Extents for Process Monitoring

Problem Statement

Description

Material Balance
Equations

Transformation to Vessel

Fault Detection

Conclusion

On the Use of Extents for Process Monitoring and Fault Diagnosis

<u>Sriniketh Srinivasan</u>, Julien Billeter and Dominique Bonvin Laboratoire d'Automatique EPFL, Lausanne, Switzerland

Outline

Extents for Process Monitoring

Motivatio
Problem

System
Description
Material Balance
Equations
Energy Balance
Equations

Transformation to Vessel Extents

Fault Detection

- Motivation
 - Problem Statement
- 2 System Description
 - Material Balance Equations
 - Energy Balance Equations
- Transformation to Vessel Extents
- 4 Fault Detection
- Conclusion

Problem Statement

Extents for Process Monitoring

Motivation Problem Statement

System
Description
Material Balance
Equations
Energy Balance

Transformation to Vessel Extents

Fault Detection

Conclusio

• Measurements of numbers of moles $\mathbf{n}(t)$, mass m(t) and reactor temperature $\mathcal{T}(t)$ are available

- Assumption: Stoichiometry, inlet composition and initial conditions are known but no information is available on the reaction kinetics
- Can we detect faults using only data from the current batch?
- The answer is Yes, using the extent-based approach...

Material Balance Equations

Extents for Process Monitoring

Motivation

System Description

Material Balance Equations Energy Balance

to Vessel Extents

Fault Detectior

Conclusion

• For a reaction system with *S* species, *R* reactions, *p* inlets and one outlet.

Mole balances for S species

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathrm{T}} \ V(t) \ \mathbf{r}(t) + \mathbf{W}_{in} \ \mathbf{u}_{in}(t) - \frac{u_{out}(t)}{m(t)} \mathbf{n}(t), \ \mathbf{n}(0) = \mathbf{n}_0$$

(S)
$$(S \times R)$$
 (R) $(S \times p)$ (p)

where.

$$\dot{m}(t) = \mathbf{1}_{p}^{\mathrm{T}}\mathbf{u}_{in}(t) - u_{out}(t), \qquad m(0) = m_{0}, \ \omega(t) = -rac{u_{out}(t)}{m(t)}$$

Energy Balance Equations

Extents for Process Monitoring

Motivatio Problem

System
Description
Material Balance
Equations
Energy Balance
Equations

Transformat to Vessel Extents

Fault Detection

Conclusion

• The energy balance equation can be written as:

Heat balance

$$\dot{Q}(t) = (-\Delta \mathbf{H})^{\mathrm{T}} \mathbf{r}_{\nu}(t) + q_{\mathrm{ex}}(t) + \check{\mathbf{T}}_{in}^{\mathrm{T}} \mathbf{u}_{in}(t) - \omega(t) \ Q(t) \ Q(0) = Q_0$$

where $Q(t) = m(t)c_pT(t)$ is the heat power

 $\check{\mathbf{T}}_{in}^{\mathrm{T}}$ contains the specific heats of the inlet streams

Balance Equations

Extents for Process Monitoring

Motivation

System
Description
Material Balance
Equations
Energy Balance

Equations
Transformat
to Vessel
Extents

= ault Detection

Conclusion

Combining both equations

Combined material and energy balance

$$\dot{\mathbf{z}}(t) = \mathcal{A}\,\mathbf{r}_{v}(t) + \mathbf{b}\,\,q_{\mathrm{ex}}(t) + \mathcal{C}\,\mathbf{u}_{\mathrm{in}}(t) - \omega(t)\,\mathbf{z}(t)$$

$$\mathbf{z} = \begin{bmatrix} \mathbf{n} \\ Q \end{bmatrix}$$
 and $\mathbf{z}_0 = \begin{bmatrix} \mathbf{n}_0 \\ Q_0 \end{bmatrix}$.

$$\mathcal{A} = egin{bmatrix} \mathbf{N}^{ ext{ iny T}} \ (-\Delta\,\mathbf{H})^{ ext{ iny T}} \end{bmatrix}$$
, $\mathbf{b} = egin{bmatrix} \mathbf{0}_{\mathcal{S}} \ 1 \end{bmatrix}$, $\mathcal{C} = egin{bmatrix} \mathbf{W}_{in} \ \check{\mathbf{T}}_{in}^{ ext{ iny T}} \end{bmatrix}$

Linear Transformation

Extents for Process Monitoring

Motivation

Problem Statemer

System Description

Material Balance Equations

Energy Balance Equations

Transformation to Vessel Extents

Fault Detection

Conclusion

• The linear transformation $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathbf{b} & \mathcal{C} & \mathbf{z_0} & \mathbf{P} \end{bmatrix}^{-1}$ gives,

$$egin{bmatrix} \mathbf{x}_{r}(t) \ x_{ex}(t) \ \mathbf{x}_{in}(t) \ x_{ic}(t) \ \mathbf{x}_{iv}(t) \end{bmatrix} = \mathcal{T} \mathbf{z}(t)$$

• The matrix ${\bf P}$ describes the q-dimensional null space of the matrix $[{\cal A}~{\bf b}~{\cal C}~{\bf z}_0]$, with q=S-R-p-1.

Linear Transformation

Extents for Process Monitoring

Motivatio Problem

System
Description
Material Balance
Equations
Energy Balance

Transformation to Vessel Extents

Fault Detection

Conclusi

• The transformed system reads

$$\begin{split} \dot{\mathbf{x}}_r(t) &= \mathbf{r}_v(t) - \omega(t) \ \mathbf{x}_r(t) \\ \dot{\mathbf{x}}_{ex}(t) &= q_{ex}(t) - \omega(t) \ \mathbf{x}_{ex}(t) \\ \dot{\mathbf{x}}_{in}(t) &= \mathbf{u}_{in}(t) - \omega(t) \ \mathbf{x}_{in}(t) \\ \dot{\mathbf{x}}_{in}(t) &= -\omega(t) \ \mathbf{x}_{ic}(t) \\ \dot{\mathbf{x}}_{ic}(t) &= \mathbf{0}_q \end{split}$$

$$\mathbf{x}_r(0) &= \mathbf{0}_R$$

$$\mathbf{x}_{ex}(0) &= 0$$

$$\mathbf{x}_{in}(0) &= \mathbf{0}_p$$

$$\dot{\mathbf{x}}_{ic}(t) &= \mathbf{0}_q \end{aligned}$$

• The numbers of moles $\mathbf{n}(t)$ and the heat Q(t) can be reconstructed from the transformed variables:

$$egin{bmatrix} \mathbf{n}(t) \ Q(t) \end{bmatrix} = egin{bmatrix} \mathbf{N}^{ ext{T}} \ (-\Delta\,\mathbf{H})^{ ext{T}} \end{bmatrix} \, \mathbf{x}_{r}(t) + egin{bmatrix} \mathbf{0}_{\mathcal{S}} \ 1 \end{bmatrix} \, x_{ ext{ex}}(t) + egin{bmatrix} \mathbf{W}_{in} \ \dot{\mathbf{T}}_{in}^{ ext{T}} \end{bmatrix} \, \mathbf{x}_{in}(t) + egin{bmatrix} \mathbf{n}_{0} \ Q_{0} \end{bmatrix} \, x_{ic}(t)$$

Fault Detection

Extents for Process Monitoring

Motivation Problem

System Description

Material Balance
Equations
Energy Balance
Equations

Transformation to Vessel Extents

Fault Detection

- Objective Use extents to identify faults in:
 - ① Outlet flowrates $u_{out}(t)$
 - 2 Inlet flowrates $\mathbf{u}_{in}(t)$
 - **1** Heat exchange $q_{ex}(t)$
- <u>Note:</u> In order to identify faults in reactions, we need either historical data or a kinetic model

Fault Detection - Fault in Flowrates

Extents for Process Monitoring

Motivatio

Statement

System
Description
Material Balance
Equations
Energy Balance

Transformation to Vessel Extents

Fault Detection

Conclusion

• Compute the reference mass $m_{ref}(t)$

$$\dot{m}_{ref}(t) = \mathbf{1}_{p}^{T} \mathbf{u}_{in,ref}(t) - u_{out,ref}(t) \qquad m_{ref}(0) = m_{ref,0}$$

- Compare $m_{ref}(t)$ with the measured mass m(t) using either z-test or t-test
- If an error is detected, fault either in $\mathbf{u}_{in}(t)$ and/or $u_{out}(t)$

Fault Detection - Fault in Flowrates

Extents for Process Monitoring

Motivatio

System
Description
Material Balance
Equations
Energy Balance
Equations

Transformation to Vessel Extents

Fault Detection

Conclusion

- Compute the extents by applying the linear transformation
- Compute $x_{ic,ref}(t)$

$$x_{ic,ref}(t) = -\frac{u_{out,ref}(t)}{m_{ref}(t)} x_{ic,ref}(t)$$

- Compare $x_{ic,ref}(t)$ with $x_{ic}(t)$ Error in outlet flowrate?
- Compute $\mathbf{x}_{in,ref}(t)$

$$\mathbf{x}_{in,ref}(t) = \mathbf{u}_{in,ref}(t) - \frac{u_{out,ref}(t)}{m_{ref}(t)} \mathbf{x}_{in,ref}(t)$$

• Compare $\mathbf{x}_{in,ref}(t)$ with $\mathbf{x}_{in}(t)$ - Error in inlet flowrates?

Fault Detection - Fault in Heat transfer

Extents for Process Monitoring

Motivation

System

Description

Material Balance Equations Energy Balance Equations

Transformati to Vessel

Fault Detection

Conclusion

• Compute $x_{ex,ref}(t)$

$$x_{\text{ex,ref}}(t) = q_{\text{ex,ref}}(t) - \frac{u_{out,ref}(t)}{m_{ref}(t)} x_{\text{ex,ref}}(t)$$

• Compare $x_{ex,ref}(t)$ with $x_{ex}(t)$ - Error in heat transfer?

Simulated Example

Extents for Process Monitoring

Motivation
Problem

System
Description
Material Balance
Equations
Energy Balance

Transformation to Vessel Extents

Fault Detection

Conclusio

Consider the hydrodealkylation reaction system

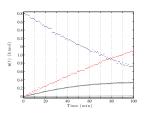
$$C_7H_8 + H_2 \rightarrow C_6H_6 + CH_4$$

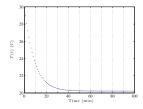
 $2 C_6H_6 \rightarrow C_{12}H_{10} + H_2$

- Both reactions are exothermic
- Simplification: Hydrogen is considered as a dissolved species fed directly into the liquid phase

Fault Detection - Simulated Example

Extents for Process Monitoring


Motivatio Problem Statement


System
Description
Material Balance
Equations
Energy Balance
Equations

Transformation to Vessel Extents

Fault Detection

- For the hydrodealkylation example, under normal operating conditions (NOC), n and T vary with time
- The measurements are corrupted with 1% zero-mean gaussian white noise

Fault Detection - Fault in u_{out}

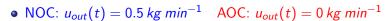
Extents for Process Monitoring

Motivation

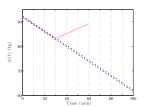
System
Description

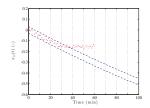
Description

Material Balance
Equations


Energy Balance

Energy Balance Equations Transformation


to Vessel Extents

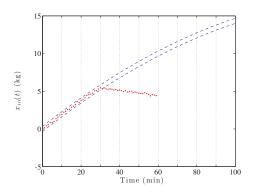

Fault Detection

Conclusion

• Fault introduced at time t = 30 min.

Fault Detection - Fault in \mathbf{u}_{in}

Extents for Process Monitoring


Motivation Problem

System
Description
Material Balanc
Equations
Energy Balance

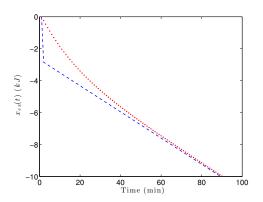
Transformati to Vessel Extents

Fault Detection

- NOC: $\mathbf{u}_{in}(t) = 0.2 \, kg \, min^{-1}$ AOC: $\mathbf{u}_{in}(t) = 0 \, kg \, min^{-1}$
- Fault introduced at time t = 30 min.

Fault Detection - Fault in $q_{ex}(t)$

Extents for Process Monitoring


Motivation Problem

System
Description
Material Balance
Equations
Energy Balance

Transformation to Vessel Extents

Fault Detection

- The wrong heat transfer coefficient (UA) was used
- NOC: $UA = 500 W K^{-1}$ AOC: $UA = 5 W K^{-1}$

Conclusion

Extents for Process Monitoring

Motivation Problem Statement

System
Description
Material Balance
Equations
Energy Balance
Equations

Transformatio to Vessel Extents

Fault Detection

- The transformation to extents gives variables that depend on a single rate process → easier to detect a fault associated with that rate
- This allows isolation of faults without knowledge of kinetics
- The method requires a proper statistical framework -Generalized Likelihood Ratio (GLR) tests
- GLR also helps detect sensor faults
- Thank you for your attention!

References

Extents for Process Monitoring

Motivation
Problem
Statement

System
Description
Material Balance
Equations
Energy Balance
Equations

Transformatio to Vessel Extents

Fault Detection

- M. Amrhein, N. Bhatt, B.Srinivasan and D. Bonvin, Extents of Reaction and Flow for Homogeneous Reaction Systems with Inlet and Outlet Streams, AIChE Journal, 56(11), 2873 - 2866 (2010)
- N. Bhatt, M. Amrhein and D. Bonvin, Incremental Identification of Reaction and Mass Transfer Kinetics Using the Concept of Extents, Industrial & Engineering Chemistry Research, 50(23), 12960 - 12974 (2011)
- S. Srinivasan, J. Billeter and D. Bonvin, Variant and invariant states for reaction systems, 1st IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory, Lyon, 2013.
- S. Narasmihan and R. S. H. Mah, Generalized likelihood ratios for gross error identification in dynamic processes, AIChE Journal, 34(8), 1321 - 1331 (1988)