
High-Throughput Maps on Message-Passing
Manycore Architectures:

Partitioning versus Replication

Omid Shahmirzadi, Thomas Ropars, and André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract. The advent of manycore architectures raises new scalability
challenges for concurrent applications. Implementing scalable data struc-
tures is one of them. Several manycore architectures provide hardware
message passing as a means to efficiently exchange data between cores. In
this paper, we study the implementation of high-throughput concurrent
maps in message-passing manycores. Partitioning and replication are the
two approaches to achieve high throughput in a message-passing system.
Our paper presents and compares different strongly-consistent map algo-
rithms based on partitioning and replication. To assess the performance
of these algorithms independently of architecture-specific features, we
propose a communication model of message-passing manycores to ex-
press the throughput of each algorithm. The model is validated through
experiments on a 36-core TILE-Gx8036 processor. Evaluations show that
replication outperforms partitioning only in a narrow domain.

1 Introduction

Manycore architectures, featuring tens if not hundreds of cores, are becom-
ing available. Taking advantage of the high degree of parallelism provided by
such architectures is challenging and raises questions about the programming
model to be used [23, 16]. Most existing architectures are still based on cache-
coherent shared memory but some provide message passing, through a highly
efficient network-on-chip (NoC), as a basic means to communicate between
cores [14, 3, 1]. Designing a scalable concurrent algorithm for cache-coherent
architectures is a difficult task because it requires understanding the subtleties
of the underlying cache coherence protocol [8]. On the other hand, message pass-
ing looks appealing because it provides the programmer with explicit control of
the communication between cores. However, compared to the vast literature on
concurrent programming in shared-memory systems [12], programming message-
passing processors is not yet a mature research topic.

Implementing scalable data structures is one of the basic problems in con-
current programming. To increase the throughput of data structures in shared
memory architectures, several well-known techniques can be used including fine-
grained locking, optimistic synchronization and lazy synchronization [12]. In

message-passing systems, partitioning and replication are the two main ap-
proaches to improve the throughput of concurrent data structures [10]. Using
partitioning, a data structure is partitioned among a set of servers that answer
clients requests. Using replication, each client has a local copy of data structure
in its private memory. Both have been considered in recent work on message-
passing manycores [5, 25, 7], but performance comparisons are lacking. In this
paper we present a performance comparison of these two approaches for the im-
plementation of high-throughput concurrent objects in message-passing many-
cores, considering the case of a linearizable map. Note that existing studies made
in distributed message-passing systems are only of little help because the high
performance of NoCs provides a completely different ratio between computation
and communication costs compared to large scale distributed systems.

Maps are used in many systems ranging from operating systems [5, 25] to
key-value stores [7]. Their performance is often crucial to the systems using
them. A map is an interesting case study because it is a good candidate to apply
both partitioning and replication techniques. Since operations on different keys
are independent, maps are easily partitionable [7]. Because a large majority of
operations are usually lookup operations [4], replication can help handling a
large number of local lookup requests concurrently.

Since message-passing manycores are a new technology, only few algorithms
targeting this kind of architectures are available. Thus, to compare partitioning
and replication in this context, we devise simple map algorithms that have been
chosen to be representative of the design space. To compare our algorithms,
we present a model of the communication in message-passing manycores, and
express the throughput of our algorithms in this model. Using a performance
model allows us to compare the algorithms independently of platform-specific
features and to cover a large scope of manycore architectures. We use a 36-core
Tilera TILE-Gx8036 processor to validate our model. Evaluations on the TILE-
Gx shows an extremely poor performance for replication compare to partitioning.
However some limitations of this platform, i.e. costly interrupt handling and lack
of broadcast service, can be blamed for the poor performance of replication. Our
model allows us to come up with a hypothetical platform based on the TILE-Gx,
which does not suffer form its limitations. Our evaluations on this ideal platform
show that even in the best setting in favor of replication, i.e. having highly
efficient interrupt handling and hardware-based broadcast service, replication
can outperform partitioning only when update operations are rare and replicas
are located in the cache system of the cores.

This paper is organized as follows. Section 2 specifies the underlying as-
sumptions and goal of the study. Section 3 introduces the algorithms. Section 4
presents the modeling methodology and its validation on the TILE-Gx proces-
sor. Section 5 studies performance of the algorithms on different architectures.
Related work and conclusion are presented in Sections 6 and 7.

2 Assumptions and Goal

The study assumes a fault-free manycore architecture where a large set of threads,
each pinned to a single-threaded core during its lifetime, communicate through
an on-chip network using the following operations: send(m, i) sends message
m to thread i; bcast(m) sends m to all threads; mcast(m, list) sends m to all
threads in the list; rcv(m) blocks until message m can be received. A thread can
be interrupted to deliver a new message m upon its receipt, which is denoted as
arcv(m). Communication channels are asynchronous and FIFO.

The study considers the most general consistency criteria, linearizability [13],
and compares the maximum achievable throughput of different linearizable map
implementations. A map is a set of items indexed by unique keys that provides
lookup and update operations: lookup(key) returns the value indexed by key
(null if no value is associated with key); update(key, val) updates the value
indexed by key to val (deleting a key can be done using update(key, null)).

3 Algorithms

The two basic techniques to implement scalable concurrent maps on message-
passing manycores are partitioning and replication. For each technique, we con-
sider a few algorithms which are representative of the design space. Algorithmic
details and correctness proofs can be found in our technical report [22].

3.1 Partitioning

Partitioning a map among a set of server threads can parallelize accesses to
different map items. We study two algorithms based on partitioning. In the
first algorithm, Part simple, a map is partitioned among a set of s servers,
i.e. item < key, val > is located on server key mod s. A client accesses the
corresponding server upon executing a map operation on a key. In the second
algorithm, Part caching, recently accessed items are cached on client side.
Cached values need to be invalidated if they are updated by other clients. To
ensure linearizability, after multicasting an invalidation message, the server waits
to receive the acknowledgement from all invalidated clients to finish the update.

3.2 Replication

Replicating a map on each client thread can localize accesses to map items during
lookup operations. Unlike in large scale distributed systems, in message-passing
manycores replication by locating a replica close to a set of clients is not that
beneficial. Even accessing a map replica located in a neighboring core is much
more expensive than accessing it locally, since the main access cost is the network
cycles used to pack and unpack the payload rather than traversing the hops. In
this case replication and partitioning have similar lookup costs, while the former

needs expensive updates to ensure consistency. Therefore we only consider the
case where each client has its own local map replica.

In replication algorithms, clients deliver updates upon receiving inter-core
interrupts. An alternative is to buffer updates and apply them before executing
the next map operation. We eliminate this option due to the need for poten-
tially large buffers, which is not the case in current architectures [3]. To ensure
linearizability the following conditions are necessary with respect to each key:
(i) updates should be totally ordered; (ii) lookups should be synchronized with
updates. We address each condition before describing the algorithms.

Atomic broadcast can be used for total ordering of updates. Among the five
classes of atomic broadcast protocols mentioned in [9], we select the one based
on fixed sequencer. In a fixed sequencer algorithm, a sequencer server is in charge
of assigning sequence numbers to updates. Three reasons motivate this choice:
(a) it needs only one broadcast; (b) updates on different keys can propagate
in parallel (by partitioning the sequencing service among multiple sequencer
servers); (c) it never blocks. Other classes lack some of these properties, and so,
would provide much lower throughput. Alternatively atomic commitment, e.g.
two-phase commit, can be used for total ordering of updates. Atomic commit
ensures that only one update is applying in the system at a time. This can
circumvent the need for dedicating sequencer threads. Therefore we also consider
a variant of two-phase commit for total ordering of updates.

Executing lookups with no synchronization with updates can violate lineariz-
ability as illustrated by Figure 1. In this scenario, client c issues an operation
update(key,newval), which is applied on the map replicas on c′ and c′′ at time
t1 and t2 respectively. If lookups can return immediately without synchronizing
with updates, linearizability can be violated: lookup(key) on c1 returns the new
value while, at a later time, the same operation on c2 returns the old value. Map
algorithms should prevent such a scenario.

We describe three algorithms satisfying the two mentioned conditions: two
based on atomic broadcast and one based on atomic commit. For simplicity we
describe the algorithms from the perspective of only one key. We partition the
sequencer service among s sequencer servers, each responsible for a subset of
keys. In the first algorithm, Rep remote, clients atomically broadcast their
updates and return. Lookups need to contact the corresponding sequencer to
know the sequence number sn of the last issued update. Lookups can return
only when the update with sequence number sn has been delivered. In the sec-
ond algorithm, Rep local, lookups do not need any remote communication
to synchronize with updates. This makes updates more complex: After atomic
broadcast of an update, the source waits until all other clients acknowledge deliv-
ery of this update before broadcasting a final acknowledgement and terminating
the operation. Lookups issued after delivering an update should wait until the
final acknowledgement is delivered in order to return. In the third algorithm,
Rep 2pc, a client, before committing an update, requests from all other clients
whether they are applying a conflicting update or not. If no client is applying
a conflicting update, it broadcasts the new update and waits to receive an ac-

c

c’

c’’
t2

t1

update(key,newval)

lookup(key) à newval

lookup(key) à oldval

Fig. 1. Non-linearizable execution with a replicated map

knowledgement from all to terminate the operation. Otherwise it aborts its own
update. Lookups apply a similar technique as in Rep local to synchronize with
updates.

4 Performance Modeling

We model the throughput of our map algorithms on message-passing manycores
to be able to compare them independently of architecture-specific features and
to help manycore programmers to decide about their implementation choice on
different platforms. In this section we describe the modeling methodology and
we validate it using an existing manycore architecture.

4.1 Methodology

To model the throughput of our algorithms, we assume the following. In all
algorithms threads are divided into c clients, which issue map operations, and s
servers, which execute map related code1. Client and server threads are located
in different cores. Keys are distributed evenly among the servers and are accessed
uniformly by the clients.

In manycore architectures with highly efficient NoCs, cores are the main
performance bottleneck. We define the following computation parameters to ex-
press throughput of our algorithms. We consider a generic map implementation
defined by three parameters opre, olup and oupd: opre is the computation time
on the client before accessing the map, e.g. executing a hash function if the
map is implemented using a hash table; olup and oupd are the computation
times corresponding to accessing the underlying data structure during a lookup
and an update respectively. In a configuration with multiple servers, osel stands
for the server selection overhead on the clients. We also associate an overhead
with each of the communication primitives introduced in Section 2. Moreover,
we introduce the parameter Trtt, to represent round-trip times. More precisely,
Trtt(send op, rcv op) is the round-trip time for the initial message sent with the
send op operation (i.e. send, bcast or mcast) and received with the rcv op oper-
ation (i.e. rcv or arcv). The answer is always sent back using send and received
using rcv. If the round trip is initiated with bcast or mcast, it finishes when
the answers from all destinations have been received. We assume that all other
computational costs related to the execution of the algorithms, e.g. L1 cache ac-
cesses, are negligible. Model parameters are summarized in the first two columns
of Table 1.
1 Rep 2pc includes no servers.

parameter description TILE-Gx int. ideal
c number of clients
s number of servers
p probability of a lookup operation

opre computation before a map access
olup access to the map for a lookup
oupd access to the map for an update
osel server selection overhead if s = 2x 17,else 90 - -
osend overhead of send(m) 8 + |m| - -
obcast overhead of broadcast(m) c · osend - osend

omcast overhead of multicast(m, list) |list| · osend - osend

orcv overhead of a synchronous receive 2 · |m| - -
oarcv overhead of an asynchronous receive 138 + orcv 4 + orcv 4 + orcv
L average communication latency 16 - -

Trtt(send, rcv) round-trip time with send and rcv 2 · (osend + orcv + L) - -
Trtt(send, arcv) round-trip time with send and arcv 2 · (osend + oarcv + L) - -

Trtt(bcast, arcv) round-trip time with bcast and arcv
obcast + oarcv+

osend + orcv + 2 · L - -

Trtt(mcast, arcv) round-trip time with mcast and arcv
omcast + oarcv+

osend + orcv + 2 · L - -

Table 1. Model parameters and their values (”-” : the same as on TILE-Gx)

We define Tlup and Tupd, the total number of CPU cycles required to execute
a lookup and an update operation respectively. For each operation op, Top can
be divided into the number of CPU cycles it takes on the client (T c

op) and on the
server (T s

op). Considering a load where the probability of having a lookup opera-
tion is p, the maximum throughput T c achievable by clients (and equivalently
by the servers) is:

T c =
c

p · T c
lup + (1 − p) · T c

upd

(1)

Hence, the maximum throughput T of a map is:

T = min(T c,T s) (2)

As an example we model the throughput of the Part simple algorithm. The
communication pattern is described in Figure 2. It is similar for a lookup and
an update operation. The only difference is that during an update operation,
applying the update on the map can be removed from the critical path of the
client. Computing T s

op (where op is upd or lup), T c
lup and T c

upd is as follows:

T s
op = orcv + oop + osend (3)

T c
lup = opre + osel + Trtt(send, rcv) + olup (4)

T c
upd = opre + osel + Trtt(send, rcv) (5)

Unlike Part simple, modeling the throughput of other algorithms involves
some complexity. In replication algorithms, a client can deliver asynchronous
messages for free during idle periods. This increases the throughput of the clients
and alters the general Formula 1. Moreover in Part caching, the probability
of hitting the local cache as well as the number of clients which need to be
invalidated should be computed. The detailed performance model of the other
algorithms can be found in [22].

4.2 Validation

We use a Tilera TILE-Gx8036 processor [3] as a representative of current message-
passing manycore architectures to validate our model. It consists of 36 cores

(a) Update (b) Lookup

Fig. 2. Part simple algorithm

communicating through a mesh interconnect. Cores and mesh operate at the
same frequency, 1.2 Ghz. Each core is provided with a 32 KB L1 instruction
cache, a 32 KB L1 data cache, a 256 KB L2 cache and four independent FIFO
receive buffers where each can contain up to 118 64-bit words. Threads located
on different cores can communicate using send and rcv primitives with no oper-
ating system intervention. A send puts the data in one of the four receive buffers
of the destination and a rcv blocks until this data is available. Upon receipt of
a message in any of the four buffers, an interrupt can be raised to perform an
asynchronous receive. There is no hardware support for collective operations.

We obtain value of our model parameters for the TILE-Gx processor. Each
send has a fixed overhead of 8 cycles plus 1 cycle per word. Due to the lack
of collective operations, we implement bcast and mcast as a set of consecutive
send operations, so their cost is a linear function of osend. Each rcv needs 2
cycles to deliver each word from the receive buffers. Each arcv, in addition to
the cycles needed for receiving messages from the buffers, requires an overhead of
138 cycles to save and retrieve the execution context. We compute the round trip
times, as the length of the critical path on the source thread from the first send
operation to the last receive operation. Round-trip times take into account the
average communication latency L, which involves a fixed packing and unpacking
overhead of 10 network cycles plus an average traversal cost of 6 network cycles
(1 cycle per hop). Finally osel is 17 cycles if the number of servers is a power of
two, otherwise 90 cycles (mod function is implemented using bitwise operations).
Table 1 summarizes the TILE-Gx model parameters.

To validate our model, we pin each thread to a different core. Clients consec-
utively issue map operations with 90% probability of being a lookup (p = 0.9).
Keys are evenly distributed among the servers and are accessed uniformly by
the clients. We consider a map implemented using a hash table which fits into
the L1 cache of the cores: olup = oupd = 0 cycles. We use the DJB hash function
to generate 4 bytes long keys from 36 bytes long strings: opre = 156 cycles. We
consider a collision-free scenario. Experiments are run with version 2.6.40.38-
MDE-4.1.0.148119 of Tilera’s custom Linux kernel, compiled using GCC 4.4.6
with O3 flag.

Figure 3(b) presents the maximum throughput of the five algorithms, ob-
tained through experiments and model, for different total number of threads.
For a given number of threads, the corresponding throughput for each algo-
rithm represents the throughput obtainable from the best possible configuration
of clients and servers. For example, the throughput of the simple partitioning

 0

 50

 100

 150

 200

 1 10 20 30 35

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Number of server threads

Part-simple (model)
Part-simple (exp)

(a) Part simple with 36 threads

 0

 50

 100

 150

 200

 4 8 12 16 20 24 28 32 36

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

Part-simp (mod)
Part-simp (exp)
Part-cach (mod)
Part-cach (exp)
Rep-rem (mod)
Rep-rem (exp)
Rep-loc (mod)
Rep-loc (exp)

Rep-2pc (mod)
Rep-2pc (exp)

(b) Algorithms performance

Fig. 3. Model validation on TILE-Gx processor (p=0.90)

algorithm with 36 threads in Figure 3(b) is obtained through the graph shown
in Figure 3(a), where the configuration with 2 servers and 34 clients leads to the
best throughput (hiccups are due to osel). These figures show that we manage to
model the throughput of the algorithms with good approximation (a maximum of
12% deviation in the case of Part caching). However the throughput obtained
through the model is slightly higher than through experiments. This is mainly
because in practice other computational costs are involved (e.g. operations on
the cached variables).

5 Evaluation

Studying algorithms only on the TILE-Gx leads to architecture-specific results.
Two limitations of this processor can decrease the performance of the algorithms:
(i) asynchronous receives, though relatively efficient compared to existing ar-
chitectures, are still much more costly than synchronous ones; (ii) there is no
efficient broadcast service2. These limitation could impair the performance of all
replication algorithms and of Part caching and so, could be the reason for the
higher throughput of Part simple observed in Figure 3(b). Using our model,
we define two platforms based on TILE-Gx to avoid the harmful effects of the
mentioned limitations on the throughput of the algorithms. We define an in-
termediate platform where synchronous and asynchronous receives have similar
costs. We also define an ideal platform, which enhances the intermediate plat-
form with broadcast operation in hardware. In this case cost of bcast is equal
to the cost of only one send. The ideal platform provides the best setting for
the replication algorithms. These assumptions are realistic. In [20], a solution
with a constant 4 cycles cost of saving and restoring an execution context is pre-
sented. Moreover some existing manycore architectures, e.g. Kalray [1], provide
hardware-based broadcast. Table 1 summarizes parameter values for these plat-
forms. In this section we compare performance of algorithms on these platforms.
We also discuss how different consistency, configuration and load assumptions
can alter the results (see [22] for detailed discussions).

2 When broadcast is implemented using asynchronous communication, the throughput
of the system is independent from the broadcast algorithm [18].

5.1 Comparison on different platforms

To compare the algorithms on different platforms, we consider a map imple-
mented using a hash table as the most popular map implementation. To avoid
orthogonal issues, we consider a collision free scenario where the keys are evenly
distributed among servers and are accessed uniformly by the clients. To assess
different computational costs, we identify three use cases with different hash
function costs (depending on its input type) and hash table sizes (small enough
to fit in the L2 cache3 or otherwise in memory). Namely we consider (i) a small
hash table with an integer hash function (opre = 12, oop = 11); (ii) a small hash
table with a string hash function (opre = 156, oop = 11); (iii) a big hash table
with a string hash function (opre = 156, oop = 88). The first two are represen-
tative use cases in operating systems [15] while the latter is a representative use
case in key-value stores [2]4.

Considering the first use case, we compare the performance of the algorithms
on different platforms with 90% and 99% of lookups (see Figure 4). We ap-
ply the same methodology as in model validation to obtain throughput graphs.
Three main conclusions can be taken from the results. First, with 90% of lookups
Part simple outperforms other algorithms on all platforms at almost all scales.
Second, with 99% of lookups Rep local outperforms the partitioning algo-
rithms only if asynchronous receives are handled efficiently. Actually on the
ideal platform the minimum ratio of lookups for replication to outperform parti-
tioning is 98%. Third, having broadcast in hardware does not change the relative
performance of the algorithms dramatically (compare Figures 4(e) and 4(f)).

Considering other use cases, the mentioned conclusions mostly remain valid.
The only exception is the scenario where the hash table is located in the main
memory. In this case even with 99% of lookups, Part caching shows best
performance on all platforms. This is due to the fact that replicated maps are
not able to leverage the locality if map replicas are not cached.

5.2 Discussion

To assess the effects of weakening the consistency criteria, we also study the
case of sequential consistency. Replicated maps are able to exploit sequential
consistency by removing the synchronization between lookups and updates. On
the contrary partitioned maps are not able to exploit sequential consistency,
mainly because sequential consistency is not compositional. Evaluations show
that replication still needs the same conditions as with the case of linearizability
to outperform partitioning. Study of even weaker consistency criteria [24], using
a similar methodology, can complement this study.

Clients and servers can be collocated on the same core. This configuration
avoids dedicating resources to play the server role. On the TILE-Gx, this is
not a desirable choice since a costly asynchronous receive will be involved in

3 Assuming L2 instead of L1 is more realistic due to its bigger size.
4 We did not find any use cases for a big hash table applying a cheap hash function.

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

Part-simple
Part-caching
Rep-remote

Rep-local
Rep-2pc

(a) TILE-Gx, p=90%

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(b) intermediate, p=90%

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(c) ideal, p=90%

 0

 200

 400

 600

 800

 1000

 1200

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(d) TILE-Gx, p=99%

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(e) intermediate, p=99%

 0

 500

 1000

 1500

 2000

 2500

 16 32 48 64 80 96 112 128

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Total number of threads

(f) ideal, p=99%

Fig. 4. Performance on the three platforms (opre = 12, oop = 11)

every request sent to the servers. Evaluations on the ideal platform show that,
despite efficient asynchronous receives, this collocation only leads to a negligible
performance gain. The main reason is that in the best configurations, the number
of servers which can be collocated with the clients is small.

Client can access the servers non-uniformly, e.g. when the map is imple-
mented using a hash table with a non-uniform hash function. This non-uniformity
decreases the throughput of the servers, and consequently of the overall map
(except for Rep 2pc). Moreover a non-uniform access of the clients to different
keys increases the throughput of the Part caching algorithm, by increasing
the probability of local lookups and decreasing the number of invalidations. For
a given distribution of the client accesses among servers and the key accesses
among clients, throughput of the maps can be quantified using our model.

We considered the TILE-Gx, a general purpose message-passing manycore, as
the baseline for our evaluations. We believe that our conclusions remain valid on
similar architectures since: (i) TILE-Gx provides efficient inter-core communica-
tion; (ii) using our model we could consider cases where broadcast operations and
asynchronous receives are very efficient. Still, using our model, one can directly
do a comparison on other architectures. One exception is the architectures with
one-sided communication primitives, e.g. Intel SCC [14]. The main reason is that
inter-core communication in these architectures involves some synchronization
costs [19] which are not included in our model.

6 Related Work

This paper compares different map algorithms using performance modeling. A
few recent studies have proposed performance models for other manycore archi-

tectures [19, 21]. Our approach is similar to the one used in these papers. The
main difference is that the underlying communication system considered in these
studies are different from our paper: [19] models RMA-based communication and
targets the Intel SCC processor; [21] models point-to-point communication on
top of cache-coherent shared memory and targets the Intel Xeon Phi processor.

Implementation of scalable data structures is an important research topic for
message-passing-based operating systems [5, 25, 11]. Partitioning and replication
were both originally proposed as a mean to scale the operating systems in the
Tornado project [11]. Since Tornado was designed for shared-memory processors,
message-passing was emulated in software with a high cost for software-based
multicast operations. We compared partitioning and replication in the context
of modern message-passing manycore chips which provide completely different
trade-offs regarding communication performance compared to [11]. As an inter-
esting use-case, a naming service for the FOS operating system is implemented
using a weakly-consistent replicated hash map [6]. The replication algorithm used
in this study is a variant of Rep 2pc, but is not compared to other alternatives.

Optimization of in-memory key-value stores for manycores is another area
where our results could be used [7, 17]. The authors of [7] and [17] both propose
a partitioning approach similar to the Part simple algorithm. The solution
proposed in [17] is based on message-passing emulated on top of shared memory
whereas [7] takes advantage of hardware message-passing provided by Tilera. Our
paper complements these studies by comparing replication and partitioning.

7 Conclusion

The paper studies the implementation of strongly-consistent maps in message-
passing manycores. Using a communication model it compares the performance
of partitioned and replicated maps under different settings. A Tilera TILE-
Gx8036 processor is used to validate the model and serves as a baseline for
the evaluations. The results show that replication can outperform partitioning
only if handling interrupts is highly efficient, update operations are rare and
map replicas are located in the cache system of the cores.

References

[1] Kalray. www.kalray.eu.
[2] Memcached. www.memcached.org.
[3] Tilera. www.tilera.com.
[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload anal-

ysis of a large-scale key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE, pages 53–64, 2012.

[5] A. Baumann, P. Barham, P. Dagand, et al. The multikernel: a new OS archi-
tecture for scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
symposium on operating systems principles, pages 29–44, 2009.

[6] N. Beckmann. Distributed naming in a factored operating system. Master’s thesis,
Massachusetts Institute of Technology, 2010.

[7] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. Many-core key-value
store. In Proceedings of the 2011 International Green Computing Conference and
Workshops, pages 1–8, 2011.

[8] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit. NUMA-
aware reader-writer locks. In Proceedings of the 18th ACM SIGPLAN symposium
on Principles and practice of parallel programming, 2013.

[9] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421, 2004.

[10] B. Devlin, J. Gray, B. Laing, and G. Spix. Scalability terminology: Farms, clones,
partitions, and packs: Racs and raps. Technical Report MS-TR-99-85, Microsoft
Research, 1999.

[11] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: maximizing locality
and concurrency in a shared memory multiprocessor operating system. In the third
symposium on operating systems design and implementation, pages 87–100, 1999.

[12] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2012.

[13] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[14] J. Howard, S. Dighe, Y. Hoskote, et al. A 48-core IA-32 message-passing pro-
cessor with DVFS in 45nm CMOS. In International IEEE Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pages 108–109, 2010.

[15] C. Lever. Linux kernel hash table behavior: analysis and improvements. Technical
Report TR 00-1, University of Michigan, 2000.

[16] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence is
here to stay. Communications of the ACM, 55(7):78–89, July 2012.

[17] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. Cphash: a cache-partitioned hash
table. In Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, pages 319–320, 2012.

[18] D. Petrović, O. Shahmirzadi, T. Ropars, and A. Schiper. Asynchronous broadcast
on the intel scc using interrupts. In Proceedings of the 6th Many-core Applications
Research Community (MARC) Symposium, pages 24–29, 2012.

[19] D. Petrović, O. Shahmirzadi, T. Ropars, and A. Schiper. High-performance rma-
based broadcast on the intel scc. In Proceedinbgs of the 24th ACM symposium on
Parallelism in algorithms and architectures, pages 121–130, 2012.

[20] N. Rafla and D. Gauba. Hardware implementation of context switching for hard
real-time operating systems. In 54th IEEE International Midwest Symposium on
Circuits and Systems, 2011.

[21] S. Ramos and T. Hoefler. Modeling communication in cache-coherent smp systems:
a case-study with xeon phi. In Proceedings of the 22nd international symposium
on High-performance parallel and distributed computing, pages 97–108, 2013.

[22] O. Shahmirzadi, T. Ropars, and A. Schiper. High-throughput maps for message-
passing manycore architectures: partitioning versus replication. Technical Report
196582, EPFL, 2014.

[23] J. Torrellas. Architectures for Extreme-Scale Computing. IEEE Computer,
42(11):28 –35, nov. 2009.

[24] W. Vogels. Eventually consistent. Communications of the ACM, 52(1), Jan. 2009.
[25] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case for

a scalable operating system for multicores. ACM SIGOPS Operating Systems
Review, 43(2):76–85, 2009.

