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Information-theoretic secrecy is combined with cryptographic secrecy to create a secret-key exchange protocol for wireless
networks. Anetwork of transmitters, which already have cryptographically secured channels between them, cooperate to exchange a
secret keywith a new receiver at a random location, in the presence of passive eavesdroppers at unknown locations. Two spatial point
processes, homogeneous Poisson process and independent uniformly distributed points, are used for the spatial distributions of
transmitters and eavesdroppers.We analyse the impact of the number of cooperating transmitters and the number of eavesdroppers
on the area fraction where secure communication is possible. Upper bounds on the probability of existence of positive secrecy
between the cooperating transmitters and the receiver are derived. The closeness of the upper bounds to the real value is then
estimated bymeans of numerical simulations. Simulations also indicate that a deterministic spatial distribution for the transmitters,
for example, hexagonal and square lattices, increases the probability of existence of positive secrecy capacity compared to the
random spatial distributions. For the same number of friendly nodes, cooperative transmitting provides a dramatically larger
secrecy region than cooperative jamming and cooperative relaying.

1. Introduction

Information-theoretic secrecy has attracted a significant
interest in recent years due to its possible applications in
wireless communications and the growing significance of
wireless networks. Wyner [1] first introduced the concept of
wiretap channel in 1975. For discrete memoryless channels,
he has determined that a message can be transmitted reliably
from a transmitter to a receiver without revealing any infor-
mation on the message to the eavesdropper provided that the
transmitter operates at rates smaller than the secrecy capacity.
If the main channel and the wiretap channel are additive
white Gaussian noise channels, then the secrecy capacity is
equal to the difference of the capacities of the two channels
as shown by Leung-Yan-Cheong and Hellman in [2]. Csiszár
and Körner [3] studied the case of a broadcast channel
with confidential messages, in which the sender transmits
common information to both the legitimate receiver and the
wiretapper in addition to the confidential information to
the legitimate receiver. They established the secrecy capacity

region for this channel in which the message intended for the
legitimate receiver is kept private.

Secrecy capacity can be improved using cooperation
with friendly nodes [4]. In the cooperative jamming [5],
friendly nodes, which are close to the eavesdropper, jam the
eavesdropper to help increase the achievable secrecy rates
for the transmitter by decreasing the signal-to-noise (SNR)
ratio at the eavesdropper. In the cooperative relaying [6, 7],
friendly nodes which are closer to the receiver than to the
eavesdropper are used as relays.The relays increase SNRmore
at the receiver than at the eavesdroppers.

Information theory achieves perfect (unconditional)
secrecy as opposed to the computational secrecy provided
by cryptographic algorithms. Here we examine the possi-
bility for mutual applications of cryptographic secrecy and
information-theoretic secrecy. A set of transmitters have
already cryptographically secured the communication chan-
nels between them. When a transmitter wants to commu-
nicate securely with a new receiver (e.g., a mobile station),
a presecret key message is created by the transmitter and
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broken into several data blocks, and a separate block is
encrypted and sent to each of the other transmitters. Then
each transmitter sends its data block to the receiver. The
transmitters ensure that all the data blocks are received
correctly at the receiving node, which is required for the
computation of the secret key at the receiver.The secret key is
securely and cooperatively transmitted to the receiver (with-
out being divulged to the eavesdroppers) using information-
theoretic secrecy if the secrecy capacity is positive for the
communication channel between at least one transmitter
and the receiver. As the number of transmitters grows, the
eavesdroppers are facing a more difficult task of being able to
intercept a larger number of transmitters. Once the secret key
is exchanged, the legitimate parties can start communicating
at the maximum data rate since their communication chan-
nel is cryptographically protected, achieving computational
secrecy [8]. Our model and analysis are applicable to large
scale cellular networks; the mobile carrier operates a high-
speed backbone networks and the core-network infrastruc-
tures connecting individual base stations. Base stations rely
on the core-network infrastructures to establish cryptograph-
ically secure channels between them. Transmitters corre-
spond to the base stations, and the randomly located mobile
users are modeled via the receivers. Large scale cellular
networks are also analysed in [9, 10], where it is assumed
that neighbouring base stations exchange information on the
locations of the eavesdroppers, and therefore the locations of
the eavesdroppers are known to a base station if they are in a
neighbouring cell.

Our results are presented using the following organisation
of the paper. In Section 2, we present the system model. In
Section 3, we address the main research questions of this
paper: (i) evaluation of the impact of the spatial distribution
of transmitters and eavesdroppers on the secrecy region
fraction and derivation of upper bounds for this fraction and
(ii) comparison with cooperative relaying and cooperative
jamming. Section 4 concludes the paper.

2. Network Model

We consider two-dimensional wireless networks with the
following communication nodes: a network of 𝐿

𝑇
cooper-

ating transmitters, a single receiver, and a network of 𝐿
𝐸

passive eavesdroppers. The passive eavesdroppers do not
transmit any signal and try to intercept the information
that is transmitted between the pairs of legitimate nodes,
hence reducing the secrecy capability of the network. Their
locations are unknown to the transmitters. Each transmitter
is equipped with only a single omnidirectional antenna.

In the sequel, we use the following notation.

𝐿(𝐴) is the area of a region 𝐴 ∈ 𝑅2;

𝐿
𝑇
is a random variable which denotes the number of

transmitters in a region 𝐴;

𝐿
𝐸
is a random variable which denotes the number of

eavesdroppers in a region 𝐴;

𝑏 ‖ 𝑐 is a concatenation of two data blocks 𝑏 and 𝑐;

𝑉,𝑉
𝑒
are the additive noise at receiver and eaves-

dropper, which are independent zero mean Gaussian
random variables with variance 𝜎2;
𝐶
𝑡,𝑟

is the capacity of the communication channel
between transmitter 𝑡 and receiver 𝑟;
𝐶
𝑠:𝑡,𝑟

is the secrecy capacity between transmitter 𝑡 and
receiver 𝑟;
𝐶
𝑠
is the secrecy capacity between a set of cooperating

transmitters and a receiver;
𝑑
𝑗,𝑖
is the distance between nodes 𝑖 and 𝑗.

We use the additive white Gaussian noise model. Then,
the received signal at the receiver 𝑟 from the transmitter 𝑡 is

𝑌 = 𝑑
−𝛽/2

𝑡,𝑟
𝑋 + 𝑉, (1)

where 𝑋 is the transmitted signal from the transmitter 𝑡 and
𝛽 is the path-loss coefficient [11]. The received signal at the
eavesdropper 𝑒 from the transmitter 𝑡 equals

𝑍
𝑒
= 𝑑
−𝛽/2

𝑡,𝑒
𝑋 + 𝑉

𝑒
. (2)

The point to point capacities between transmitter 𝑡 and
receiver 𝑟, and between transmitter 𝑡 and eavesdropper 𝑒 are
given by [2]

𝐶
𝑡,𝑟
=
1

2
log
2
(1 +

𝑃
𝑡
𝑑
−𝛽

𝑡,𝑟

𝜎2
) , 𝐶

𝑡,𝑒
=
1

2
log
2
(1 +

𝑃
𝑡
𝑑
−𝛽

𝑡,𝑒

𝜎2
) ,

(3)

where 𝑃
𝑡
is the transmitter’s power. If the point to point

capacity between the two communicating nodes 𝐶
𝑡,𝑟
is larger

than the capacity of the channel between the transmitter and
the eavesdropper 𝐶

𝑡,𝑒
, then 𝐶

𝑠:𝑡,𝑟
= 𝐶
𝑡,𝑟
−𝐶
𝑡,𝑒
> 0. Otherwise,

𝐶
𝑠:𝑡,𝑟
= 0 [2]:

𝐶
𝑠:𝑡,𝑟
= max {𝐶

𝑡,𝑟
− 𝐶
𝑡,𝑒
, 0} . (4)

From (3), it follows that 𝐶
𝑠:𝑡,𝑟

> 0 if the receiver 𝑟 is closer
to the transmitter than the eavesdropper; that is, 𝑑

𝑡,𝑟
< 𝑑
𝑡,𝑒
.

The disk 𝐷
𝑠
⊂ 𝑅
2 with center at the transmitter and radius

equal to the distance between the transmitter and the nearest
eavesdropper is called secrecy disk of the transmitter. If a
receiver is inside the secrecy disk, then the secrecy capacity
between the transmitter and the receiver is positive.

Receivers which are outside the secrecy disk for a given
transmitter cannot communicate securely with that transmit-
ter. In the next section, we explain a type of cooperation for a
set of friendly transmitters that combines their secrecy disks
and thus allows them to communicate secretly with receivers
positioned in a larger region.

3. Cooperative Transmitting

The set of transmitters have already established a crypto-
graphic secret key, and they can cryptographically protect
their mutual communication channels. Let us assume that
transmitter 𝑡

𝑖
and a new communicating node/receiver 𝑟
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Figure 1: Sample network with four transmitters, one new receiver,
and three eavesdroppers.

want to communicate. 𝑡
𝑖
generates a presecret key message

𝐵 with arbitrary length, which it then divides into 𝐿
𝑇
blocks

𝑏
1
, 𝑏
2
, . . . , 𝑏

𝐿𝑇
. Each block is sent to a different transmitter via

a cryptographically secured channel. Then each transmitter
𝑡
𝑖
sends its block 𝑏

𝑖
to the receiver. The intended receiver

correctly receives all blocks 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝐿𝑇
and restores the

presecret key message 𝐵 = 𝑏
1
‖ 𝑏
2
‖ ⋅ ⋅ ⋅ ‖ 𝑏

𝐿𝑇
. Both

𝑡
𝑖
and 𝑟 use a cryptographic hash function 𝐻 to calculate

the mutual secret key 𝐾 = 𝐻(𝐵), which is then used to
cryptographically protect their mutual communication. The
eavesdroppers have to be able to intercept the transmission
from all 𝐿

𝑇
transmitters. If at least one data block out of

𝐿
𝑇
data blocks is not intercepted, then the secret key 𝐾

cannot be computed at the eavesdropper.We call this strategy
for cooperation—cooperative transmitting. Using cooperative
transmitting, a transmitter can exchange a secret key with a
receiver if the receiver is inside any of the secrecy disks for
all 𝐿
𝑇
transmitters. The impact of cooperative transmitting

is quantitatively measured through the fraction 𝐹
𝑠
(𝐴) of a

region𝐴 covered by the union of secrecy disks. Fraction𝐹
𝑠
(𝐴)

is equal to the probability of securely exchanging a secretkey
with a receiver that is randomly positioned inside the region
𝐴:

𝐹
𝑠 (𝐴) ≡ P {𝐶

𝑠
> 0} . (5)

The coverage problem by secrecy disks was studied by Sarkar
and Haenggi [12, 13]. They studied the covered volume
fraction and the asymptotic conditions for complete coverage
in one and two dimensions when 𝐿(𝐴) → ∞.

Figure 1 illustrates the concept of cooperative transmit-
ting on a sample network. Receiver 𝑟 is inside the secrecy disk
of transmitter 𝑡

4
, and therefore block 𝑏

4
cannot be intercepted

by any of the eavesdroppers.
In the remainder of this paper, we analyse the dependence

of P{𝐶
𝑠
> 0} on the spatial distributions of transmitters and

eavesdroppers. We analyse both random and deterministic
models for the spatial distribution of transmitters and eaves-
droppers. Two simple models for random spatial processes
for the transmitters and the eavesdroppers will be used. The
first model is homogeneous Poisson process on the plane
characterised by the mean number of points 𝜆 in a unit area,

also called rate or density of the Poisson Process.The number
of points 𝑙 inside a region 𝐴 follows the Poisson probability
distribution law with parameter 𝜆𝐿(𝐴):

𝑃
𝐿 (𝑙) =

(𝜆𝐿 (𝐴))
𝑙

𝑙!
𝑒
−𝜆𝐿(𝐴)

. (6)

In the second model, a fixed number of points are indepen-
dently and uniformly distributed (IUD) in a certain region
of the plane, characterised by a single parameter, the fixed
number of points. These two models are widely used in
the literature on information-theoretic secrecy [12–15], the
reason being twofold. First, they provide a good first-order
approximation for the spatial distribution of communication
nodes in real networks. Recently [16, 17], it was shown that
the two-dimensional homogeneous Poisson process-based
model for the base stations’ locations accurately estimates
the behaviour of actual networks. The homogeneous Poisson
process gives pessimistic lower bounds on coverage and
throughput, while the deterministic grid model for the base
stations’ locations is optimistic. However, the two models
provide an equally accurate prediction for the performances
of an actual network of base stations [16]. Second, simplicity
of the homogeneous Poisson process and the IUD process
allows for an analytical analysis of information security-
related metrics, for example, fraction 𝐹

𝑠
(𝐴). For the spatial

distribution of the transmitters, we will also investigate two
deterministic models: hexagonal lattice and square lattice.

3.1. IUD Transmitters and IUD Eavesdroppers. In the first
case, the position of the transmitters in a region 𝐴 ∈ 𝑅

2

obeys a IUD process with parameter 𝑛
𝑇
. A fixed number of

eavesdroppers 𝑛
𝐸
are positioned according to an IUD process

in the same region 𝐴. If 𝑛
𝑇
= 1, then 𝐶

𝑠
> 0 if the receiver is

inside the secrecy disk of the transmitter, that is, the receiver
is closer to the transmitter than any of the 𝑛

𝐸
eavesdroppers:

P {𝐶
𝑠
> 0} =

1

1 + 𝑛
𝐸

. (7)

For 𝑛
𝑇
> 1, we establish an upper bound for P{𝐶

𝑠
> 0} as

follows. For 𝑛
𝑇
= 2, the secrecy region of the two transmitters

is a union of their secrecy disks:

P {𝐶
𝑠
> 0} = 1 − P {𝐶

𝑠
< 0}

≤ 1 − P {𝐶
𝑠:1,𝑟

< 0}P {𝐶
𝑠:2,𝑟

< 0}

= 1 − (
𝑛
𝐸

1 + 𝑛
𝐸

)

2

,

(8)

where the overlapping area of the two secrecy disks is
neglected in the upper bound. One can generalise (8) for
𝑛
𝑇
> 1, thus obtaining

P {𝐶
𝑠
> 0} ≤ 1 − (

𝑛
𝐸

1 + 𝑛
𝐸

)

𝑛𝑇

. (9)

Next we consider the case when both 𝑛
𝑇
and 𝑛

𝐸
grow

infinitely, while their ratio remains constant 𝑘 = (𝑛
𝑇
/𝑛
𝐸
).
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Figure 2: Dependence of P{𝐶
𝑠
> 0} on the number of transmitters

𝑛
𝑇
with 𝑛

𝐸
as the curves’ parameter. The lowest curve corresponds

to 𝑛
𝐸
= 10, and the highest curve is for 𝑛

𝐸
= 1.

This is a good first-order approximation when the area of
region𝐴 grows infinitely and the densities of transmitters and
eavesdroppers remain constant. Then

lim
𝑛𝐸→∞

P {𝐶
𝑠
> 0} ≤ lim

𝑛𝐸→∞
1 − (

𝑛
𝐸

1 + 𝑛
𝐸

)

𝑘𝑛𝐸

= 1 − 𝑒
−𝑘
. (10)

In order to evaluate the accuracy of the upper bounds
(9) and (10), we have numerically estimated the value for
P{𝐶
𝑠
> 0} for real networks. Figure 2 depicts the dependence

of P{𝐶
𝑠
> 0} on 𝑛

𝑇
and 𝑛

𝐸
as obtained from the numerical

simulations. Each point on the curves is averaged over
100,000 simulations of real networks.

Figure 3 shows the closeness between the upper bound
given by (9) and the real values for P{𝐶

𝑠
> 0}, which

are estimated through numerical simulations. Relative gap
between the upper bound and the real values grows for larger
𝑛
𝑇
due to the increasing number of overlapping secrecy disks

(see (8)).
Figure 4 shows the closeness between the upper bounds

(9) and (10) and the numerically estimated values for P{𝐶
𝑠
>

0}. The relative gap between the upper bounds and the
real values gets smaller for smaller 𝑘 (larger 𝑛

𝐸
) since the

secrecy disks as well as their overlaps become smaller in
size. Consequently, the neglected terms in (8) become less
significant.

3.2. Poisson Transmitters and IUD Eavesdroppers. Next we
consider the case where the transmitters are positioned
according to a Poisson spatial process with rate 𝜆

𝑇
. Without

loss of generality of the results, we assume that 𝐿(𝐴) = 1

and thus the average number of transmitters in the region
𝐴 is 𝜆𝐿(𝐴) = 𝜆. The eavesdroppers’ positions obey an IUD
process and the number of eavesdroppers in the region 𝐴 is
𝑛
𝐸
.
If the number of transmitters 𝐿

𝑇
is 1, then (7) holds. For

𝐿
𝑇
> 1, the upper bound given by (9) is valid. Then an upper
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Figure 3: Closeness between the real value for P{𝐶
𝑠
> 0} (circles)

and the upper bound (squares) given by (9).
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Figure 4: Closeness between the real value for P{𝐶
𝑠
> 0} (circles)

and the upper bounds given by (9) (squares) and (10) (triangles).
𝑛
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= 10 and 𝑛
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= 1, 2, . . . , 10.

bound for P{𝐶
𝑠
> 0} can be derived as an average value of

functions (7) and (9) for the random variable 𝐿
𝑇
:

P {𝐶
𝑠
> 0} = 𝐸 [P {𝐶

𝑠
> 0 | 𝐿

𝑇
}]

≤
1

1 + 𝑛
𝐸

𝜆
𝑇
𝑒
−𝜆𝑇

+

∞

∑

𝑙𝑇=2

(1 − (
𝑛
𝐸

1 + 𝑛
𝐸

)

𝑙𝑇

)
𝜆
𝑙𝑇

𝑇

𝑙
𝑇
!
𝑒
−𝜆𝑇

= 1 − 𝑒
−𝜆𝑇/(1+𝑛𝐸).

(11)

Figure 5 shows the closeness between the upper bound
(11) and the numerically calculated values for P{𝐶

𝑠
> 0}.

Similar to Figure 3, accuracy of the upper bound decreases
for larger 𝜆

𝑇
as a consequence of the increasing number of

intersecting secrecy disks. Numerical simulation of a Poisson
spatial process was done according to [18]. In order to
generate a Poisson process with rate 𝜆 in a region 𝐴, we first
randomly select a value 𝑙 for a Poisson variable with mean
𝜆𝐿(𝐴), and then we randomly position 𝑙 IUD points in 𝐴.
Observed dependence of P{𝐶

𝑠
> 0} on 𝜆

𝑇
and 𝑛
𝐸
was similar

to the one depicted in Figure 2.
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Figure 6: Dependence of P{𝐶
𝑠
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3.3. IUD Transmitters and Poisson Eavesdroppers. A fixed
number of transmitters 𝑛

𝑇
are positioned at IUD points in

a region 𝐴 ∈ 𝑅2. The positions of the eavesdroppers follow a
Poisson spatial process with average rate 𝜆

𝐸
. For the sake of

simplicity we again assume that 𝐿(𝐴) = 1. Then the number
of eavesdroppers in 𝐴 is a Poisson random variable 𝐿

𝐸
with

average value 𝜆
𝐸
. Its probability distribution function is given

by (6)where𝜆 = 𝜆
𝐸
. If there is only one transmitter randomly

positioned in 𝐴, that is, 𝑛
𝑇
= 1, then the secrecy region

fraction is given by

P {𝐶
𝑠
> 0} = 𝐸 [

1

1 + 𝐿
𝐸

] =
1

𝜆
𝐸

(1 − 𝑒
−𝜆𝐸) . (12)

For 𝑛
𝑇
> 1, we ran numerical simulations, and the results

are given in Figure 6. Note the similarity to Figure 2.
For the sake of completeness, we have also numerically

analysed the case when a homogeneous Poisson process in
a region 𝐴 ∈ 𝑅

2 is assumed for both the transmitters
and the eavesdroppers. Again we have obtained very similar
results to the previously analysed three combinations of
IUD and Poisson spatial processes for transmitters and
eavesdroppers. Following slight differences were observed.
IUD spatial process for the transmitters gives slightly higher
values for P{𝐶

𝑠
> 0} than the Poisson spatial processes. On
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Figure 7: Comparison of stochastic and deterministic positioning
of transmitters. Top two curves are for hexagonal and square lattice
(IUD eavesdroppers with 𝑛

𝐸
= 5), while middle four curves are

for Poisson and IUD spatial processes for the transmitters’ and
eavesdroppers’ positions (with 𝜆

𝐸
= 5 or 𝑛

𝐸
= 5). Bottom

three curves are for cooperative jamming and cooperative relaying
strategies for cooperation between transmitters.

the contrary, the Poisson spatial process for the eavesdroppers
gives slightly higher values forP{𝐶

𝑠
> 0} than the IUD spatial

processes.

3.4. Transmitters in Deterministic Lattice and UID Eavesdrop-
pers. Next we analysed the case when the transmitters are
positioned on a deterministic lattice, and the eavesdroppers
obey a UID process. By means of numerical simulations
we examined a square lattice and a hexagonal lattice. We
observed similar shapes to the curves shown in Figures 2 and
6 for stochastic spatial processes for the transmitters. P{𝐶

𝑠
>

0} is higher for a deterministic lattice compared to stochastic
spatial processes for the transmitters (see Figure 7) due to
the lower variations in the overlap between the secrecy disks
of individual transmitters. For a stochastic spatial process,
there are areas which can be covered by multiple overlapping
secrecy disks of nearby transmitters. At the same time in the
regions with sparse transmitters, it is more probable to find
subregions not covered by any secrecy disk.

3.5. Comparison with Cooperative Jamming and Cooperative
Relaying. In this section, we compare cooperative transmit-
ting with two other strategies for cooperation in wireless
networks. Cooperative relaying and cooperative jamming
increase the secrecy capacity by means of widening the gap
between the SNR at the legitimate receiver and the SNR at
the eavesdroppers. In the single hop cooperation with the
best relay [19, 20], only the strongest relay is selected from
the set of UID randomly positioned relays, which is the relay
node whichmost improves the secrecy capacity. In the “single
hop cooperation with the best jammer” [19, 20], a single
node from the set of friendly nodes is selected to act as a
jammer. Cooperative jamming aims to reduce the SNR at
the legitimate receiver, but at the same time it reduces the
SNR even more at the eavesdroppers. On the contrary, the
best relay increases the secrecy capacity by increasing SNR
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at the legitimate receiver more than it increases SNR at the
eavesdroppers.

We use the value for P{𝐶
𝑠
> 0} as a quantitative

measure of the positive impact of the different strategies for
cooperation. Figure 7 shows that cooperative transmitting
offers dramatic improvement in the secrecy region’s size over
cooperative jamming and cooperative relaying.

4. Conclusion

In this work, we propose to combine information-theoretic
secrecy with cryptographic secrecy to increase the secrecy
region and provide a novel solution to the key-exchange
problem. Cooperative transmitting can significantly improve
information-theoretic secrecy in wireless networks. The type
of cooperation is quite important for the resulting secrecy
region. For the same number of friendly nodes, cooperative
transmitting provides a larger coverage area than cooperative
jamming and cooperative relaying.
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