
Reinforcement Learning of Single Legged Locomotion

Péter Fankhauser, Marco Hutter, Christian Gehring, Michael Bloesch, Mark A. Hoepflinger, Roland Siegwart

Abstract— This paper presents the application of reinforce-
ment learning to improve the performance of highly dynamic
single legged locomotion with compliant series elastic actuators.
The goal is to optimally exploit the capabilities of the hardware
in terms of maximum jump height, jump distance, and energy
efficiency of periodic hopping. These challenges are tackled
with the reinforcement learning method Policy Improvement
with Path Integrals (PI2) in a model-free approach to learn
parameterized motor velocity trajectories as well as high-
level control parameters. The combination of simulation and
hardware-based optimization allows to efficiently obtain optimal
control policies in an up to 10-dimensional parameter space.
The robotic leg learns to temporarily store energy in the
elastic elements of the joints in order to improve the jump
height and distance. In addition, we present a method to learn
time-independent control policies and apply it to improve the
energetic efficiency of periodic hopping.

I. INTRODUCTION

The nature of legged robots raises big challenges for con-
trolling these systems. High degrees of freedom (DOF) and
highly nonlinear non-smooth dynamics (due to interaction
with the environment) count amongst the difficulties that
researchers face in the development of control algorithms
for robots with legs. Model-based control approaches are
naturally limited by the fact that accurate models are difficult
to obtain and are hence less suitable to achieve maximal
performance, efficiency, and accuracy on the hardware. A
common method to overcome modeling inaccuracies is to
apply reinforcement learning directly to the physical robot.
Some successful results have been achieved on four- [1]
and two-legged robots [2]–[4]. They focused on robots
with position controlled, stiff actuators, which fundamentally
differentiates it from our system. Learning of a vertical jump
with a robot with compliant actuators was presented in [5].
The control input was parameterized with two step functions
with variable timing as basis functions for each actuator. The
optimization was conducted by the combination of random
exploration and hill-climbing search. This approach focuses
on the pneumatic actuation of this robot, which restricts
the applicability to our work. For purely simulation-based
approaches, earlier work on learning control for single legged
robots has been presented in [6], [7]. The topology of a
neural network is learned in simulation with a simple model.
However, these methods are not suitable for learning on the
real robot as the training requires a big number of trials
(up to ∼106 in [7]) to cover the state space. In a closely
related work [8], a genetic algorithm was used to generate
a vertical jump for a simulated single legged robot with

This work was supported by the Swiss National Centre of Competence
in Research (NCCR). The authors are with the Autonomous Systems Lab
(ASL), ETH Zurich, Switzerland, pfankhauser@ethz.ch

 noitazimitpO
in simulation

Model

1 noitazimitpO
on hardware

Reinforcement

Learning

Hardware

2 Execution
on hardware

Hardware

3

Reinforcement

Learning

Fig. 1: A two-step learning process allows for efficient optimization
in simulation (1) and circumvention of the model inaccuracies on
the hardware (2).

mechanical springs in the joints. The algorithm has evolved
to a countermovement jump at which a torque in the springs
is developed before the upward movement of the jump. We
aim at achieving similar results for a real robot with an
additional horizontal DOF.

Scalability, high convergence rate and numerical robust-
ness are crucial for reinforcement learning on real robots.
While classic reinforcement learning methods do not scale
well to high-dimensional continuous state and action spaces,
recent developments in robot learning have overcome these
limitations (see [9], [10] for a comprehensive overview).
In particular, the method Policy Improvement with Path
Integrals (PI2) [11], has lately shown promising results in
learning complex behavior for interaction with the environ-
ment [12], [13]. It combines path integral methods for opti-
mal control with direct reinforcement learning in a model-
free approach. The algorithm allows to iteratively update
the control policy in high dimensions and has shown fast
convergence in comparison to other reinforcement learning
methods (e.g. REINFORCE, PoWER). PI2 does not rely on
the computation of gradients, which is of great importance
considering the application on a physical system with noise
and non-smooth dynamics. Also, tuning of open parameters
is reduced in PI2 to the manual definition of the exploration
noise. This way, the user can focus on the design of the cost
function. However, the scalability to high dimensions comes
at the cost that the PI2 algorithm (as all trajectory-based
learning algorithms) finds only locally optimal solutions.
Therefore, it can be crucial to start with reasonably good
initial policies depending on the complexity of the task.

In this work, we apply PI2 to learn jumping and hop-
ping maneuvers on the robotic single leg ScarlETH [14].
ScarlETH is a planar system with an articulated leg driven
by highly compliant series elastic actuators (SEA) [15] in
the hip and knee joint. To maximize the performance and
locomotion efficiency, we apply a two-step optimization

mailto:pfankhauser@ethz.ch

ez

O

I

ex
I

Knee

Hip

Foot

Base

ĳ

–Tknee

g

Thip

knee

(xhip, z)hip

(x, z)

(xfoot, z)foot

±ĳ
hip

(a)

ĳ
joint

ĳ
mot

Motor

Spring

Joint / Leg

(b)

Fig. 2: The one-legged robot has a total number of 6 DOF (x, z,
ϕhip,mot, ϕhip,joint, ϕknee,mot, and ϕknee,joint). The torque in each joint is
given by the deflection of the spring that is attached between the
motor and the joint.

framework by combining simulation-based and hardware-
based reinforcement learning as illustrated in Fig. 1. The
main contributions of this paper are presented in the context
of reinforcement learning of jumping and hopping maneuvers
for a single robotic leg with highly compliant joints: We
extend the application range of PI2 from typically slow reach-
ing, grasping and manipulation tasks [12], [13] to highly
dynamic jumping maneuvers. We directly parameterize the
motor velocity trajectories (input to the SEA) and do not
enforce joint position (output of the SEA) tracking with
an additional controller. This way, the learning algorithm
learns to excite the inherent dynamics of the system and to
exploit them to achieve maximal performance. Additionally,
we present a novel strategy to learning of time-independent
periodic control policies with PI2 to find an optimal exci-
tation frequency. We have summarized the experiments and
the learning progress in a video: youtu.be/xw6pSal-OgI

The remainder of this paper is structured as follows. The
one legged platform ScarlETH is described in Section II
and an introduction to PI2 is given in Section III. The
learning framework and the results for single jumps is given
in Section IV and for energy efficient hopping in Section V.

II. SYSTEM DESCRIPTION

ScarlETH is a planar one-legged robotic system [14]. It is
modeled consisting of a main body/base, a thigh and a shank
connected at the hip and knee joint respectively as shown in
Fig. 2(a). A guiding unit allows the robot to move freely
in horizontal and vertical direction while the rotation about
the pitch axis is blocked. The position of the base (x, z) is
measured with wire sensors while the position of the foot
(xfoot, zfoot) is given by the hip and knee joint angles ϕhip
and ϕknee. A series elastic actuator [15] drives each joint and
is described by the motor position ϕmot and joint position
ϕjoint (Fig. 2(b)). The joint torque is given by the deflection
of the spring as T = csprg(ϕmot − ϕjoint) with csprg denoting
the spring constant. Contact of the foot with the ground is
detected through a threshold value for the deflection of the
knee joint spring.

The controller for each joint provides different actuation
modes. In the motor velocity control mode, the desired motor
velocities for the hip ϕ̇des

hip,mot and knee ϕ̇des
knee,mot are directly

transferred to the motor electronics. This is the lowest control
input method to the system. In the joint position control
mode, the desired joint positions for hip ϕdes

hip and knee
ϕdes

knee are tracked. In the torque control mode, precise torque
regulation is achieved through control of the spring deflection
for the desired torques of hip T des

hip and knee T des
knee.

The system has a total moving mass of 6.5 kg of which
∼50% are on account of the vertical gliders and can be
interpreted as payload. For the long jump (Subsection IV-
B) and the periodic hopping (Section V) experiments, we
attach springs with a constant force to compensate for the
payload. Our simulation and software setup is identical to the
framework described in [16]. This setup allows to quickly
change from the simulation to the real robot while running
the same high-level control software.

III. OPTIMIZATION FRAMEWORK
In the first step of our optimization framework (1 in

Fig. 1), we run the simulation based on the model of the
rigid body dynamics (Section II) in order to find a control
policy that is optimized for the dominating dynamics of the
system. In the second optimization step (2 in Fig. 1), we
continue the learning procedure by applying it directly on
the real robot. By leveraging the results from the first step,
we are now circumventing the modeling errors and achieve a
convergence to a new cost minimum in few trials. Executing
the policy from the second optimization process on the
hardware (3 in Fig. 1) then shows a consistent repeatability.

The reinforcement learning algorithm is based on PI2 [11],
a model-free, direct policy learning method. The algorithm
evaluates a path integral with Monte Carlo rollouts (repeated,
random sampling). It optimizes a control policy a(t), which
is parameterized by a basis function representation

a(t) = g(t)Tθ , (1)

with the policy parameter vector θ ∈ RM×1 and a set of
basis functions g(t) ∈ C(R,RM×1) with M being the number
of parameters/basis functions. The aim is to find a set of
parameters θ which minimizes a cost function J with

J(θ) = φtN +

tN∫

ti

(
q(t) +

1
2
θTR θ

)
dt , (2)

for the time interval from ti to tN . The cost function consists
of the terminal cost term φ(tN), the immediate state cost q(t),
and the control cost 1

2θ
TR θ with R ∈ RM×M denoting the

control cost matrix.
During the learning procedure the cost function is mini-

mized in an iterative process of exploration and parameter
updating. The state space is explored by injecting the Gaus-
sian mean-zero noise ε ∈ RM×1 in the policy parameters
and executing a number of stochastic control policies for
k = 1...K with

ak(t) = g(t)T(θ + εk) . (3)

http://youtu.be/xw6pSal-OgI

ez
I Flight phase Stopping phaseThrust phase

Apex

Touchdown
Bottom

Lift-off

zap
z lo xtd

x0 x0

¨z

¨x

Fig. 3: The time evolution of a vertical jump consists of the three
phases thrust, flight, and stopping phase. The goal is to maximize
the jump height ∆z while minimizing the touchdown offset ∆x.

The basis functions are nonlinear and distributed in such
a way that they provide an appropriate expressivity for the
particular task. We use normalized Gaussian basis functions,

gm(t) =
Ψm(t)

M∑
j=1
Ψ j(t)

with Ψm(t) = exp
(
− 1

2σ2
m

(t − cm)2
)
, (4)

where σm and cm are the widths and centers of the basis
function with index m = 1...M.

The variation of the policy parameters in (3) leads to
different costs for each k-th execution of the policy (rollout).
The policy improvement step (PI2 update) is computed based
on the trajectory costs and performs the parameter update

θr+1 ←− θr + δθ , (5)

for r the current parameter update step. The updated policy
is expected to generate trajectories that lead to decreasing
costs in the future. We refer to [11] for the derivation of the
PI2 update algorithm.

IV. JUMPS FROM REST
A jump from a resting posture is a highly explosive ma-

neuver that requires correct timing and precise coordination
of the joints. First, we focus on learning the motion for a
purely vertical jump (Subsection IV-A) and then extend to
jumps with different jump distances (Subsection IV-B).

A. Vertical Jump
The robot starts the vertical jump with the thrust phase

from rest with the base horizontal start position x0 (Fig. 3).
During this phase, the leg has to develop a maximal thrust
to achieve a high vertical lift-off velocity. It reaches the apex
point (highest point in the flight trajectory) in the flight phase.
The jump height ∆z is defined as the difference between the
base vertical lift-off position zlo and the base vertical apex
position zap as

∆z = zap − zlo . (6)

The touchdown offset ∆x is given by the difference of the
base horizontal start position x0 and the base horizontal
touchdown position xtd as

∆x = x0 − xtd . (7)

The goal of the vertical jump optimization is to maximize
the jump height ∆z while minimizing the touchdown offset
∆x.

1) Control Structure: For the thrust phase, we choose
the desired motor velocity for each joint, ϕ̇des

hip,mot(t) and
ϕ̇des

knee,mot(t), as a feedforward control input (motor velocity
control mode) whereby the control loop over the SEA is not
closed (as opposed to e.g. torque control mode). This way,
the learning framework can directly excite the SEA at the
lowest control level which allows to include the dynamics of
the SEA as part of the optimization. As soon as a lift-off is
detected, the control is switched to the joint position control
mode with predefined configuration for the duration of the
flight phase.

2) Policy: Optimization is applied to the control pol-
icy of the thrust phase. The two-dimensional policy at =(
ϕ̇des

hip,mot(t), ϕ̇
des
knee,mot(t)

)T
is parameterized with equally dis-

tributed Gaussian basis functions. The basis functions are
parameterized directly by the time t. The number of basis
functions per dimension M, the execution time of the policy
tN and the start base vertical position z0 influence the
degree of optimization that can be achieved. We experience
that providing the policy enough time (tN = 0.45 s), the
trajectories from different start base positions z0 = {0.32,
0.4, 0.48}m converge to a trajectory with almost identical
jump height. The combination of M = 5 (10 parameters in
total), tN = 0.3 s and z0 = 0.4 m reflects a sensible trade-off
between expressivity and complexity of the policy. Increasing
the execution time or number of parameters does not lead to
significantly better performance.

The initial policy is chosen manually such that the learning
procedure is biased towards a trajectory with lift-off at the
end of the policy execution. This ensures that all parameters
are used to shape the trajectory. The variance of the explo-
ration noise Σε is set to 1.2 rad/s for learning in simulation
and to 0.7 rad/s for learning on the hardware. The number of
rollouts per update is chosen to be K = 10 and the 5 best
rollouts from the last iteration are additionally reused for the
policy improvement step.

3) Cost Function: We evaluate the jump height ∆z (in m)
and touchdown offset ∆x (in m) in the terminal cost term as

φtN = 0.3 |∆x| − ∆z .a (8)

The weighting factor 0.3 has been tuned manually in simula-
tion to reach a reasonable trade-off between the jump height
and touchdown offset. The immediate state cost qt and the
control cost are neglected, as they are not relevant for the
optimality of this task.

4) Results: The mean and the standard deviation of
the cost evolution for multiple learning sessions for the
simulation-based learning is given in Fig. 4(a). For the
learning process on the hardware, the initial policy is given
by the optimized policy obtained from the simulation. The
algorithm is able to converge to a new cost minimum within
only a few update steps (Fig. 4(b)).b

aNegative costs φtN < 0 are valid values for the optimization framework.
bIt is coincidental that the cost for the last update in the simulation

Fig. 4(a) is close to the value for the initial rollout on the hardware Fig. 4(b).
This depends on the motor power limitation in simulation is not relevant
for the success of the learning procedure.

0

015 75 135 195 255 315 375 435 495

1 494337312519137
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

updates

rollouts

1
RU
P
DO
L]
HG
�F
RV
W��
ï�

State cost

Cost mean

Cost standard deviation

(a) Learning in simulation

0

0.1

0.2

0.3

0.4

0.5

0

0

1

15

2

25

3

35

4

45

5

55

6

65

7

75

8

85

State cost

Touchdown offset cost

Jump height cost

Total state cost

(b) Learning on hardware

Fig. 4: The normalized cost evolution of the simulation-based
learning is shown in (a) (averaged over 5 learning sessions). The
initial policy of the learning procedure on the hardware (b) is
given by the learned parameters in simulation. By leveraging the
simulation-based learning, convergence to a new cost minimum on
the hardware can be reached in only a few update steps (<100
rollouts).b

ï��1 � ��1 ��2 ��3 ��4 ��5 ��6 ��7 ��8 ��9

�

��1

��2

��3

��4

��5

��6

Time (s)

z b
a

s
e
, z

fo
o

t (
m

)

Base and foot vertical position

Foot

Base

Jump height 47 mm

Touchdown offset 38 mm
Jump height 84 mm

Touchdown offset 31 mm

-XPS�KHLJKW�����PP
Touchdown offset 3mm

Initial

Learned on hardware

Lift-off Touchdown

Learned in simulation

� ��1 ��2 ��3 ��4
ï��

�

��

T h
ip

 (
N

m
)

Hip joint torque

Time (s)

� ��1 ��2 ��3 ��4

ï��

ï��

�

T k
n

e
e
 (

N
m

)

Knee joint torque

Time (s)

Fig. 5: The policy learning converges to a jump with characteristic
countermovement behavior. The policy learned on the hardware
exceeds the jump height of the policy learned in simulation.

Fig. 5 shows the initial and the learned jump with char-
acteristic countermovement trajectory. In the learned policy,
the actuators are pre-activated and the body is first lowered
to temporarily store energy in the joint springs. This energy
is then released during an explosive upward motion before
lift-off.

The simulation-based policy (executed on the hardware)
increases the initial jump height from 47 mm to 84 mm.
The trajectory learned on the hardware pushes the jump
height further to 105 mm by circumventing the modeling
inaccuracies. While the policy learned in simulation reduces
the touchdown offset on the hardware ∆x from 38 mm to
31 mm, only the policy learned on the hardware is able to
minimize the touchdown offset to a large extent to 3 mm.

ï��4 ï��3 ï��2 ï��1 � ��1 ��2 ��3 ��4 ��5 ��6

�

��1

��2

��3

��4

��5

��6

x
base

, x
foot

 (m)

z
b

a
s
e
,
z

fo
o

t (
m

)

Base and foot position

Foot

Base

Target base height z
ap

^

Target foot position in thrust phase x
foot, th

^

Target foot position at touchdown x
foot, td

^

/LIWïRII Touchdown Apex

Fig. 6: The learning procedure for each long jump is initialized with
the policy from the previous jump distance (starting from x̂foot,td =
0 m) and converges within 35 rollouts. The longest target jump
distances x̂foot,td = 0.6 m and x̂foot,td = −0.4 m are not fully reached
because of limited foot traction.

B. Long Jump
As an extension of the vertical jump, we conduct experi-

ments in which we let ScarlETH learn jumps with different
jump distances while maintaining a defined jump height. This
is incorporated as the base apex height zap (in m) and the
foot touchdown position xfoot,td (in m) in the terminal cost
term

φtN = 2 (zap − ẑap)2 + (xfoot,td − x̂foot,td)2 , (9)

with the target base height at apex ẑap and the target foot
touchdown position x̂foot,td. When targeting relatively large
jump distances (up to 0.5 m), we have to deal with foot
slippage as a result of a high horizontal thrust force. To avoid
this, we penalize a horizontal displacement of the foot during
the thrust phase by defining the immediate state cost as

q(t) =
10
N

(xfoot(t) − x̂foot,th)2 , (10)

with N the number of time steps of the policy execution,
and xfoot(t) (in m) and x̂foot,th the actual and target horizontal
foot position during thrust phase. We rely on hardware-
based learning only as we can iteratively and efficiently
reuse the policy of a previous jump with different distance
(as opposed to learn each jump from scratch). The variance
of the exploration noise Σε is set to 1.35 rad/s. Fig. 6 shows
the results for the learned policies for different target jump
lengths which all converged within 35 rollouts (3 parameter
updates). The longest target jump distances (x̂foot,td = 0.6 m
and x̂foot,td = −0.4 m) are not fully reached as a result of the
trade-off between jump length and foot slippage.

We observe that ScarlETH is able to jump further in for-
ward direction (positive x-direction) than backwards, which
is due to its articulated leg design. For a forward jump,
both hip and knee joints can contribute actively towards the
necessary lift-off velocity, while a backward jump has to be
actuated mainly by the knee joint.

ez

hfoot

ltd
ltd

z

cz
Ȗtd

Șst

I

hfoot
^

Apex

Stance phase Flight phaseFlight phase

Apex

Touchdown
Bottom

Lift-off
-1 10

Fig. 7: High-level control parameters are optimized to maximize
the energetic efficiency of periodic hopping.

V. PERIODIC HOPPING
Periodic hopping can be achieved with a control method

presented in [14] that is based on virtual model control
[17]. The controller enables robust hopping and a simple
combination of control for the vertical and horizontal DOF.
The goal is to learn a set of control parameters that minimizes
the energy consumption for periodic hopping.

1) Control Structure: A hopping sequence from apex to
apex is illustrated in Fig. 7. During the flight phase, the leg
is positioned to a predefined configuration (joint position
control) with touchdown leg angle γtd and touchdown leg
length ltd. For the stance phase, a virtual force element
Fvirtual is emulated between foot and hip joint (which roughly
corresponds to the robot’s center of mass). The vertical
component of the virtual force is given by an emulated spring
element as

Fz
virtual = cz(ηst)

(
lz0 −

(
zhip − zfoot

))
+ gz , c (11)

with the zero spring length lz0 and gravity compensation term
gz. The spring stiffness cz(ηst) is parameterized by the time-
independent locomotion variable ηst which is defined below.
The control in horizontal direction is achieved by the x-
component of the virtual force Fx

virtual = kx(x̂ − x) with the
proportional gain kx and the desired horizontal base position
x̂. The virtual force element Fvirtual is mapped to the joint
torques with Jacobi transposed mapping as laid out in [14].
The desired torques are sent to the joint controller running
in the torque control mode.

2) Locomotion Time: The virtual spring stiffness cz(ηst)
determines the hopping frequency and thus the execution
time of the policy. To comply with the time-invariant struc-
ture of the controller, we introduce a locomotion variable
for the stance phase ηst as a time-independent, dimensionless
parameter that describes the fraction of the stance time that
has elapsed. It maps the progress between touchdown and
lift-off to the interval [−1, 1] with the bottom point at ηst = 0.
We define the locomotion time similarly to [18] as

η2
st =

Ekin

Etot
=

1
2 mż2

1
2 mż2 + mg(z − ztd) +

∫ t
ttd

Fz
virtual dz

,

ηst =
ż

√
ż2 + 2g(z − ztd) + 2

m

∫ t
ttd

Fz
virtual dz

, (12)

cFor our choice of the coordinate system (see Fig. 2(a)), zfoot ≈ 0 m holds
during the stance phase.

based on the kinetic energy Ekin and the total energy of the
system Etot (as the sum of kinetic energy, potential energy
in the gravitational field, and potential energy of the virtual
spring). This approximation captures the main characteristics
sufficiently as it covers big parts of the interval [−1, 1] and
is, at least experimentally, monotonic strictly increasing.

3) Policy: The learning algorithm is applied to a subset of
the control parameters (in total 7 open parameters), namely
the leg length at touchdown ltd, the virtual spring stiffness
cz(ηst), and the virtual zero spring length lz0 (Fig. 7). The
touchdown leg length ltd determines the extension angle
of the knee at touchdown. A higher leg length (and thus
higher knee extension angle) leads to higher impact energy
losses [19] and thus influences the energy efficiency. The pa-
rameterized virtual spring stiffness cz(ηst) gives the learning
algorithm the opportunity to optimize for energetic efficiency
by influencing the instantaneous motor power. In accordance
to the policies of the previous tasks (Section IV), M = 5
Gaussian functions are chosen as basis functions. Finally, the
zero spring length lz0 determines how much energy is virtually
introduced to the system at every time step to compensate
for the energy losses. It is important to adapt the parameter
accordingly to maintain the minimal foot clearance ĥfoot.

The minimal foot clearance is given with ĥfoot = 16 cm and
the variance of the exploration noise for the virtual spring
stiffness is set to Σε = 300 N/m. Again, the number of rollouts
per update is K = 10 with an additional 5 rollouts reused
from the last update.

4) Cost Function: The energy consumption is captured in
the immediate state cost with the positive motor work (motor
power defined as Pmot = ϕ̇motT in W) for the stance phase
as

qt = max(Phip,mot, 0) +max(Pknee,mot, 0) . (13)

Reaching the minimum foot clearance ĥfoot (in m) for each
step allows us to compare the energy expenditure. We
incorporate the minimal foot clearance in the terminal cost
term as

φtN = 12 · 103
(
min

(
hfoot − ĥfoot, 0

))2
, (14)

where the weighting factor is tuned manually. One rollout
is executed with 10 steps/jumps, of which the last 6 steps
are evaluated with the cost function. This makes sure that
the transient towards the limit cycle is omitted. The cost
for each jump of the rollout are averaged and mapped on
the locomotion variable ηst before performing the PI2 policy
update step.

5) Results: The cost evolution for multiple learning ses-
sions in simulation is shown in Fig. 8. The learning algorithm
has consistently converged from the leg length at touchdown
ltd = 35.0 cm to a learned leg length with ltd = 29.3 cm.
The initial (linear) and the learned (nonlinear) virtual spring
characteristic cz(ηst) is plotted in Fig. 9. The learned control
parameters reduce the positive motor work for the stance
phase from 7.0 J to 6.1 J per step.

We have conducted a learning session on the real robot
and initialized the policy with the learned parameters from

4.4

4.6

4.8

5

updates

rollouts

&
RV
W��
ï)

Energy cost

0

0

1

15

5

55

9

95

13

135

17

175

21

215

25

255

29

295

33

335

37

375

41

415

45

455

49

495

Energy cost mean

Energy cost standard deviation

Fig. 8: Evolution of the energy cost for periodic hopping (learned
in simulation, averaged over 5 learning sessions)

ï���� � ���� ���� ���� ���� ��1 ����

�

��

���

���

���

Virtual spring compression l z (m)

V
ir
tu

a
l
s
p
ri
n
g
 f
o
rc

e
 F

v
ir
t

z
 (

N
)

Virtual spring stiffness cz (dst)

Initial

Learned

Touchdown

Lift-off

Lengthening

Fig. 9: Initial and learned virtual spring force Fz
virtual in dependency

of the virtual spring compression lz = zhip − zfoot

simulation. A significant convergence to a new cost minimum
could not be established. By closing the control loop with
the introduced controller, big parts of the modeling errors are
cancelled and an additional optimization on the hardware is
unnecessary. However, we can ensure that parameters learned
from simulation are at least locally optimal on the real robot
as well.

VI. CONCLUSION

We have shown that reinforcement learning based on
simulations and hardware experiments is highly effective
to improve the locomotion performance and energetic ef-
ficiency. For jumps from rest, the motor velocity trajectories
converged to a countermovement jump in which the elastic
elements in the joints are exploited to improve the jump
height. This is very similar to what can be observed in nature
and has been examined i.a. by [20], [21]. By continuing the
learning on the hardware, modeling errors are compensated
for and the jumping performance is improved significantly
within a few trials. Learning different jump lengths, we
generate a policy library with which ScarlETH can accu-
rately perform accurate jumps. For energy efficient hopping,
we introduce a new method for the optimization of time-
independent periodic control policies. The algorithm is able
to minimize the energy consumption without sacrificing the
robustness of the controller.

For the vertical and long jumps, we ascribe the learning
success to the choice of the control policy. The policy directly
acts on the motor velocity as input to the SEA without
additional joint tracking controller and allows to efficiently
exploit temporal energy storage and power amplification of
the compliant actuators. This is in contrast to the closed-

loop hopping controller where we restrict the optimization
to the high-level control parameters in order to maintain
active control of the horizontal DOF. This choice naturally
restricts the degree of optimization of the energy efficiency
that can be achieved. While the PI2 algorithm has worked to
our satisfaction in these experiments, we do not exclude that
other reinforcement learning methods could have achieved
similar results. As a next step, we are building on our findings
to learn jumping, hopping, and running maneuvers on our
quadruped robot StarlETH [16].

References
[1] N. Kohl and P. Stone, “Policy Gradient Reinforcement Learning

for Fast Quadrupedal Locomotion,” in International Conference on
Robotics and Automation (ICRA), 2004.

[2] W. Miller, “Real-time neural network control of a biped walking
robot,” IEEE Control Systems, vol. 14, no. 1, pp. 41–48, Feb. 1994.

[3] H. Benbrahim, “Biped dynamic walking using reinforcement
learning,” Robotics and Autonomous Systems, vol. 22, 1997.

[4] R. Tedrake, T. W. Zhang, and H. S. Seung, “Learning to Walk in 20
Minutes,” in Yale Workshop on Adaptive and Learning Systems, New
Haven, CT, 2005.

[5] R. Niiyama, K. Kakitani, and Y. Kuniyoshi, “Learning to jump
with a musculoskeletal robot using a sparse coding of activation,”
International Conference on Robotics and Automation (ICRA), 2009.

[6] P. Doerschuk, W. Simon, V. Nguyen, and A. Li, “A modular approach
to intelligent control of a simulated jointed leg,” IEEE Robotics and
Automation Magazine, vol. 5, no. 2, pp. 12–21, June 1998.

[7] R. Tedrake and H. S. Seung, “Improved Dynamic Stability Using
Reinforcement Learning,” in International Conference on Climbing
and Walking Robots (CLAWAR), 2002, pp. 341–348.

[8] S. Curran and D. E. Orin, “Evolution of a jump in an articulated leg
with series-elastic actuation,” International Conference on Robotics
and Automation (ICRA), pp. 352–358, May 2008.

[9] S. Schaal and C. G. Atkeson, “Learning control in robotics,” IEEE
Robotics and Automation Magazine, no. June, 2010.

[10] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in
Robotics: A Survey,” International Journal of Robotics Research,
2013.

[11] E. A. Theodorou, J. Buchli, and S. Schaal, “A generalized path
integral control approach to reinforcement learning,” The Journal of
Machine Learning Research, vol. 11, pp. 3137–3181, 2010.

[12] J. Buchli, F. Stulp, E. A. Theodorou, and S. Schaal, “Learning
variable impedance control,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 820–833, Apr. 2011.

[13] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in
International Conference on Robotics and Automation (ICRA), 2011.

[14] M. Hutter, C. D. Remy, M. A. Hoepflinger, and R. Siegwart,
“ScarlETH: Design and control of a planar running robot,” in
International Conference on Intelligent Robots and Systems (IROS),
Sept. 2011, pp. 562–567.

[15] G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 1995, pp. 3137–3181.

[16] M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger, C. D. Remy,
and R. Siegwart, “StarlETH: A compliant quadrupedal robot for fast,
efficient, and versatile locomotion,” in International Conference on
Climbing and Walking Robots (CLAWAR), 2012.

[17] J. Pratt, “Virtual Model Control: An Intuitive Approach for Bipedal
Locomotion,” The International Journal of Robotics Research, vol. 20,
no. 2, pp. 129–143, Feb. 2001.

[18] J. Helferty and M. Kam, “Adaptive control of a legged robot using
an artificial neural network,” in International Conference on Systems
Engineering. IEEE, 1989, pp. 165–168.

[19] M. Hutter, C. D. Remy, M. A. Hoepflinger, and R. Siegwart,
“SLIP Running with an Articulated Robotic Leg,” in International
Conference on Intelligent Robots and Systems (IROS), 2010.

[20] M. F. Bobbert, K. G. M. Gerritsen, M. C. A. Litjens, and A. J. Van
Soest, “Why is countermovement jump height greater than squad jump
height?” Medicine and Science in Sports and Exercise, 1996.

[21] D. A. Chu, Jumping Into Plyometrics. Human Kinetics, 1998.

	INTRODUCTION
	SYSTEM DESCRIPTION
	OPTIMIZATION FRAMEWORK
	JUMPS FROM REST
	Vertical Jump
	Long Jump

	PERIODIC HOPPING
	CONCLUSION
	References

