000198594 001__ 198594
000198594 005__ 20181203023502.0
000198594 0247_ $$2doi$$a10.1007/s10711-013-9858-x
000198594 022__ $$a0046-5755
000198594 02470 $$2ISI$$a000332790500021
000198594 037__ $$aARTICLE
000198594 245__ $$aModuli spaces of toric manifolds
000198594 269__ $$a2014
000198594 260__ $$bSpringer Verlag$$c2014$$aDordrecht
000198594 300__ $$a19
000198594 336__ $$aJournal Articles
000198594 520__ $$aWe construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result.
000198594 6531_ $$aToric manifold
000198594 6531_ $$aDelzant polytope
000198594 6531_ $$aModuli space
000198594 6531_ $$aMetric space
000198594 700__ $$uInst Adv Study, Sch Math, Princeton, NJ 08540 USA$$aPelayo, A.
000198594 700__ $$uCornell Univ, Dept Math, Ithaca, NY 14853 USA$$aPires, A. R.
000198594 700__ $$0243113$$g118378$$uEcole Polytech Fed Lausanne, Sect Math, Stn 8, CH-1015 Lausanne, Switzerland$$aRatiu, T. S.
000198594 700__ $$uEcole Polytech Fed Lausanne, Sect Math, Stn 8, CH-1015 Lausanne, Switzerland$$aSabatini, S.
000198594 773__ $$j169$$tGeometriae Dedicata$$k1$$q323-341
000198594 909C0 $$0252609$$pCAG2
000198594 909CO $$particle$$ooai:infoscience.tind.io:198594
000198594 917Z8 $$x180122
000198594 937__ $$aEPFL-ARTICLE-198594
000198594 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000198594 980__ $$aARTICLE