Technologies and Platforms for Cyberphysical Systems

Giovanni De Micheli

Outline

- Introduction
- Technological innovations
 - Emerging nanotechnologies and devices
- Architectural trends
 - Multiprocessing, NoCs, and 3D integration
- Cyberphysical applications
 - The nano-tera.ch program
- Conclusions

Emerging societal and economic issues

- Strengthening welfare
 - Better, affordable health care and wellness
 - Dealing with ageing and young population
- Mitigating risks
 - Preventing catastrophes and pandemics
 - Monitoring the environment
- Ensuring sustainability
 - Smart energy production and distribution
 - Intelligent water management
- Enhancing security
 - Smart zero-emission data-center design
 - Preventing cyber and physical attacks

Cyberphysical systems

The sensory interface

The More than Moore revolution

[Courtesy: ST]

[Courtesy: Carrara EPFL]

Outline

- Introduction
- Technological innovations
 - Emerging nanotechnologies and devices
- Architectural trends
 - Multiprocessing, NoCs, and 3D integration
- Cyberphysical applications
 - The nano-tera.ch program
- Conclusions

The emerging nano-technologies

- System technology is build bottom-up, starting from materials and their properties
- New devices exploit functional geometries at the molecular level
 - Quantum confinement
- There is a plethora of new materials and processing steps/flows
 - More than 50 elements in a regular CMOS process
- Enhanced silicon CMOS is likely to remain the main manufacturing process

22 nm Tri-Gate Transistors

[Courtesy: M. Bohr]

Beyond CMOS

Nano-technology provides us with new devices

Can they mix and match with standard CMOS technology?

What is the added value?

FinFETs versus SiNW FETs

Double Independent gate SiNW FET

Silicon Nanowire Transistors

- Gate all around transistors
- Double gate to control polarity

(c) Giovanni De Micheli

[Courtesy: De Marchi, EPFL] 12

Device I_d/V_{cg}

Logic level abstraction

- Three terminal transistors are switches
 - A loaded transistor is an inverter
- Controllable-polarity transistors compare two values
 - A loaded transistor is an exclusive or (EXOR)
- The intrinsic higher computational expressiveness leads to more efficient data-path design
- The larger number of terminals must be compensated by smart wiring

New Design Paradigm: Ambipolar Logic

- CMOS complementary logic efficient only for negative-unate functions (INV, NAND, NOR...etc)
- Ambipolar logic is efficient for both unate and binate functions
- Optimal for XOR and XNOR dominated circuits

Similar to regular CMOS

(c) Giovanni De Micheli

[Courtesy: H. Ben Jamaa, '08] 15

Only 4 transistors when compared to 8

transistors with a regular CMOS

Sea-of-Tiles (SoT)

Homogeneous array of Tiles

Dumbbell-stick diagrams

Layout abstraction and regularity with *Tiles*

Biconditional Binary Decision Diagrams

- Binary Decision Diagrams where Shannon's expansion is replaced by the biconditional expansion
- Biconditional expansion: $f(x,y,..,z) = (x \oplus y)f(y',y,..,z) + (x \oplus y)f(y,y,..,z)$

- Each BBDD node:
 - Has two branching variables
 - Implements the biconditional expansion
 - Reduces to Shannon's expansion for single-input functions

BBDD: Example (A⊙B)(C⊙D)

Efficient Direct Mapping of BBDD Nodes

BBDDs are Compact (Adder Function)

BBDDs are Compact (Majority Function)

Summary – technological innovations

- New materials and new device geometries
 - Silicon FIN-FETs and NanoWires
- New-properties
 - Controlled polarity transistors
- Design opportunities
 - More efficient design of data paths and computational units
 - Higher computational density

Outline

- Introduction
- Technological innovations
 - Emerging nanotechnologies and devices
- Architectural trends
 - Multiprocessing, NoCs, and 3D integration
- Cyberphysical applications
 - The nano-tera.ch program
- Conclusions

System architectural trends

Intel Single-Chip Cloud Computer

- Move towards many-core
 - Frequency scaling has leveled-off
 - Exploit application-level parallelism
- On-chip communication
 - Bottleneck for system performance
- Networks-on-Chip (NoC)
 - Adopted as scalable interconnect
 - [Benini & De Micheli 2002]

[Courtesy: Hoçward, ISSCC 2010]

Networks-on-Chip Scalable Interconnect

NoC modular architecture

- Network Interfaces (NIs)
- Switches
- Links

Scalable

- Multiple parallel transactions
- Segmented point-to-point wires
- Used in prototypes and products
 - Intel Polaris, SCC, Bone
 - TI OMAP, Tilera TILE-Gx

xpipes library

REQ

[Courtesy: Stergiou DATE 2005]

(c)

Specialization for Power Efficiency

TI OMAP 5 application platform

- Limited power budget for mobile applications
 - Trade-off programmability for power-efficiency
 - Specialized heterogeneous IP-cores

- Communication is a major power consumer
 - Traffic patterns are known
 - Application specific NoC design is needed

Application specific NoCs

- Challenges
 - Many parameters (i.e., data-size, frequency, connectivity)
 - Tools are required to find the best topology
- New technologies
 - More IP-cores
 - More constraints (i.e., 3D-IC vertical connectivity)
 (c) Giovanni De Micheli

Design automation for NoCs

- Large design space
 - What topology?
 - Which mapping?
 - Which routes to use ?
- Optimize parameters
 - Link width, buffer sizes
- Simulate, verify, test

30

STHORM ANoC

Three Dimensional Integration

[E. Beyne ITC 06]

- System in Package
 - Better form factor
 - Limited vertical connectivity
- Monolithic Integration
 - New experimental process (LETI)
 - New use of RRAMs in BEOL
- Stacking with Through Silicon Vias
 - Reduce average length of on-chip global wires
 - Increase performance
 - Processor/memory systems Wide I/O
 - Heterogeneous integration
 (c) Giovanni De Micheli

3D NoC Design

- Use NoCs to support Wide I/O
- Challenges:
 - Meet application constraints in a 3D structure
 - Bandwidth, latency
 - Which topology, switches, layers and floorplan locations?
 - Meet 3D technology constraints
 - Maximum available TSV constraints
 - Communication between adjacent layers

Extending 3D Integration to sensing

[Courtesy Guiducci: 2010]

Disposable bio-layer

Memristive SiNW-based Biosensors

CVD-MWCNTs for electrochemical biodevices

1. Microfabricated biosensor

4. Electrochemical detection of a biocompound by using Pt electrodes nanostructured with CVD-MWCNTs

2. Iron catalyst nanoparticles electrodeposition

3. CVD-MWCNTs grown onto working electrodes

Objective

MWCNTs directly grown by CVD onto Pt microelectrode-array to enhance sensing performance of electrochemical biodevices

Integrated sensing platforms

- Specific components
 - Probes and electrodes
 - Chambers and fluidic circuits
- Electronic components
 - Transconductance amplifier and data conversion
 - Transmission and powering

Summary – architectural trends

- Multi-processing component-based design paradigm
- Networks on Chip to address communication challenge
 - Adopted by virtually all manufacturing companies
 - Different flavors to address different application domains
- 3-Dimensional integration
 - Lower latency in multiprocessing system
 - Enabler of heterogeneous integration
- Hybridization of technologies
 - Support for integrated sensing and processing

Outline

- Introduction
- Technological innovations
 - Emerging nanotechnologies and devices
- Architectural trends
 - Multiprocessing, NoCs, and 3D integration
- Cyberphysical applications
 - The nano-tera.ch program
- Conclusions

Mission

Research, Design & Engineering of complex tera-scale systems using nano-scale devices and technologies

Foster research and crossbreeding of technologies

Main application domains are Health and Environment, with Energy and Security as transversal support areas

- Develop new markets
- Improve living standards
- Better the quality of health and environment
- Foster a vision of engineering with social objectives
- Promote related education programs

Nano-Tera.ch: key figures

- ~ 120 projects funded since 2009
- ~ 30 MCHF/year (approximatively 50% in cash + institutional matching)
- ~ 35 Swiss research institutions involved
- ~150 research groups
- ~700 researchers
- ~180 PhD thesis supported
- ~ 750 papers published
- ~ 1300 presentations
- ~35 awards
- ~ 25 patents filed

	TOTAL since beginning of the program		
	Journals, books	Conf. Proceedings	Total
RTD 2009	200	202	402
RTD 2010	95	161	256
RTD add-on	2	4	6
NTF	18	36	54
SSSTC	9	10	19
	324	413	737

Examples of research projects

i-IronIC

Implanted sensor

X-Sense

Monitoring alpine mass movements at multiple scales Lothar Thiele (ETHZ)

Target: Safety in an alpine environment Technology: Networked stations for rock/ice movement

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Swiss Confederation

Federal Office for the Environment FOEN

Summary – nano-tera

- Nano-Tera.ch exploits new technologies and devices:
 - Integrated electronics and sensors
- With the objective of building heterogeneous systems:
 - Monitor health in patients, disabled and elderly
 - Monitor the environment for pollution and to prevent disasters
- And with the final goal of increasing the well-being of individuals and communities
 - Key contribution of engineering to coping with complex societal and economic problems
 - Requiring large and collaborative intellectual effort

Outline

- Introduction
- Technological innovations
 - Emerging nanotechnologies and devices
- Architectural trends
 - Multiprocessing, NoCs, and 3D integration
- Cyberphysical applications
 - The nano-tera.ch program
- Conclusions

Conclusions

- Cyberphysical systems can support the solution of important societal and economic problems
- Cyberphysical systems exploit ubiquitous connectivity and new sensing modalities
- New technologies enrich CMOS with novel devices
 - Silicon nanowire and carbon-based devices
 - Controlled polarity can be efficiently used in logic design
- New architectures and design styles:
 - Regularity of the fabric is key to robustness
 - 3-Dimensional integration gives an extra degree of freedom
- Hybridization of new technologies opens new frontiers

Thank you

