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ABSTRACT
In this paper we advocate that it is time for a radical rethinking of
database systems design. Developers should be able to leverage
high-level programming languages without having to pay a price
in efficiency. To realize our vision of abstraction without regret,
we present LegoBase, a query engine written in the high-level pro-
gramming language Scala. The key technique to regain efficiency is
to apply generative programming: the Scala code that constitutes
the query engine, despite its high-level appearance, is actually a
program generator that emits specialized, low-level C code. We
show how the combination of high-level and generative program-
ming allows to easily implement a wide spectrum of optimizations
that are difficult to achieve with existing low-level query compilers,
and how it can continuously optimize the query engine.

We evaluate our approach with the TPC-H benchmark and show
that: (a) with all optimizations enabled, our architecture signifi-
cantly outperforms a commercial in-memory database system as
well as an existing query compiler, (b) these performance improve-
ments require programming just a few hundred lines of high-level
code instead of complicated low-level code that is required by exist-
ing query compilers and, finally, that (c) the compilation overhead
is low compared to the overall execution time, thus making our ap-
proach usable in practice for efficiently compiling query engines.

1. INTRODUCTION
Software specialization is becoming increasingly important for

overcoming performance issues in complex software systems [25].
In the context of database management systems, it has been noted
that query engines do not, to date, match the performance of hand-
written code [33]. Thus, compilation strategies [20, 15, 12] have
been proposed in order to optimize away the overheads of tradi-
tional database abstractions like the Volcano operator model [4].

Despite the differences between the individual approaches, all
compilation frameworks generate an optimized query evaluation
engine on-the-fly for each incoming SQL query. We identify four
main problems with existing solutions:
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• Template expansion misses optimization potential. Virtually all
previous query compilers are based on code template expansion,
a technique that generates code directly, in one step, from the
query plan by replacing each operator node by its code template.
In its purest form, template expansion makes cross-operator code
optimization inside the query compiler impossible.
• Template expansion is brittle and hard to implement. Provid-

ing low-level code templates – essentially in stringified form –
makes it hard or impossible to automatically typecheck the code
templates. Moreover, since the templates are to be directly emit-
ted by the code generator, they are very low-level and difficult
to implement and get right. The developer of the query compiler
has to deal with low-level concerns of code generation, such as
register allocation. (This is in a way even true when generating
LLVM code.)
• Limited scope of query compilation. A compiler that only han-

dles queries cannot optimize and inline their code with the re-
maining code of the database system, missing opportunities to
further improve performance.
• Limited adaptivity. Systems such as LLVM provide support for

runtime optimization and just-in-time compilation, but key run-
time optimizations (such as some known from adaptive query
processing) are only possible given query plans or high-level
code that a system such as LLVM that receives code from a tra-
ditional query compiler never gets to see. For instance, LLVM
will not be able to reverse-engineer the code it receives to make
effective use of selectivity information.

In this paper, we argue that DBMSes and query compilers should,
in general, allow for both productivity and high performance, in-
stead of trading-off the former for the latter. Developers should
be able to program DBMSes and their optimizations efficiently at
a high-level of abstraction, without experiencing negative perfor-
mance impact. This has been previously called abstraction with-
out regret [21, 10, 11]. We draw inspiration from the recent use
of high-level languages for complex system development (e.g. the
Singularity Operating System [8]) to argue that it is now time for a
radical rethinking of how database systems are designed.

This paper makes the following three contributions:

• We present LegoBase, a new in-memory query execution engine
written in the high-level programming language Scala. This is
in contrast to the traditional wisdom which calls for the use of
low-level languages for DBMS development. To avoid the over-
heads of a high-level language (e.g. complicated memory man-
agement) while maintaining nicely defined abstractions, Lego-
Base compiles the Scala code to optimized, low-level C code
for each SQL query on the fly. By programming databases in
a high-level style and still being able to get good performance,
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Figure 1: Comparison of performance/productivity tradeoff for all
approaches presented in this paper.

the time saved can be spent implementing more database fea-
tures and optimizations. The LegoBase query engine is the first
step towards providing a full DBMS system written in a high-
level language.

In addition, high-level programming allows to quickly define
system modules that are truly reusable (even in contexts very
different from the one these were created for) and easily com-
posable [16], thus putting an end to the monolithic nature of
important DBMS components like the storage manager. This
property makes the overall maintenance of the system signif-
icantly easier. More importantly, it grants great flexibility to
developers so that they can easily choose and experiment with a
number of choices when building query engines.

• We apply generative programming [27] to DBMS development.
This approach provides two key benefits over traditional query
compilers: (a) programmatic removal of abstraction overhead
and (b) applying optimizations on multiple abstraction levels.

First, the Scala code that constitutes the query engine, despite
its high-level appearance, is actually a program generator that
emits optimized, low-level C code. In contrast to traditional
compilers, which need to perform complicated and sometimes
brittle analyses before (maybe) optimizing programs, generative
metaprogramming in Scala takes advantage of the type system
of the language in order to provide programmers with strong
guarantees about the shape and nature of the generated code.
For example, it ensures that certain abstractions (e.g. generic
data-structures and function calls) are definitely optimized away
during code generation.

Second, generative programming allows optimization and
(re-)compilation of code at various execution stages. This is a
very important property, as it allows us to view databases as liv-
ing organisms. When the system is first developed, high-level
and non-optimal abstractions can be used to simplify the de-
velopment process. During deployment, as more information
is gathered (e.g. runtime statistics, configuration and hardware
specifications), we can continuously “evolve” the query engine
by recompiling the necessary components in order to take ad-
vantage of up-to-date information. To our knowledge, Lego-
Base is the first to support such continuous runtime optimization
of the whole query engine. This design choice differentiates
our system from recent work on compiling only queries [15] or
query optimization frameworks such as Starburst [6].

In our work, we use the Lightweight Modular Staging (LMS)
compiler [21] for Scala. In addition to the previous contribu-
tions, we leverage the high-level and extensible IR of LMS. This
design property allows us to extend the scope of compilation and

1 select *
2 from R, (select S.D,
3 sum(1-S.B) as E,
4 sum(S.A*(1-S.B)),
5 sum(S.A*(1-S.B)*(1+S.C))
6 from S group by S.D) T
7 where R.Z=T.E and R.B=3
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Figure 2: Motivating example showing missed optimizations op-
portunities by existing query compilers.

perform whole-program optimization, by specializing all data-
structures and auxiliary algorithms of a query. We do so by
specifying custom, database-specific optimizations. These are
implemented as library components, providing a clean separa-
tion from the base code of LegoBase. Optimizations are (a) eas-
ily adjustable to the characteristics of workloads and architec-
tures, (b) easily configurable, so that they can be turned on and
off at demand and (c) easily composable, so that higher-level
optimizations can be built from lower-level ones. These proper-
ties are very hard to provide using any existing template-based
compiler. We present examples of optimizations for query plans
(inter-operator optimizations), data-structures, and data layout.

• We provide an experimental evaluation with the TPC-H bench-
mark [28] which shows that our system, along with the afore-
mentioned optimizations, can significantly outperform both a
commercial in-memory database, called DBX, and the query
compiler of the HyPer system [15]. This improvement requires
programming just a few hundred lines of Scala code for the op-
timizations, thus demonstrating the great expressive power of
our optimization framework. An important observation in this
context is that developers cannot rely on low-level compilation
frameworks, like LLVM, to automatically detect the high-level
optimizations that we support in LegoBase. In addition, we
show that our query compilation strategy incurs negligible over-
head to query execution. These results aim to prove the promise
of the abstraction without regret vision.

Motivating Example. To better understand the differences of our
work with previous approaches, consider the simple SQL query
shown in Figure 2. This query first calculates some aggregations
from relation S in the group by operator Γ. Then, it joins these
aggregations with relation R, the tuples of which are filtered by the
value of column B. The results are then returned to the user. Careful
examination of the execution plan of this query, shown in the same
figure, reveals the following three basic optimization opportunities
missed by all existing query compilers:

• First, the limited scope of existing approaches usually results
in performing the evaluation of aggregations in pre-compiled
DBMS code. Thus, each aggregation is evaluated consecutively
and, as a result, common subexpression elimination cannot be
performed in this case (e.g. in the calculation of expressions
1-S.B or S.A*(1-S.B)). This shows that, if we include the
evaluation of all aggregations in the compiled final code, we
can get additional performance improvements. This motivates
us to extend the scope of compilation in this work.

• Second, template-based approaches may result in unnecessary
computation. In this example, the generated code includes two



materialization points: (a) at the group by and (b) when mate-
rializing the left side of the join. However, there is no need to
materialize the tuples of the aggregation in two different data-
structures as the aggregations can be immediately materialized
in the data-structure of the join. Such inter-operator optimiza-
tions are hard to express using template-based compilers. By
high-level programming we can instead easily pattern match on
the operators, as we show in Section 3.1.2.
• Finally, the data-structures have to be generic enough for all

queries. As such, they incur significant abstraction overhead,
especially when these structures are accessed millions of times
during query evaluation. Current query compilers cannot opti-
mize the data-structures since these belong to the pre-compiled
part of the DBMS. Our approach eliminates these overheads as
it performs whole-program optimization and compiles, along
with the operators, the data-structures employed by a query.
This significantly contrasts our approach with previous work.

The rest of this paper is organized as follows. Section 2 presents
the overall design of LegoBase in more detail, while Section 3 gives
examples of compiler optimizations in multiple domains. Section 4
presents our evaluation, where we experimentally show that our ap-
proach can lead to significant benefits compared to (i) an existing
query compiler and (ii) a commercial database system. Section 5
presents related work in compilation and compares our approach
with existing query compilers and engines. Finally, Section 6 con-
cludes and highlights future work.

2. SYSTEM DESIGN
In this section we present the overall design of LegoBase, shown

in Figure 3. First, we describe the Lightweight Modular Staging
(LMS) compiler that is the core of our architecture. Then, we de-
scribe how LMS fits in the overall execution workflow of LegoBase
(Subsection 2.2), and how we generate the final optimized C code
(Subsection 2.3). While doing so, we give an example of how a
physical query operator is implemented in our system.

2.1 Staged Compilation & LMS
LegoBase makes key use of the LMS framework [21], which

provides runtime compilation and code generation facilities for the
Scala programming language. LMS operates as follows. Given
some program written in Scala, LMS first converts the code to
a graph-like intermediate representation (IR). In contrast to low-
level compilation frameworks like LLVM that offer an IR which
operates on the level of registers and basic blocks, LMS provides
high-level IR nodes which correspond to constructs and operations
in Scala. This makes client code that uses LMS for runtime opti-
mization similar to regular Scala code. In addition, LMS provides
a high-level interface to add custom IR nodes, representing opera-
tions on programmer-defined types and abstractions. For example,
IR nodes in LMS may represent the creation of a hash map, the
update of an array element, or operations on primitive values such
as the addition of two integers.

Programmers specify the result of a program transformation as
a high-level Scala program, as opposed to a low-level, compiler-
internal program representation. These transformations manipu-
late the structure of the IR graph and they add, remove or replace
nodes, depending on the optimization goal. For example, our data-
structure specialization (Section 3.2) replaces IR nodes represent-
ing operations on hash maps with IR nodes representing operations
on native arrays. By expressing optimizations at a high-level, our
approach enables a user-friendly way to describe these domain-
specific optimizations that humans can easily identify. We use this
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Figure 3: Overall system architecture. The domain-specific opti-
mizations of LegoBase are applied during the LMS compiler phase.

optimization interface to provide database-specific optimizations as
a library and to aggressively optimize our query engine.

LMS then performs consecutive transformation passes where it
applies all possible user-defined optimizations and generates a new
IR, which is closer to the optimized final code. This structured ap-
proach to optimizing code allows optimizations to be easily com-
bined. As we show in Section 4, with a relatively small number
of transformations, we can get significant performance improve-
ment. After each optimization pass, the whole set of optimizations
is re-examined, since more of them may now be applicable.

In addition to this high-level optimization framework, LMS pro-
vides a programming model for expressing what is placed in the
IR. The key programming abstraction for this is to introduce a
type distinction for program expressions that will be compiled at
runtime. Depending on the type of an expression (T vs. Rep[T],
where T represents a type like Integer), we speak of present-stage
vs. future-stage expressions and values. In particular, present-stage
computation is executed right away, while future stage expressions
(Rep[T]) are placed in the IR graph, so that they can be optimized
in subsequent optimization passes, as described above. Operations
that operate on future-stage objects, e.g. an addition, are also con-
verted to IR nodes. This programming model can be leveraged in a
number of design patterns: present-stage functions that operate on
future-stage values are automatically inlined, loops with a present-
stage trip count are unrolled, and future-stage data-structures can
be specialized based on present-stage information. A key example
in databases are records: when the schema is fixed, we can model
schema information and records as present-stage objects that ref-
erence future-stage field values. Such records can be manipulated
using object oriented or functional programming without paying a
price at runtime: the type system guarantees that the future-stage
code will contain only those field values that are actually used, and
that these fields will be represented as local variables.

The LMS compiler by default generates Scala code as output
from the optimized IR. In this work, we extend LMS so that it gen-
erates C code as well. To reach the abstraction level of C code,
transformations also include multiple lowering steps that map Scala
constructs to (a set) of C constructs. For example, classes are con-
verted to structs, strings to arrays of bytes, etc. In general, com-
posite types are handled in a recursive way, by first lowering their
fields and then wrapping the result in a C struct. The final result
is a struct of only primitive C constructs. This automatic way of
lowering does not require any modifications to the database code
or effort from the database developer. After these lowering steps,
we can also apply low-level, architecture-dependent optimizations.
In the end, the final iteration over the IR nodes emits the C code.

LMS already provides many generic compiler optimizations like
function inlining, common subexpression and dead code elimina-
tion, constant propagation, loop fusion, deforestation, and code
motion. In this work, we extend this set to include DBMS-specific
optimizations (e.g. using the popular columnar layout for data pro-
cessing). We describe these in more detail in Section 3.



1 case class AggOp[B](child: Operator, grp: Record=>B,
2 aggFuncs: (Record,Double)=>Double*) extends Operator {
3 val hm = HashMap[B,Array[Double]]()
4 def processAggs(aggs: Array[Double], rec: Record) {
5 aggFuncs.indices foreach { i =>
6 aggs(i) = aggFuncs(i)(rec, aggs(i))
7 }
8 }
9 def open() {

10 child foreach { t =>
11 val key = grp(t)
12 val aggs = hm.getOrElseUpdate(key,
13 new Array[Double](aggFuncs.size))
14 processAggs(aggs,t)
15 }
16 }
17 def next() : Record = {
18 if (hm.size != 0) {
19 val elem = hm.head
20 hm.remove(elem._1)
21 return elem
22 } else return null
23 }
24 }

Figure 4: Example of an operator in LegoBase.

2.2 General Execution Workflow
LMS interacts with LegoBase as shown in Figure 3. First, for

each incoming SQL query, we must get a query plan which de-
scribes the physical query operators needed to process this query.
For this work, we consider traditional query optimization (e.g. de-
termining join ordering) as an orthogonal problem and we instead
focus more on experimenting with the different optimizations that
can be applied after traditional query optimization. Thus, to obtain
a physical plan, we pass the incoming query through any existing
query optimizer. For example, for our evaluation we choose the
query optimizer of a commercial, in-memory database called DBX.

Then, we pass the generated physical plan to LegoBase. Our
system in turn parses this plan and instantiates the corresponding
Scala implementation of the mentioned operators. For example,
for aggregations, LegoBase instantiates the Scala operator shown
in Figure 4. Note that this operator implementation is exactly what
one would write for a simple query engine that does not involve
query compilation at all. However, without further optimizations,
this engine cannot match the performance of existing databases: it
consists of generic data-structures, mimics most of the overhead of
Volcano-style engines and matches the code that is generated by a
naive template-based query compiler.

However, in our system, LMS compiles all code on-the-fly (in-
cluding all data-structures used as well as any required auxiliary
functions), and progressively optimizes the code using our domain-
specific optimizations (described in detail in Section 3). For exam-
ple, it optimizes away the HashMap abstraction and transforms it
to efficient low-level C constructs (Section 3.2). In addition, it in-
lines the operators and, in the code of Figure 4, it automatically
unrolls the loop of lines 5-7, since the number of aggregations can
be statically determined based on how many aggregations the SQL
query has. Such fine-grained optimizations have a significant ef-
fect on performance, as they improve branch prediction. Finally,
our system generates the optimized C code, which is compiled us-
ing any existing C compiler (e.g. we use CLang of LLVM [13] for
our evaluation). We then return the query results to the user.

We also use LMS to recompile the components of our query en-
gine that are affected by a runtime change. We motivate this de-
cision based on the observation that, for database systems, many
configuration variables are set only at start time but are unneces-
sarily checked multiple times at runtime. In LegoBase, the com-

piled final code does not include any if condition checking con-
figuration parameters. Instead, at startup-time we generate only the
proper branch according to the value of the parameter. Then, we
re-compile components only if some parameter changes at runtime.
For example, if the user disables logging, then we recompile to re-
move all logging statements. This continuous cycle of optimization
and execution is only made possible by on-the-fly compilation and,
to our knowledge, is not provided by any existing query compiler.

2.3 Generating Efficient C Code
As we already mentioned, the final step of compiling an incom-

ing query using LegoBase is the C code generation. In general, the
translation from Scala to C is straightforward. Most Scala abstrac-
tions (e.g. objects, classes, inheritance) are optimized away at pro-
gram generation time, and for the remaining constructs (e.g. loops,
variables, arrays) there exists a one-to-one correspondence between
Scala and C. There are two exceptions to this rule, described next.

First, calls to library functions in Scala should be translated to
corresponding calls in C. For example, all operations for data-stru-
ctures like hash maps should be matched in C appropriately. In the
final output code produced by LegoBase, with all optimizations en-
abled, we do not have many such calls as all our data-structures are
lowered to primitive arrays (Section 3.2). Thus, this is not a big
issue. However, we view LegoBase as a platform for easy experi-
mentation of database optimizations. As a result, our architecture
must also support traditional collections as a library. We have found
GLib to be efficient enough for this purpose. Thus, we match the
Scala collections to the corresponding ones in GLib.

Second, and more importantly, the two languages handle mem-
ory management in a totally different way: Scala is garbage col-
lected, while C has explicit memory management. Thus, when per-
forming compilation from Scala to C, we must take care to free the
memory that would normally be garbage collected in Scala in order
to avoid memory overflow. This is a hard problem to solve automat-
ically, as garbage collection may occur for objects allocated outside
the DBMS code, e.g. for objects allocated inside the Scala libraries.
For the scope of this work, we follow a conservative approach and
make allocations and deallocations explicit in the Scala code. We
also free the allocated memory after each query execution.

3. STAGING OPTIMIZATIONS
In this section we present examples of compiler optimizations

in four domains: (a) inter-operator optimizations for query plans,
(b) transparent data-structure modifications, (c) changing the data
layout and, finally, (d) traditional compiler optimizations like dead
code elimination. The purpose of this section is to demonstrate
the expressive power of our methodology: that by programming at
the high-level, such optimizations are easily expressible without re-
quiring changes to the base code of the query engine. In addition,
we explain the differences of coding these optimizations in our ar-
chitecture compared to previous query compilers. The structure of
this section closely follows the domains described above.

3.1 Inter-Operator Optimizations

3.1.1 From a Volcano (Pull) to a Push-based Engine
A recent proposal in the area of query compilers, which was pre-

sented in [15], states that we should change the flow of data pro-
cessing in query engines. More specifically, it argues that operators
should not pull data from other operators whenever needed (Volca-
no-style processing), but instead operators should push data to con-
sumer operators. Data should then be continuously pushed until



1 case class HashJoin[B](leftChild: Operator,
2 rightChild: Operator, hash: Record=>B,
3 cond: (Record,Record)=>Boolean) extends Operator {
4 val hm = HashMap[B,ArrayBuffer[Record]]()
5 var it: Iterator[Record] = null
6 def next() : Record = {
7 var t: Record = null
8 if (it == null || !it.hasNext) {
9 t = rightChild.findFirst { e =>

10 hm.get(hash(e)) match {
11 case Some(hl) => it = hl.iterator; true
12 case None => it = null; false
13 }
14 }
15 }
16 if (it == null || !it.hasNext) return null
17 else return it.collectFirst {
18 case e if cond(e,t) => conc(e, t)
19 } get
20 }
21 }

(a) The starting Volcano-style implementation.

1 case class HashJoin[B](leftChild: Operator,
2 rightChild: Operator, hash: Record=>B,
3 cond: (Record,Record)=>Boolean) extends Operator {
4 val hm = HashMap[B,ArrayBuffer[Record]]()
5 var it: Iterator[Record] = null
6 def next(t: Record) {
7 var res: Record = null
8 while (res = {
9 if (it == null || !it.hasNext) {

10 hm.get(hash(t)) match {
11 case Some(hl) => it = hl.iterator
12 case None => it = null
13 }
14 }
15 if (it == null || !it.hasNext) null
16 else it.collectFirst {
17 case e if cond(e,t) => conc(e, t)
18 } get
19 } != null) parent.next(res)
20 }
21 }

(b) After the first two steps of the algorithm.

1 case class HashJoin[B](leftChild: Operator,
2 rightChild: Operator, hash: Record=>B,
3 cond: (Record,Record)=>Boolean) extends Operator {
4 val hm = HashMap[B,ArrayBuffer[Record]]()
5 var it: Iterator[Record] = null
6 def next(t: Record) {
7 if (it == null || !it.hasNext) {
8 hm.get(hash(t)) match {
9 case Some(hl) => it = hl.iterator

10 case None => it = null
11 }
12 }
13 while (it!=null && it.hasNext) it.collectFirst {
14 case e if cond(e,t) => parent.next(conc(e,t))
15 }
16 }
17 }

(c) After the third step of the algorithm.

1 case class HashJoin[B](leftChild: Operator,
2 rightChild: Operator, hash: Record=>B,
3 cond: (Record,Record)=>Boolean) extends Operator {
4 val hm = HashMap[B,ArrayBuffer[Record]]()
5 def next(t: Record) {
6 hm.get(hash(t)) match {
7 case Some(hl) => hl.foreach { e =>
8 if (cond(e,t)) parent.next(conc(e,t))
9 }

10 case None => {}
11 }
12 }
13 }

(d) The final result after additional optimizations.

Figure 5: Transforming a HashJoin from a Volcano engine to a Push Engine. The lines highlighted in red and blue are removed and added,
respectively. All branches and intermediate iterators are automatically eliminated. The open function (not shown) is handled accordingly.

we reach a materialization point. This organization significantly
improves cache locality and branch prediction [15].

However, this dataflow optimization comes at the cost of re-
quiring an API change (from an iterator to a consumer/producer
model). This in turn necessitates rewriting all operators: with tradi-
tional approaches, this is a challenging and error-prone task consid-
ering that the logic of each individual operator is likely spread over
multiple code fragments of complicated low-level software [15].

Given the two types of engines, there exists a methodological
way to obtain one from the other. Thus, LegoBase implements
both the Volcano model and a push engine, which we mechanically
derived from Volcano. We present the high-level ideas of this con-
version next, using the HashJoin operator as an example (Figure 5).

A physical query plan consists of a set of operators in a tree
structure. For each operator, we can extract its children as well as
its (single) parent. Operators call the next function of other chil-
dren operators in the Volcano model to make progress in process-
ing a tuple. An operator can be the caller, the callee or even both
depending on its position in the tree (e.g. an operator with no chil-
dren is only the callee, but an operator in an intermediate position
is both). Given a set of operators, we must take special care to (a)
reverse the dataflow (turning callees to callers and vice versa) as
well as (b) handle stateful operators in a proper way. The optimiza-
tion handles these cases in the following three steps:

Turning callees to callers: When calling a next function in the Vol-
cano model, a single tuple is returned by the callee1. In contrast,
in a push model, operators call their parents whenever they have a
tuple ready. The necessary transformation is straightforward: in-
stead of letting callees return a single tuple, we remove this return
statement. Then, we put the whole operator logic inside a while
loop which continues until the value that would be returned in the
original callee operator is null (operator has completed execution).
For each tuple encountered in this loop, we call the next function of
the original parent. For scan operators, who are only callees, this
step is enough to port these operators to the push-style engine.

Turning callers to callees: The converse of the above modifica-
tion should be performed: the original callers should be converted
to callees. To do this, we remove the call to the next function of the
child in the original caller, since in the push engine the callee calls
the next function of the parent. However, we still need a tuple to
process. Thus, this step changes all next functions to take a record
as argument, which corresponds to the value that would be returned
from a callee in the Volcano engine. Observe that the call to next
may be explicit or implicit through functional abstractions like the

1This assumes no block-style processing, where multiple tuples are
first materialized and then returned as a unit. In general, LegoBase
avoids materialization whenever possible.



findFirst in line 9 of Figure 5(a). In addition, calls to the next func-
tion may happen in the open function of the Volcano model for
purposes of state-initialization. We handle the open function sim-
ilarly. This step ports the Sort, Map, Aggregate, Select, Window,
View and Print operators of LegoBase to the push-engine2.

Managing state: Finally, special care should be taken for state-
ful operators. The traditional example of such operators is the join
variants (semi-join, hash-join, anti-join etc). For these operators,
the tuples from the left child are organized in hash lists, matched on
the join condition with tuples from the right child. Then, to avoid
materialization, the join operator must keep state about how many
elements have already been output from this list whenever there is
a match. A nice abstraction for this is the iterator interface3, where
for each next call in the Volcano model the iterator is advanced by
one (and one output tuple is produced). In this optimization we
change this behaviour so that after the iterator is initialized, we ex-
haust it by calling the next function of the parent for each tuple in it.

It is important to note that the above methodology, which seems
straightforward, reveals an important advantage of our staging com-
piler infrastructure: that by programming operators at a high-level,
it then becomes straightforward to express optimizations for those
operators. In this example, the optimization’s code follows closely
the human-readable description given above. Corner cases can then
be handled on top of this baseline implementation, sacrificing nei-
ther the readability of the original operators nor the baseline op-
timization itself. In addition, after this optimization, the staging
compiler can further optimize the generated code, as shown in Fig-
ures 5(c) and 5(d). There, the compiler detects that both the itera-
tor abstraction and some while loops can be completely removed,
and automatically removes them, thus improving branch predic-
tion. This is an important advantage of staging compilers compared
to the existing template-based and static query compilers.

3.1.2 Eliminating Redundant Materializations
Consider again the motivating example of our introduction. We

observed that existing query compilers use template-based gener-
ation and, thus, in such schemes operators are not aware of each
other. This can cause redundant computation: in the example there
are two materialization points (in the group by and in the left side
of the hash join) where there could be only a single one.

By expressing optimizations at a higher-level, we can treat op-
erators as objects in Scala, and then match specific optimizations
to certain chains of operators. Here, we can completely remove
the aggregate operator and merge it with the join. The code of the
optimization is shown in Figure 6.

This optimization operates as follows. First, we call the opti-
mize function, passing it the top-level operator as an argument. The
function then traverses the tree of Scala operator objects, until it en-
counters a proper chain of operators to which the optimization can
be applied to. In the case of the example the chain is (as shown in
line 2 of Figure 6) a hash-join operator connected to an aggregate
operator. When this pattern is detected, a new HashJoin operator
object is created, that is not connected to the aggregate operator,

2All operators initialize their state (if any) from one child in the
open function, and call their other child (if any) in the next function.
The only exception is the nested loop joins operator which calls
both children in the next function. We handle this by introducing
phases where each phase handles tuples only from one child.
3Observe that the iterator itself is an abstraction which introduces
overheads during execution. Our compiler maps this high-level
construct to efficient native C loops.

1 def optimize(op: Operator): Operator = op match {
2 case hj@HashJoin(aggOp:AggOp,_,h,eq) =>
3 new HashJoin(aggOp.child,hj.rightChild,h,eq) {
4 override def open() {
5 // leftChild is now the child of aggOp
6 leftChild foreach { t =>
7 val key = hj.leftHash(aggOp.grp(t))
8 // Get aggregations from hash map of HJ
9 val aggs = hm.getOrElseUpdate(key,

10 new Array[Double](aggOp.aggFuncs.size))
11 aggOp.processAggs(aggs,t)
12 }
13 }
14 }
15 case x: Operator =>
16 x.leftChild = optimize(x.leftChild)
17 x.rightChild = optimize(x.rightChild)
18 case null => null
19 }

Figure 6: Removing redundant materializations by high-level pro-
gramming (here between a group by and a join).

but instead to the child of the latter (line 3 of Figure 6). As a result,
the materialization point of the aggregate operator is completely
removed. However, we must still find a place to (a) store the ag-
gregate values and (b) perform the aggregation. For this purpose
we use the hash map of the hash join operator (line 9), and we just
call the corresponding function of the Aggregate operator (line 11),
respectively. Observe that in this optimization there is almost no
code duplication, showing the great merit of abstraction without
regret. In addition, all low-level compiler optimizations can still be
applied after the application of the optimization presented here.

Finally, we observe that this optimization is programmed in the
same level of abstraction as the rest of the query engine: as normal
Scala code. This property raises the productivity provided by our
compiler, and is another example where optimizations are devel-
oped in a way that is completely intuitive to programmers. This
design also allows them to use all existing software development
tools for optimizing the query engine.

3.2 Data-Structure Specialization
Data structure optimizations contribute significantly to the com-

plexity of database systems today, as they tend to be heavily spe-
cialized to be workload, architecture and (even) query-specific. Our
experience with the PostgreSQL database management system re-
veals that there are many distinct implementations of memory page
abstraction and B-trees. These versions are slightly divergent from
each other, suggesting that the optimization scope is limited. How-
ever, this situation significantly contributes to a maintenance night-
mare as in order to apply any code update, many different pieces of
code have to be modified.

In addition, even though data-structure specialization is impor-
tant when targeting high-performance systems, it is not provided
by any existing query compilation engine. Since our LMS com-
piler can be used to optimize the whole Scala code, and not only
the operator interfaces, it allows for various degrees of special-
ization in data-structures, as has been previous shown in [22]. In
this paper, we demonstrate such possibilities by showing how hash
maps, which are the most commonly used data-structures along
with Trees in DBMSes, can be heavily specialized for significant
performance improvements by using schema and query knowledge.
Close examination of the generic hash maps in the baseline imple-
mentation of our operators (e.g. in the Aggregation of Figure 4)
reveals the following three main abstraction overheads.

First, for every insert operation, a hash map must allocate a
triplet holding the key, the corresponding value as well as a pointer
to the next element in the hash bucket. This introduces a significant



1 trait HashMapOpsGen extends HashMapOpsExp {
2 override def lowerNode[A](sym: Sym[A], rhs: Def[A]) =
3 rhs match {
4 case HashMapNew[K,V](size,h,eq)=> sym.atPhase(LOWERING){
5 // Create new IR node for array storing only values
6 val sym = new Array[V](size)
7 // Keep hash and equal functions in new IR node
8 sym.attributes += "hash" -> h
9 sym.attributes += "equals" -> eq

10 sym // The IR node now represents an array
11 }
12 case HashMapGetOrElseUpd(m,k,v)=> sym.atPhase(LOWERING){
13 // var m now represents an array instead of a hash map
14 // Extract functions
15 val hashF = m.attributes("hash")
16 val equalF = m.attributes("equals")
17 // Get bucket
18 var h = hashF(v) // Inlines hash function
19 var elem = m(h)
20 // Search for element & inline equals function
21 while (elem != null && !equalF(elem, k))
22 elem = elem.next
23 // Not found: create new elem / update pointers
24 if (elem == null) {
25 elem = v()
26 elem.next = m(h)
27 m(h) = elem
28 }
29 elem // The IR node now represents an array element
30 }
31 }
32 // Fill remaining operations accordingly
33 }
34

35 trait StructOpsExpOpt extends StructOpsExp {
36 override def struct[T](elems: Seq[(String,Any)]) = {
37 // Transparently append next field
38 val fields = ("next", manifest[T]) :: elems
39 val name = structName(fields)
40 super.struct(name, fields)
41 }
42 }

Figure 7: Specializing HashMaps by converting them to native ar-
rays. The operations are mapped to a set of primitive C constructs.

number of expensive memory allocations on the critical path. Sec-
ond, hashing and comparison functions are called for every lookup.
These function calls are usually virtual, causing significant over-
head on the critical path. Finally, the data-structures may have to
be resized during runtime in order to efficiently accommodate more
data. These resizing operations are a significant bottleneck, espe-
cially for long-running, computationally expensive queries.

Next, we resolve all these issues with our compiler, without cha-
nging a single line of the base code of the operators that use these
data-structures. This property shows that our approach is practical,
in contrast to the complicated, low-level approaches followed by
query compilers so far. The optimization, which is shown in Fig-
ure 7, takes place during the lowering phase of the compiler (Sec-
tion 2.1), where high-level Scala IR nodes are mapped to low-level
C constructs. It makes use of the following three observations:

• For our workloads, the information stored on the key is usually a
subset of the attributes of the value. Thus, the generic hash maps
store redundant data. To avoid this, we convert the hash map to
an array that stores only the values, and not the associated key
(lines 4-11). Then, since we know that the inserted elements are
chained together in a hash list, we provision for the next pointer
when these are first allocated (e.g. at data loading, outside the
critical path, lines 35-42). Thus, we no longer need the key-
value-next container and we manage to reduce the amount of
memory allocations significantly.

• Second, the hash and equal functions are themselves IR nodes
in LMS. Thus, we can automatically inline the body of those

functions wherever they are called (lines 18 and 21 of Figure 7),
as described in Section 2.1. This significantly reduces the num-
ber of function calls (to almost zero), considerably improving
branch prediction and cache locality.

• Finally, to avoid costly maintenance operations on the critical
path, we preallocate in advance all the necessary memory space
that may be required for the hash map during execution. This is
done by specifying a size parameter when allocating the data-
structure (line 4). Currently, we obtain this size by performing
worst-case analysis on a given query, which means that we pos-
sibly allocate much more space that what is actually needed.
However, we believe that database statistics can make this esti-
mation very accurate.

Finally, we note that data-structure specialization is an example
of intra-operator optimization and, thus, each operator can special-
ize its own data-structures by using similar optimizations.

3.3 Changing Data Layout
A long-running debate in database literature is the one between

row and column stores [1, 24, 7]. Even though there are many
significant differences between the two approaches in all levels of
the database stack, the central contrasting point is the data-layout,
i.e. the way data is organized and grouped together. By default
LegoBase uses the row layout, since this intuitive data organization
facilitated fast development of the relational operators. However,
we quickly noted the benefits of using a column layout for efficient
data processing. One solution would be to go back and redesign the
whole query engine; however this misses the point of our compiler
framework. In this section we show how the transition from the
row to the column layout can be expressed as an optimization4.

The optimization of Figure 8 performs a conversion from an ar-
ray of records (row layout) to a record of arrays (column layout),
where each array in the column layout stores the values for one at-
tribute. The optimization takes place during the construction of IR
nodes concerning arrays, and overrides the corresponding methods,
thus providing the new behaviour. For example, when constructing
a new array, array_new is called. As with all our optimizations,
type information determines the applicability of an optimization:
here it is performed only if the array elements are of record type
(lines 5,16,27). Otherwise, this transformation is a NOOP and the
original code is generated (e.g. an array of Integers remains un-
changed).

Each optimized operation is basically a straightforward rewriting
to a set of operations on the underlying record of arrays. Consider,
for example, an update to an array of records (arr(n) = v), where
v is a record. We know that the staged representation of arr will
be a record of arrays, and that v has the same attributes as arr. So
for each of those attributes we extract the corresponding array from
arr (line 18) and field from v (line 20); then we can perform the
update operation on the extracted array (line 20).

This optimization also reveals another benefit of using a stag-
ing compiler: developers can create new abstractions in their op-
timizations, which will be in turn optimized away in subsequent
optimization passes. For example, array_apply results in record
reconstruction by extracting the individual record fields from the
record of arrays (lines 28-29) and then building a new record to
hold the result (line 31). This intermediate record can be automat-
ically removed using dead code elimination (DCE), as shown in
4We must note that just changing the data layout does not mean that
LegoBase becomes a column store. There are other important as-
pects which we do not yet handle, and which we plan to investigate
in future work.



1 trait ArrayOpsExpOpt extends ArrayOpsExp {
2 // Override the IR node constructors
3 override def array_new[T:Manifest](n:Int) =
4 manifest[T] match {
5 case Record(attrs) =>
6 // Create a new array for each attribute
7 val arrays = for (tp<-attrs) yield array_new(n)(tp)
8 // Pack everything in a new record
9 record(attrs, arrays)

10 case _ => super.array_new(n)
11 }
12

13 override def array_update[T:Manifest](ar:Array[T],
14 n:Int, v:T) =
15 manifest[T] match {
16 case Record(attrs) =>
17 // Get columns and update each one
18 val arrays = for (l <- attrs) yield field(ar, l)
19 for ((a, l) <- arrays zip attrs)
20 a(n) = field(v, l)
21 case _ => super.array_update(ar, n, v)
22 }
23

24 override def array_apply[T:Manifest](ar:Array[T],
25 n:Int) =
26 manifest[T] match {
27 case Record(attrs) =>
28 val arrays = for (l <- attrs) yield field(ar, l)
29 val elems = for (a <- arrays) yield a(n)
30 // Perform record reconstruction
31 record(attrs, elems)
32 case _ => super.array_apply(ar, n)
33 }
34

35 // Fill remaining operations accordingly
36 }

Figure 8: Changing the data layout (from row to column) expressed
as an optimization. ArrayOpsExp is the compiler trait for handling
Arrays that we overwrite. Scala manifests carry type information.

Figure 9. Similarly, if LMS can statically determine that some at-
tribute is never used (e.g. by having all queries given in advance),
then the row layout still has to skip this attribute during query pro-
cessing. Instead, after applying this transformation, this attribute
will just be an unused field in a record, which the staging compiler
will be able to optimize away (e.g. attribute L2 in Figure 9).

Such optimization opportunities, which are provided for free by
LMS, have to be manually encoded with existing query compilers.
We argue that this is a benefit of actually using a compiler, instead
of mimicking what a compiler would do inside the query engine.

3.4 Other Compiler Optimizations
There are several other optimizations that can be expressed with

our compiler framework in order to further boost the performance
of LegoBase. These include loop-fusion, automatic index introduc-
tion, automatic parallelization and vectorization. We leave these
optimizations as future work. However, preliminary results show
that these optimizations can be easily expressed in LegoBase and
can significantly improve performance as expected. In general, we
believe that exploration of even query-specific optimizations is cer-
tainly feasible, given the easy extensibility of our framework.

4. EVALUATION
Our experimental platform consists of a server-type x86 machine

equipped with two Intel Xeon E5-2620 v2 CPUs running at 2GHz
each, 256GB of DDR3 RAM at 1600Mhz and two commodity hard
disks of 2TB storing the experimental datasets. The operating sys-
tem is Red Hat Enterprise 6.5. For compiling the generated pro-
grams throughout our evaluation we use version 2.10.3 of the Scala
compiler and version 2.9 of the CLang front-end for LLVM [13],
with the default optimization flags for both compilers. For the

val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
val r =
record(L1->e1,

L2->e2)
r.L1

7→

val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
val r =
record(L1->e1,

L2->e2)
e1

7→
val a1 = a.L1
val e1 = a1(i)
e1

Figure 9: Dead code elimination (DCE) can remove intermediate
materializations, e.g. row reconstructions when using a column lay-
out. Here a is an array of records and i is an integer. The records
have two attributes L1 and L2.

Scala programs, we configure the Java Virtual Machine to run with
192GB of heap space. Finally, for C data-structures we use the
GLib library (version 2.38.2).

For our evaluation we use the TPC-H benchmark [28]. TPC-H
is a data-warehousing and decision support benchmark that issues
business analytics queries to a database with sales information.
This benchmark suite includes 22 queries with a high degree of
complexity that express most SQL features. We execute each query
five times and report the average performance of these runs. As a
reference point for all results presented in this section, we use a
commercial, in-memory, row-store database system called DBX,
which does not employ compilation. We assign 192GB of DRAM
as memory space in DBX and we use the DBX-specific data types
instead of generic SQL types. For all experiments, we have dis-
abled huge pages in the kernel, since this provided better results
for all tested systems and optimizations. As described in Section 2,
LegoBase uses query plans from the DBX database.

Our evaluation is divided into three parts. First, we analyze the
performance of LegoBase. More specifically, we show that, by us-
ing our compiler framework, we obtain a query engine that signif-
icantly outperforms both DBX and the HyPer query compiler. We
also give insights about the performance improvement each of our
optimizations provides. Second, we analyze the amount of effort
required when programming query engines in LegoBase and show
that, by programming in the abstract, we can derive a fully func-
tional system in a relatively short amount of time and coding effort.
Finally, we evaluate the compilation overheads of our approach to
show that it is practical for efficiently compiling query engines.

4.1 Optimizing Query Plans
First, we show that low-level compilation frameworks, such as

LLVM, are not adequate for efficiently optimizing database sys-
tems. To do so, we generate a traditional Volcano-style engine,
which we then compile to a final C binary using LLVM. As shown
in Figure 10, the achieved performance is very poor: the LegoBase
query engine system is significantly faster for all TPC-H queries.
This is because frameworks like LLVM cannot automatically detect
the data-structure, data flow or operator optimizations that we sup-
port in LegoBase: the scope of optimization is too coarse-grained
to be detected by a low-level compiler.

In addition, as shown in the same figure, compiling with LLVM
does not always yield better results compared to using a traditional
compiler like GCC5. We see that LLVM outperforms GCC for only
11 out of 22 queries (by 14% on average) while, for the remaining
ones, the binary generated by GCC is faster by 10% in average. In
general, the performance difference between the two compilers can
be significant (e.g. for Q15, there is a 26% difference). We also
experimented with manually specifying optimizations flags to the

5For this experiment, we use version 4.4.7 of the GCC compiler.



 2

 4

 8

 16

 32

 64

 128

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Sl
ow

do
w

n 
to

 L
eg

oB
as

e
LLVM
GCC

Figure 10: Performance of a Volcano-style
engine compiled with LLVM and GCC.

Sp
ee

du
p 

to
 D

BX

TPCH Queries

Volcano-Style (LLVM)
Volcano-Style (GCC)
Compiler of HyPer
Compiler of HyPer (sim.)
LegoBase (Scala)
LegoBase (C)

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
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two compilers, but this turns out to be a very delicate and com-
plicated task as developers can specify flags which actually make
performance worse. We argue that it is instead more beneficial for
database developers to invest their effort in developing high-level
optimizations, like those presented so far in this paper.

Second, we show that the limited optimization scope of existing
query compilers makes them miss significant optimization oppor-
tunities. To do so, we use the compiler of the HyPer database [15]
which employs LLVM, a push engine and operator inlining6. We
also simulate this system in LegoBase by enabling the correspond-
ing optimizations in our architecture7. The results are presented
in Figure 11. We see that, for both the simulated and actual Hy-
Per compilers, performance is significantly improved by 2.15× and
2.44× on average, respectively. In addition, for 10 out of 22 TPC-H
queries, our simulation actually generates code that performs better
than that of HyPer. This is because we inline not only the opera-
tors’ interfaces but also all data-structures and utilities leading to
fewer function calls and better cache locality8.

More importantly, this figure shows that by using the data layout
and data structures optimizations of LegoBase (which are not per-
formed by the query compiler of HyPer), we can get an additional
5.3× speedup, for a total average 7.7× performance improvement
with all optimizations enabled. This is a result of the improved
cache locality and branch prediction, as shown in Figure 13. More
specifically, there is an improvement of 30% and 1.54× on aver-
age for the two metrics, respectively, between DBX and LegoBase.
In addition, the maximum, average and minimum difference in the
number of CPU instructions executed in HyPer is 2.98×, 1.54×,
and 5% more, respectively compared to LegoBase. The data-stru-
cture and column layout optimizations cannot be provided by ex-
isting query compilers as they target pre-compiled DBMS compo-
nents which exist outside their optimization scope. This shows that,
by extending the optimization scope, LegoBase can outperform ex-
isting compilation techniques for all TPC-H queries.

Finally, we prove that the abstraction without regret vision ne-
cessitates our source-to-source compilation to C. To do so, we pre-
sent performance results for the best Scala program; that is the pro-
gram generated by applying all optimizations to the Scala output.

6We also experimented with another in-memory DBMS that com-
piles SQL queries to native C++ code on-the-fly. However, we were
unable to configure the system so that it performs well compared to
the other systems. Thus, we omit its results from this section.
7In its full generality, the transformation between a Volcano and a
push engine is still under development. For the results presented
here, we have implemented the push version directly since, in our
case, the code of the push engine turns out to be significantly sim-
pler and easier to understand than the Volcano code.
8We note that the simulated and actual HyPer systems may use
different physical query plans and data-structures implementation.
These are the main reasons for the different performance observed
in Figure 11 between the two systems in some queries.

We observe that the performance of Scala cannot compete with that
of the optimized C code, and is on average 2.5× slower. Profiling
information gathered with the perf tool of Linux reveals the fol-
lowing three reasons for the worse performance of Scala: (a) There
are 30% to 1.4×more branch mispredictions, (b) The percentage of
LLC misses is 10% to 1.8× higher, and more importantly, (c) Scala
executes up to 5.5×more CPU instructions9. Of course, these inef-
ficiencies are to a great part due to the Java Virtual Machine and not
specific to Scala. Note that the optimized Scala program is compet-
itive to DBX: for 18 out of 22 queries, Scala outperforms the com-
mercial DBX system. This is because we remove all abstractions
that incur significant overhead for Scala. For example, the perfor-
mance of Q18, which builds a large hash map, is improved by 45×
when applying our data-structure specializations.

4.1.1 Impact of Compiler Optimizations
From the results presented so far, we observe that our optimiza-

tions do not equally benefit the performance of all queries, however
they never result in negative performance impact. Here, we pro-
vide additional information about the performance improvement
expected when applying one of our optimizations. These results
are presented in Figure 12.

In general, the impact of an optimization depends on the char-
acteristics of a query. For the data-structure specialization (Fig-
ure 12a), the improvement is proportional to the amount of data-
structure operations performed. We observe that the hash map ab-
straction performs respectably for few operations. However, as
we increase the amount of data that are inserted into these maps,
their performance significantly drops and, thus, our specialization
gives significant performance benefits. For the column layout opti-
mization (Figure 12b), the improvement is proportional to the per-
centage of attributes in the input relations that are actually used.
TPC-H queries reference 24% - 68% and, for this range, the opti-
mization gives a 2.5× to 5% improvement, which degrades as more
attributes are referenced. This is expected as the benefits of the col-
umn layout are evident when this layout can “skip” a number of
unused attributes, thus significantly reducing cache misses. Syn-
thetic queries on TPC-H data referencing 100% of the attributes
show that, in this case, the column layout actually yields no ben-
efit, and it is slightly worse than the row layout. This figure also
shows that the performance improvement of both optimizations is
not directly dependent on the number of operators, as queries with
the same number of operators can exhibit completely different be-
haviour regarding data-structure and attributes references.

For the inlining optimization (Figure 12c) we observe that, when
all operators are considered, inlining does not improve performance
as we move from three to seven operators. This is because the im-
provement obtained from inlining depends on which operators are

9These results were confirmed with Intel’s VTune profiler.



 1

 2

 4

 8

 16

 0.125  0.5  2  8  32  128

Sp
ee

du
p

Number of DS operations (millions)

 2
 4
 6
 8

 10
 12

 2  4  6  8  10  12  14  16  18

Sp
ee

du
p

Number of operators

(a) Data Structure Opt.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 10  20  30  40  50  60  70  80  90  100

Sp
ee

du
p

Percentage of attributes used

TPC-H queries

 1

 1.5

 2

 2.5

 3

 2  4  6  8  10  12  14  16  18

Sp
ee

du
p

Number of operators
TPC-H queries

(b) Change Data Layout

 1
 2
 3
 4
 5
 6
 7

 0  1  2  3  4  5  6  7

Sp
ee

du
p

Number of joins

 1
 2
 3
 4
 5
 6
 7

 2  4  6  8  10  12  14  16  18

Sp
ee

du
p

Number of operators

(c) Operator Inlining

 1

 1.5

 2

 2.5

 3

 3.5

Q
1

Q
6

Q
4

Q
12

Q
13

Q
14

Q
15

Q
17

Q
19 Q
3

Q
22

Q
16

Q
18

Q
10

Q
11 Q
2

Q
20 Q
5

Q
7

Q
9

Q
21 Q
8

Sp
ee

du
p

More operators

(d) Push Engine Opt.

Figure 12: Impact of different optimizations on query execution time. The baseline is a Volcano-style engine.

 30
 40
 50
 60
 70
 80
 90

 100

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

C
ac

he
 M

is
se

s

 0
 0.5

 1
 1.5

 2
 2.5

 3

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22Br

an
ch

 M
is

pr
ed

. DBX Hyper LegoBase

Figure 13: Percentage of cache misses and branch mispredictions
for DBX, HyPer and LegoBase for all 22 TPC-H queries.

being inlined. We observe that if we consider inlining only join op-
erators then the performance improves almost linearly as the num-
ber of join operators in a query plan increases. This is an impor-
tant observation, as for very large queries, our system may have to
choose which operators to inline (e.g. to avoid the code not fitting
in the instruction cache). If that is the case, this experiment shows
that the compiler framework should merit inlining joins instead of
simpler operators (e.g. scans or aggregations).

Finally, the performance improvement gained by the pull to push
optimization (Figure 12d) depends on the complexity of the execu-
tion path of a query. This is a hard metric to visualize, as the im-
provement depends not only on how many operators are used, but
also on their type, their position in the overall query plan and how
much each of them affects branch prediction and cache locality. For
instance, queries Q5 to Q21 in the figure have the same number of
operators, but the performance improvement gained varies signifi-
cantly. At the same time Q13 has half the number of operators, but
this optimization helps more: the push engine significantly simpli-
fies the complex execution paths of the Left Outer Join operator
used by this query. A similar observation about the complexity of
execution paths holds for Q2 as well.

4.2 Productivity Evaluation
An important point of this paper is that the performance of query

engines can be improved without much programming effort. Next,
we present the productivity/performance evaluation of our system,
which is summarized in Table 1.

We observe two things. First, by programming at a high-level
we can provide a fully functional system within a small amount
of time and lines of code required. For LegoBase, the majority of
this effort was invested in extending the LMS compiler so that it
generates C code (LMS by default outputs Scala). As a result of
the reduced code size, we spent less time on debugging the system,
thus focusing on developing new useful optimizations. Develop-
ment of LegoBase required, including debugging time, four months
for only one programmer. Second, each optimization requires only

Coding Effort Scala LOC Average Speedup

Operator Inlining – 0 2.07×
Push Engine Opt. 1 Week ∼400 [6] 2.26×
Data Structure Opt. 4 Days 259 2.16×
Change Data Layout 3 Days 102 1.81×
Other Misc. Opt. 3 Days 124 –10

LegoBase Operators 1 Month 428 –
LMS Modifications 2 Months 3953 –
Various Utilities 1 Week 538 –

Total ∼4 Months 5831 7.7×

Table 1: Programming effort required for each LegoBase compo-
nent along with the average speedup obtained from using it.

a few hundred lines of high-level code to provide significant per-
formance improvements. More specifically, for ∼900 LOC Lego-
Base is improved by 7.7×, as we described in the previous section.
Source-to-source compilation is critical to achieving this behaviour,
as the combined size of the operators and optimizations of Lego-
Base is 40 times less than the code size for all 22 TPC-H queries
written in C. Finally, in contrast to low-level query compilers which
must themselves provide operator inlining, LMS provides this op-
timization for free. We believe these properties prove the produc-
tivity merit of the abstraction without regret vision.

4.3 Compilation Overheads
Finally, we analyze the compilation time for the C programs

of all 22 TPC-H queries. Our results are presented in Figure 14,
where the y-axis corresponds to the time to (a) optimize an incom-
ing query in our system and generate the C code, and, (b) the time
CLang requires before producing the final C executable.

We see that, in general, all TPC-H queries require less than 2.5
seconds to compile. We argue that this is an acceptable compilation
overhead, especially for analytical queries like those in TPC-H that
are typically known in advance and which process huge amounts
of data. In this case, a compilation overhead of some seconds is
negligible compared to the total execution time. This result proves
that our approach can be used in practice for quickly compiling
query engines. In addition, the optimization time is, as expected,
proportional to the number of joins in its physical query plan. This
is because our compiler must optimize more data-structures and
operators as the number of joins increases11.

Finally, we note that if we generate Scala code instead of C, then
compiling the final optimized Scala programs requires 7.2× more
time on average. To some extent this is expected as calling the Scala

10The improvement of these optimizations is counted among the
other optimizations.

11One exception to this rule is Q11. This query uses the Window
Operator which is expensive to optimize in our implementation.



 0

 0.5

 1

 1.5

 2

 2.5

Q
8

Q
5

Q
7

Q
9

Q
21 Q
2

Q
20

Q
10 Q
3

Q
11

Q
16

Q
18 Q
4

Q
12

Q
13

Q
14

Q
15

Q
17

Q
19

Q
22 Q
1

Q
6

LM
S 

+ 
C

La
ng

 [s
ec

on
ds

]

LMS Optimization
CLang C Program Compilation

7

5 5 5 5

4 4
3

2

2

2 2

1 1 1
1 1 1 1 1

0 0

Figure 14: Compilation time for all C programs of TPC-H. Queries
are sorted according to the number of join operators in them.

compiler is a heavyweight process: for every query compiled there
is significant startup overhead for loading the necessary Scala and
Java libraries. In addition, Scala has to perform additional transfor-
mations in order to convert a Scala program to Java bytecode. By
just optimizing a Scala program in the form of an AST, our two-
level architecture allows us to avoid these overheads, providing a
much more lightweight compilation process.

5. RELATED WORK
We outline related work in three areas: (a) Previous query com-

pilers, (b) Frameworks for applying intra-operator optimizations
and, finally, (c) Orthogonal techniques to speed-up query process-
ing. We briefly discuss these areas below.

Previous Compilation Frameworks. Historically, System R [2]
first proposed code generation for query optimization. However,
the Volcano iterator model eventually dominated over compilation,
since code generation was very expensive to maintain. The Day-
tona [5] system revisited compilation in the late nineties, however
it heavily relied on the operating system for functionality that is
traditionally provided by the DBMS itself, like buffering.

The shift towards pure in-memory computation in databases, evi-
dent in the space of data analytics and transaction processing12, has
lead developers to revisit compilation. The reason is that, as more
and more data is put in memory, query performance is increasingly
determined by the effective throughput of the CPU. In this context,
compilation strategies aim to remove unnecessary CPU overhead.

Rao et al. propose to remove the overhead of virtual functions in
the Volcano iterator model by using a compiled execution engine
built on top of the Java Virtual Machine (JVM) [20]. Krikellas et
al. take a step further and completely eliminate the Volcano iterator
model in the generated code [12]. They do so by translating the
algebraic representation to C++ code using templates in the HIQUE
system. In addition, Zane et al. have shown how compilation can
also be used to additionally improve operator internals [29].

The HyPer database system also uses query compilation, as de-
scribed in [15]. This work targets minimizing the CPU overhead
of the Volcano operator model while maintaining low compila-
tion times. The authors use a mixed LLVM/C++ execution engine
where the algebraic representation of the operators is first translated
to low-level LLVM code, while the complex part of the database
(e.g. management of data-structures and memory allocation) is still
pre-compiled C++ code called periodically from the LLVM code
whenever needed. Two basic optimizations are presented: operator
inlining and reversing the data flow (to a push engine).

All these works aim to improve database systems by removing
unnecessary abstraction overheads. However, these template-based

12Examples of systems in the area since mid-2000s include SAP
HANA [3], VoltDB [9, 26] and Oracle’s TimesTen [17].

approaches require writing low-level code which is hard to main-
tain and extend. This fact significantly limits their applicability.
Furthermore, their static nature makes them miss significant op-
timization opportunities that can only be detected by taking into
account runtime information. In contrast, our approach advocates a
new methodology for programming query engines where the query
engine and its optimizations are written in a high-level language.
This provides a programmer-friendly way to express optimizations
and allows extending the scope of optimization to cover the whole
query engine. In addition, our staging compiler is used to con-
tinuously optimize our system at runtime. Finally, in contrast to
previous work, we separate the optimization and code generation
phases. Even though [15] argues that optimizations should happen
completely before code generation (e.g. in the algebraic represen-
tation), there exist many optimization opportunities that occur only
after one considers the complete generated code, e.g. after operator
inlining. Our compiler can detect such optimizations, thus provid-
ing additional performance improvement over existing techniques.

Intra-operator optimizations. There has recently been extensive
work on how to specialize the code of query operators in a sys-
tematic way by using an approach called Micro-Specialization [31,
30, 32]. In this line of work, the authors propose a framework to
encode DBMS-specific intra-operator optimizations, like unrolling
loops and removing if conditions, as pre-compiled templates in
an extensible way. All these optimizations are performed by de-
fault by the LMS compiler in LegoBase. However, in contrast to
our work, there are two main limitations in Micro-Specialization.
First, the low-level nature of the approach makes the development
process very time-consuming: it can take days to code a single
intra-operator optimization [30]. Such optimizations are very fine-
grained, and it should be possible to implement them quickly: for
the same amount of time we are able to provide much more coarse-
grained optimizations in LegoBase. Second, the optimizations are
limited to those that can be statically determined by examining the
DBMS code and cannot be changed at runtime. Our architecture
maintains all the benefits of Micro-Specialization, while it is not
affected by the aforementioned two limitations.

Techniques to speed up query processing. Finally, there are many
works that aim to speed-up query processing in general, by focus-
ing mostly on improving the way data are processed, rather than
individual operators. Examples of such work include block-wise
processing [18], vectorized execution [23], compression techniques
to provide constant-time query processing [19] or combination of
the above along with a column-oriented data layout [14]. We be-
lieve all these approaches are orthogonal to this work, since our
framework aims to provide a high-level framework for encoding
all such optimizations in a user friendly way (e.g. we present the
transition from row to column data layout in Section 3.3).

6. CONCLUSIONS
LegoBase is a new analytical database system currently under

development at EPFL. In this paper, we presented the current pro-
totype of the query execution subsystem of LegoBase. Our sys-
tem allows programmers to develop high-level abstractions with-
out having to pay an abstraction penalty. To achieve this vision
of abstraction without regret, LegoBase performs source-to-source
compilation of the high-level Scala code to very efficient low-level
C code. In addition, it uses state-of-the-art compiler technology
in the form of an extensible staging compiler implemented as a li-
brary in which optimizations can be expressed naturally at a high
level. Our approach admits a productivity/efficiency combination



that is not feasible with existing low-level query compilers: Pro-
grammers need to develop just a few hundred lines of high-level
code to implement techniques and optimizations that result in sig-
nificant performance improvements. Our experiments show that
LegoBase significantly outperforms both a commercial in-memory
database and an existing query compiler.
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