref (t)
xex ,ref (t)

Compare xex ,ref (t) with xex(t) - Error in heat transfer?
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Simulated Example

Consider the hydrodealkylation reaction system

C7H8 + H2 → C6H6 + CH4

2C6H6 → C12H10 + H2

Both reactions are exothermic

Simplification: Hydrogen is considered as a dissolved
species fed directly into the liquid phase
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Fault Detection - Simulated Example

For the hydrodealkylation example, under normal
operating conditions (NOC), n and T vary with time

The measurements are corrupted with 1% zero-mean
gaussian white noise
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Fault Detection - Fault in uout

NOC: uout(t) = 0.5 kg min−1 AOC: uout(t) = 0 kg min−1

Fault introduced at time t = 30 min.
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Fault Detection - Fault in uin

NOC: uin(t) = 0.2 kg min−1 AOC: uin(t) = 0 kg min−1

Fault introduced at time t = 30 min.
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Fault Detection - Fault in qex(t)

The wrong heat transfer coefficient (UA) was used

NOC: UA = 500W K−1 AOC: UA = 5W K−1
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Conclusion

The transformation to extents gives variables that depend
on a single rate process → easier to detect a fault
associated with that rate

This allows isolation of faults without knowledge of
kinetics

The method requires a proper statistical framework -
Generalized Likelihood Ratio (GLR) tests

GLR also helps detect sensor faults

Thank you for your attention!
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