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The megatrends

A Relentless growth of computing, storage and
communication technologies

Vinexpensive terminals providing ubiquitous services
A Biomedical science becoming more quantitative

V Societal need of better care at lower costs

A Big data issues fueling research and businesses

V Models, algorithms, architectures to tame data deluge
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The sensory interface

A The More than Moore revolution
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What is health?

\’4&@ State of complex physical, mental and social well-being
Worl-d= H‘ ealth and not merely the absence of disease or infirmity

Organization

prevention

treatment




Quantitative medicine
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The bio-information revolution

www.23andme.com www.patientslikeme.com
Genetic Medical
information records
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E-health: objectives

A Bettering medicine with electronic means
A Bringing low-cost medicine to the people
A Exploiting electronic well-being as a lifestyle

A Opportunities
Vv Synergy of integrated electronic and sensing
V Platform-based design of sensors
V Mobile telephone as point of care
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Monitoring chronic patients

A Continuous real-time monitoring

A Current devices are external and limited
to a single measurement

A Wireless, batteryless implant
A Tracking multiple metabolites

A Driver technology for a wide
set of applications
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Case study: external paich

FEATURES

Remote powering through inductive link

Short-range bidirectional communication

Long-range comm. with remote devices

ADVANTAGES

Improved wearability
Direct placement over implant area
Stand alone

Battery-powered
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The sensing technology
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The electrochemical sensing principle

Oxidation peak
- | e — .
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Reduction peak Potential (V vs Ag/AgCl)

= Peak position returns the type of chemical contained into the sample (target signature)

= Peak current returns the concentration of the target

= Different isoforms of the cytochrome P450 enable detection of different targets
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The plaiform and its components

A Specific components
V Probes and electrodes
VvV Chambers and fluidic circuits

A Electronic components

VTransconductance amplifier and data conversion

VTransmission and powering | probes ]
Electrodes ]

Signal processing

Readout ‘ Potentiostat

Transmission

N

Powering
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Control and readout electronics

A A biosensing platform

A Small size, low power
A Remotely powered

A High accuracy
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Low power/energy is key

A Implants must last long time without intervention
V Battery replacement
V Battery toxicity

A Dissipated heat must be minimal

V Particularly critical for brain implants

A Slow signal — low noise solutions



Powering by inductive link
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® Bidirectional data communication

Electromagnetic Energy
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Multi-layer receiving inductors

Transmitting Inductor Receiving Inductor
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= Higher link efficiency (up to 35% higher)

= Higher voltage gain (up to one order of
magnitude higher)

| J

21



Power and data transmission
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Lesson learned

A Co-design of electronics and sensing is key
V Achieve low-power consumption
V Achieve small footprint

A Electronic technology can be extended upwards
V Monolithic integration
VSilicon interposer technologies

A Platform-based design
V Modularity of design is key to reducing NREs
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Drug efficacy

Therapeutic area
Cancer (all types)
Alzheimer’s disease
Incontinence

’ Hepatitis C

Osteoporosis

Rheumatoid arthritis

:Migraine (prophylaxis)
Migraine (acute)
Diabetes

Asthma

Cardiac arrhythmias
Schizophrenia

Depression

Rate of efficacy with standard drug treatment

25%
30%
40%
47%
48%
50%
50%
52%
57%
60%
60%
60%
62%

For depression, the data apply specifically to the drug class known
as selective serotonin reuptake inhibitors.

Source: Brian B. Spear, Margo Heath-Chiozzi, and Jeffrey Huff,

“Clinical Application of Pharmacogenetics,” Trends in Molecular

Medicine (May 2001).
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What does this mean in practice?
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Monitoring drugs in lab animals

L
INDUCTIVE LINK

Powermg c0|l

Implanted EXTERNAL UNIT
System
24cm -?! =
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Kilinc, Enver G., et al. / New Circuits and Systems Conference, 2013 IEEE 11th International. IEEE, 2013.
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3-Dimensional integrated sensor

SENSING PLATFORM

INTEGRATED CIRCUITS

COIL FOR POWER AND
DATA TRANSMISSION



Operation and measurements
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Therapeutic drug monitoring (TDM)

Patient .
Pre-analysis

Clinical Phase

Phase’ ”

o4 DO 2110

adaptation

A TDM measures the real concentration values to estimate clinical
parameters

A An a posteriori adaptation for patients’ parameters
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Pharmacokinetic models

A Intravenous bolus dose

V One-compartment model

One-compartment model

dose

e_kel't

C: concentration value
V: body volume
Kel: elimination rate

Time[h]

15

20

Single compartment model

-

G Uiy )

http://sepia.unil.ch/pharmacology/index.php?id=71



Drug Concentration [mg/L]
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Pharmacokinetic models
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A Oral dose

VTwo-compartment model

F-dose- k,
C= -

17 1. 1.

Two-compartment model

—kel-t_ e—ka-t}

C: concentration value
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Bayesian approach

N

Drug Concentration [ug/L]

Time [h]

A Blood samples are measured to adjust the parameters

N 2 N. 2
min (ZI: (Cobsl- - Ccalci) n i (PPOPj - Ppopj) )
{ka,kei,V} — variance; pet variance;

[1] N. Widmer, L.A. Decosterd, C. Csajka, S. Leyvraz, M. A. Duchosal, A. Rosselet, B. Rochat, C. B. Eap, H. Henry, J. Biollaz, T. Buclin, "Population
Pharmacokinetics of Imatinib and the Role of 1-Acid Glycoprotein’, Br J Clin Pharmacol 2006; 62:1 pp.97-112
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Machine learning approaches

A A mathematical model that can ‘learn’ from data

ﬂ Model ﬂ

Tdssiingngadata Output

Supervised learning cases

A Advantages

V Accept any data type (continuous/discrete)
V Robust in various domains

A Limitation
V Training data can bias the model
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Drug administration decision support system
(DADSS)

A Train the SVM model
based on previous
patients’ data
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Drug administration decision support system
(DADSS)

A Train the SVM model
based on previous
patients’ data

A Compute the drug-
concentration-to-time
curve for a new patient

aoeds jndug

=
<
=
—
=
=
<
o
=
=
<
<




37

Drug administration decision support system
(DADSS)

aoeds jndug

A Train the SVM model
based on previous
patients’ data

A Compute the drug-
concentration-to-time
curve for a new patient

dods aanyeay|

A Compare concentration
value according to the
therapeutic range
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Drug administration decision support system
(DADSS)

aoeds jndug

A Train the SVM model
based on previous
patients’ data

A Compute the drug-
concentration-to-time
curve for a new patient

dods aanyeay|

A Compare concentration
value according to the
therapeutic range

A Recommend dose and
administration frequency

to clinicians




39

General flow
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The verification problem

A Verify that a therapeutical protocol is
V Consistent
VvV Complete
A Verify that a drug administration control unit
Is an implementation with the protocol
V Model checking
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Formal model of Imatinib protocol

ch_p == true
dose = 400 chronic_p

]
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Advantages of formal models

A Reason about properties in a formal way
V Check for properties and invariants

A Synthesize optimal control policies for drug
administration

A Golden model to verify hardware
implementation
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Lesson learned

A Very few protocols have a formal description
V Corner cases are hazardous for patients

A Personalization of drug dosage is important
VBut used in still few cases

A Modeling human body reaction is critical
V But often hard to achieve in deterministic way
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Back to megairends

A Health care and systems
V Predictive medicine
V Participative medicine
V Personalized medicine
V Preventive medicine

A Strong need to generate relevant data (sensors)
and to process big data

A Strong societal and economic push
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Soft care - healthy individuals

A Health care of elderly and isolated persons
VTelemedicine

A Well-being of active persons
V Weight monitoring
Vv Sport activity monitoring
V Habits

A Potentially large market for selling devices,
software and services
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Opportunities and challenges

A E-health is an unstoppable life-changing trend
with unlimited possibilities
A The market is articulated:

VvV Some areas are harder than others to penetrate
V Many problems are still not well understood

V Ethics and regulations play a major role

A Exciting field for researchers and developers



Nano-Tera.ch: Mission

Research, Design & Engineering of complex tera-scale systems
using nano-scale devices and technologies

Foster research and crossbreeding of technologies

Main application domains are Health and Environment
with transversal themes such as Energy and Security

* Develop new markets

* Improve living standards

* Better the quality of health and environment

* Foster a vision of engineering with social objectives
* Promote related educationl programs

nano-tera.ch
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Nano-Tera.ch: key figures

118 projects ( 19+25 RTD large projects)

30 MCHF/year ( approximatively 50% in cash + institutional matching)

36 Swiss research institutions involved (currently)
189 research groups (currently)

~700 researchers

~180 PhD thesis supported

~ 750 papers published

~1300 presentations

37 awards
24 patents Current reporting period (2012) TOTAL since beginning of the program
Journals, Conf. Total Journals, Conf. Total
books Proceedings books Proceedings
RTD 2009 48 69 117 144 133 277
RTD 2010 44 77 121 82 147 229
RTD add-on 1 3 4 1 3 4
NTF 6 10 16 14 36 50
SSSTC 6 9 15 6 9 15
105 168 273 247 328 575
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Conclusions

A New electronic health systems and services will be
enabled by advances in biology and medicine —
combined with progress in cyber-physical systems

A The rationalization of health care will provide
advanced care to a broader audience at lower cost

A Human factors will still be central to decisions in
medicine - decision support will be automated
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Thank you




