000198560 001__ 198560
000198560 005__ 20181203023502.0
000198560 0247_ $$2doi$$a10.1016/j.comgeo.2014.01.003
000198560 022__ $$a0925-7721
000198560 02470 $$2ISI$$a000332813800005
000198560 037__ $$aARTICLE
000198560 245__ $$aOuterplanar graph drawings with few slopes
000198560 260__ $$aAmsterdam$$bElsevier Science Bv$$c2014
000198560 269__ $$a2014
000198560 300__ $$a11
000198560 336__ $$aJournal Articles
000198560 520__ $$aWe consider straight-line outerplanar drawings of outerplanar graphs in which a small number of distinct edge slopes are used, that is, the segments representing edges are parallel to a small number of directions. We prove that Delta - 1 edge slopes suffice for every outerplanar graph with maximum degree Delta >= 4. This improves on the previous bound of O(Delta(5)), which was shown for planar partial 3-trees, a superclass of outerplanar graphs. The bound is tight: for every Delta >= 4 there is an outerplanar graph with maximum degree Delta that requires at least Delta - 1 distinct edge slopes in an outerplanar straight-line drawing. (C) 2014 Elsevier B.V. All rights reserved.
000198560 6531_ $$aOuterplanar graph
000198560 6531_ $$aStriagh-line drawing
000198560 6531_ $$aSlope number
000198560 700__ $$aKnauer, Kolja
000198560 700__ $$aMicek, Piotr$$uJagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Krakow, Poland
000198560 700__ $$0247119$$aWalczak, Bartosz$$g232136$$uJagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Krakow, Poland
000198560 773__ $$j47$$k5$$q614-624$$tComputational Geometry-Theory And Applications
000198560 909C0 $$0252234$$pDCG$$xU11887
000198560 909CO $$ooai:infoscience.tind.io:198560$$pSB$$particle
000198560 917Z8 $$x183120
000198560 937__ $$aEPFL-ARTICLE-198560
000198560 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000198560 980__ $$aARTICLE