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Emerging societal and economic issues 

  Strengthening welfare 
  Better, affordable health care and wellness 
  Dealing with ageing and young population 

  Mitigating risks 
  Preventing catastrophes and pandemics 
  Monitoring the environment 

  Ensuring sustainability 
  Smart energy production and distribution 
  Intelligent water management 

  Enhancing security 
  Smart zero-emission data-center design 
  Preventing cyber and physical attacks 

(c) Giovanni De Micheli  
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Cyberphysical systems 
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Mobile 
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[Courtesy: J. Rabaey] 
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The sensory interface 

  The More than Moore revolution 

(c) Giovanni De Micheli  

[Courtesy: ST] [Courtesy: Carrara EPFL] 
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The emerging nano-technologies 

  System technology is build bottom-up,  
starting from materials and their properties 

  New devices exploit functional geometries at the 
molecular level 
  Quantum confinement 

  There is a plethora of new materials and processing 
steps/flows 
  More than 50 elements in a regular CMOS process 

  Enhanced silicon CMOS is likely to remain the main 
manufacturing process 

(c) Giovanni De Micheli  
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22 nm Tri-Gate Transistors 

[Courtesy: M. Bohr] 
(c) Giovanni De Micheli  



9 

Beyond CMOS 

  Nano-technology provides us with new devices 

  Can they mix and match with standard CMOS technology ? 

  What is the added value? 
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FinFETs versus SiNW FETs 

(c) Giovanni De Micheli  
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Double Independent gate SiNW FET 
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Silicon Nanowire Transistors 

  Gate all around transistors 
  Double gate to control polarity 

(c) Giovanni De Micheli  [Courtesy: De Marchi, EPFL] 
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Device Id/Vcg 
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Logic level abstraction 

  Three terminal transistors are switches 
  A loaded transistor is an inverter 

  Controllable-polarity transistors compare two values 
  A loaded transistor is an exclusive or (EXOR) 

  The intrinsic higher computational expressiveness 
leads to more efficient data-path design 

  The larger number of terminals must be 
compensated by smart wiring 

(c) Giovanni De Micheli  
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New Design Paradigm: Ambipolar Logic 

  CMOS complementary logic efficient only for negative-unate 
functions (INV, NAND, NOR…etc) 

  Ambipolar logic is efficient for both unate and binate functions 

  Optimal for XOR and XNOR dominated circuits
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Sea-of-Tiles (SoT) 

  Homogeneous array of Tiles 
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Dumbbell-stick diagrams 
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Layout abstraction and regularity with Tiles 
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Biconditional Binary Decision Diagrams 

  Binary Decision Diagrams where Shannon’s expansion is replaced 
by the biconditional expansion 

   Biconditional expansion: 

PV=x 
SV=y 

PV=SV PV≠SV 

f(x,y,..,z) 

f(y’,y,..,z) f(y,y,..,z) 

f (x, y,.., z) = (x⊕ y) f (y ', y,.., z)+ (x⊕y) f (y, y,.., z)

  Each BBDD node: 

  Has two branching variables 

  Implements the biconditional 
expansion 

  Reduces to Shannon’s expansion 
for single-input functions 
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BBDD: Example (AB)(CD) 
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Efficient Direct Mapping of BBDD Nodes 
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BBDDs are Compact (Adder Function) 
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BBDDs are Compact (Majority Function) 
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Summary – technological innovations 

  New materials and new device geometries 
  Silicon FIN-FETs and NanoWires 

  New-properties 
  Controlled polarity transistors 

  Design opportunities 
  More efficient design of data paths and computational units 
  Higher computational density 

(c) Giovanni De Micheli 
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System architectural trends 

  Move towards many-core 
  Frequency scaling has leveled-off  
  Exploit application-level parallelism  

  On-chip communication  
  Bottleneck for system performance 

  Networks-on-Chip (NoC) 
  Adopted as scalable interconnect 
  [Benini & De Micheli 2002] Intel Single-Chip Cloud Computer 

[Courtesy: Hoçward, ISSCC 2010] 

(c) Giovanni De Micheli  
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Networks-on-Chip Scalable Interconnect 

  NoC modular architecture 
  Network Interfaces (NIs) 
  Switches 
  Links 

  Scalable 
  Multiple parallel transactions 
  Segmented point-to-point wires 

  Used in prototypes and products 
  Intel Polaris, SCC, Bone 
  TI OMAP, Tilera TILE-Gx 

xpipes library  
[Courtesy: Stergiou DATE 2005]  

(c) Giovanni De Micheli  
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Specialization for Power Efficiency 

  Limited power budget for 
mobile applications 
  Trade-off programmability 

for power-efficiency 
  Specialized heterogeneous 

IP-cores 

  Communication is a 
major power consumer 
  Traffic patterns are known 
  Application specific NoC 

design is needed 

TI OMAP 5 application platform 

(c) Giovanni De Micheli  
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Application specific NoCs 

  Challenges 
  Many parameters (i.e., data-size, frequency, connectivity) 
  Tools are required to find the best topology  

  New technologies 
  More IP-cores 
  More constraints (i.e., 3D-IC vertical connectivity) 

?

(c) Giovanni De Micheli  
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Design automation for NoCs 

  Large design space 
  What topology ? 
  Which mapping ? 
  Which routes to use ? 

  Optimize parameters 
  Link width, buffer sizes 

  Simulate, verify, test 

(c) Giovanni De Micheli  
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STHORM ANoC 
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Three Dimensional Integration 

  System in Package 
  Better form factor 
  Limited vertical connectivity 

  Monolithic Integration 
  New experimental process (LETI) 
  New use of RRAMs in BEOL 

  Stacking with Through Silicon Vias 
  Reduce average length of on-chip global wires 
  Increase performance  
-  Processor/memory systems – Wide I/O 

  Heterogeneous integration 

[E. Beyne ITC 06] 

TSV 

(c) Giovanni De Micheli  
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3D NoC Design 

  Use NoCs to support Wide I/O 
  Challenges: 

  Meet application constraints in a 3D structure 
-  Bandwidth, latency 
-  Which topology, switches, layers and floorplan locations? 

  Meet 3D technology constraints 
-  Maximum available TSV constraints 
-  Communication between adjacent layers 

(c) Giovanni De Micheli  
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Extending 3D Integration to sensing 

(c) Giovanni De Micheli  

65-32nm Digital Post-Processing 

Memory 

High speed/density CMOS 
technologies for digital 
circuits and memories 

32-22nm 

Analog Front-end 

Technologies enabling low 
noise operation for the 
analog circuits 

90-600 nm 

Biosensor Array 1000-10000 nm 

Custom micro-fabrication for 
the bio‑layer 

[ Courtesy Guiducci: 2010] 
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  No need for cleaning. Bio-layer is disposed 
after each measurement and CMOS layers are 
used repeatedly 

  Increased sensitivity and array density due to 
vertical interconnections from the bio-layer to the 
readout electronics 

  Sophisticated algorithms for highly-specific 
target identification run on-chip DSP and memory 

[ C. Guiducci 2010] 

Disposable bio-layer 

(c) Giovanni De Micheli  
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Memristive SiNW-based Biosensors 

  Crystalline, free-standing, Silicon Nanowires manifest memristive conductivity 
due to the nano-scale of  the fabricated structures 

  The voltage-gap between the forward and backward current minima in I/V 
curves increases after NW functionalization with antibodies 

In a controlled humidity range, Si NW device sense 
antigen molecules (i.e., cancer biomarkers) thanks 
to molecule up-take (immuno-recognition events) 
displayed by voltage gap changes. 

Surface modification 
with antibodies 

Increasing with 
respect to humidity in 

bio-modified NWs 

Small and constant in 
bare NWs 

S. Carrara et al. , 
Sens. Actuators B, 2012 

F. Puppo, IEEE T.  Nanobiosci., submitted 

200 nm 

29.31 nm 
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CVD-MWCNTs for electrochemical biodevices 

Objective 
 MWCNTs directly grown by CVD onto Pt 
 microelectrode-array to enhance sensing 
 performance of electrochemical biodevices 

1. Microfabricated  
biosensor 

2. Iron catalyst nanoparticles 
electrodeposition 

3. CVD-MWCNTs grown 
onto working electrodes 
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Integrated sensing platforms 

  Specific components 
  Probes and electrodes 
  Chambers and fluidic circuits 

  Electronic components 
  Transconductance amplifier and data conversion 
  Transmission and powering 

Powering 

Transmission 

Readout 

Signal processing 

Potentiostat 

Probes 
Electrodes 
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Summary – architectural trends 

  Multi-processing component-based design paradigm 
  Networks on Chip to address communication challenge 

  Adopted by virtually all manufacturing companies 
  Different flavors to address different application domains 

  3-Dimensional integration 
  Lower latency in multiprocessing system 
  Enabler of heterogeneous integration 

  Hybridization of technologies 
  Support for integrated sensing and processing 

(c) Giovanni De Micheli  
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Mission 

Research, Design & Engineering of complex tera-scale systems 
 using nano-scale devices and technologies  

Main application domains are Health and Environment, 
with Energy and Security as transversal support areas 

•   Develop new markets 
•   Improve living standards 
•   Better the quality of health and environment 
•   Foster a vision of engineering with social objectives 
•   Promote related educationl programs 

Foster research and crossbreeding of technologies  
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Nano-Tera.ch: key figures 
•  ~ 120 projects  funded since 2009 

•  ~ 30 MCHF/year ( approximatively 50% in cash + institutional matching) 

•   ~ 35 Swiss research institutions involved  

•  ~150 research groups 

•   ~700 researchers 

•   ~180 PhD thesis supported 

•  ~ 750 papers published 

•  ~ 1300 presentations 

•  ~35  awards 

•  ~ 25 patents filed 

TOTAL	
  	
  since	
  beginning	
  of	
  the	
  program	
  

Journals,	
  	
  
books	
  

Conf.	
  
Proceedings	
   Total	
  

	
  RTD	
  2009	
   200	
   202	
   402	
  
	
  RTD	
  2010	
   95	
   161	
   256	
  
	
  RTD	
  add-­‐on	
   2	
   4	
   6	
  
	
  NTF	
   18	
   36	
   54	
  
	
  SSSTC	
   9	
   10	
   19	
  

324	
   413	
   737	
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Examples of research projects 
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Implanted sensor i-IronIC 



45 

X-Sense  Monitoring alpine mass movements  
 at multiple scales Lothar Thiele (ETHZ) 

Target:  Safety in an alpine environment 
Technology: Networked stations for rock/ice movement 

(c) Giovanni De Micheli  
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Summary – nano-tera 

  Nano-Tera.ch exploits new technologies and devices: 
  Integrated electronics and sensors 

  With the objective of building heterogeneous systems: 
  Monitor health in patients, disabled and elderly 
  Monitor the environment for pollution and to prevent disasters  

  And with the final goal of increasing the well-being of 
individuals and communities 
  Key contribution of engineering to coping with complex societal 

and economic problems 
  Requiring large and collaborative intellectual effort 

(c) Giovanni De Micheli 
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Conclusions 

  Cyberphysical systems can support the solution of 
important societal and economic problems 

  Cyberphysical systems exploit ubiquitous connectivity 
and new sensing modalities 

  New technologies enrich CMOS with novel devices 
  Silicon nanowire and carbon-based devices 
  Controlled polarity can be efficiently used in logic design 

  New architectures and design styles: 
  Regularity of the fabric is key to robustness 
  3-Dimensional integration gives an extra degree of freedom 

  Hybridization of new technologies opens new frontiers 

(c) Giovanni De Micheli  
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Thank you 


