Files

Abstract

The advent of manycore architectures raises new scalability challenges for concurrent applications. Implementing scalable data structures is one of them. Several manycore architectures provide hardware message passing as a means to efficiently exchange data between cores. In this paper, we study the implementation of high-throughput concurrent maps in message-passing manycores. Partitioning and replication are the two approaches to achieve high throughput in a message-passing system. Our paper presents and compares different strongly-consistent map algorithms based on partitioning and replication. To assess the performance of these algorithms independently of architecture-specific features, we propose a communication model of message-passing manycores to express the throughput of each algorithm. The model is validated through experiments on a 36-core TILE-Gx8036 processor. Evaluations show that replication outperforms partitioning only in a narrow domain.

Details

Actions

Preview