Technologies and Platforms for Biomedical Systems

Giovanni De Micheli

Outline

- **▲** Introduction
- ▲ Electronic implants: a lab under the skin
- ▲ Drug monitoring and administration
- **▲** Conclusions

The megatrends

- ▲ Relentless growth of computing, storage and communication technologies
 - ▼Inexpensive terminals providing ubiquitous services
- ▲ Biomedical science becoming more quantitative ∇Societal need of better care at lower costs
- ▲ Big data issues fueling research and businesses

 ∨Models, algorithms, architectures to tame data deluge

Cyberphysical systems

The sensory interface

▲ The *More than Moore* revolution

[Courtesy: ST]

[Courtesy: Carrara EPFL]

What is health?

State of complex physical, mental and social well-being and not merely the absence of disease or infirmity

treatment

Quantitative medicine

Sequencing

Personalized drugs

Human implants

The bio-information revolution

www.23andme.com

www.patientslikeme.com

Genetic information

Consenting informed educated patients

E-health: objectives

- ▲ Bettering **medicine** with electronic means
- ▲ Bringing low-cost medicine to the people
- ▲ Exploiting electronic well-being as a lifestyle
- **▲** Opportunities
 - **▽**Synergy of integrated electronic and sensing
 - ▼Platform-based design of sensors
 - ▼Mobile telephone as point of care

Outline

- **▲** Introduction
- ▲ Electronic implants: a lab under the skin
 - **▽Biosensing technology**
 - **▽Platform-based design**
 - **▽Low-power and energy**
- ▲ Drug monitoring and administration
- **▲** Conclusions

Monitoring chronic patients

- ▲ Continuous real-time monitoring
- ▲ Current devices are external and limited to a single measurement
- ▲ Wireless, batteryless implant
- ▲ Tracking multiple metabolites
- ▲ Driver technology for a wide set of applications

Case study: implant

Case study: external patch

FEATURES

Remote powering through inductive link

Short-range bidirectional communication

Long-range comm. with remote devices

ADVANTAGES

Improved wearability

Direct placement over implant area

Stand alone

Battery-powered

Android user interface

The sensing technology

The electrochemical sensing principle

- Peak position returns the type of chemical contained into the sample (target signature)
- Peak current returns the concentration of the target
- Different isoforms of the cytochrome P450 enable detection of different targets

The platform and its components

- ▲ Specific components
 - **▽**Probes and electrodes
 - **▽**Chambers and fluidic circuits
- ▲ Electronic components
 - ▼Transconductance amplifier and data conversion

Readout

▼Transmission and powering

Electrodes

Potentiostat

Probes

Signal processing

Transmission

Powering

Control and readout electronics

A biosensing platform

▲ Small size, low power

▲ Remotely powered

▲ Flexible and programmable

▲ High accuracy

Layout of the fabricated IC (0.18um technology)

Low power/energy is key

- ▲ Implants must last long time without intervention
 - **▽**Battery replacement
 - **▽**Battery toxicity
- ▲ Dissipated heat must be minimal
 - ▼Particularly critical for brain implants
- ▲ Slow signal low noise solutions

Powering by inductive link

- Wireless power transfer through inductive link
- Bidirectional data communication

Multi-layer receiving inductors

- Higher link efficiency (up to 35% higher)
- Higher voltage gain (up to one order of magnitude higher)

Power and data transmission

Uplink Bitstream - 66.6 kbps

Data

Lesson learned

- ▲ Co-design of electronics and sensing is key
 - **▽**Achieve low-power consumption
 - **∇**Achieve small footprint
- ▲ Electronic technology can be extended upwards
 - **∇**Monolithic integration
 - **▽**Silicon interposer technologies
- ▲ Platform-based design
 - ▼Modularity of design is key to reducing NREs

Outline

- **▲** Introduction
- ▲ Electronic implants: a lab under the skin
- **▲** Drug monitoring and administration
 - **▽Real-time measurements in patients and lab animals**
 - **▽**Machine learning prediction methods
 - **▽**Drug administration support systems
- **▲** Conclusions

Drug efficacy

Therapeutic area	Rate of efficacy with standard drug treatment
Cancer (all types)	25%
Alzheimer's disease	30%
Incontinence	40%
Hepatitis C	47%
Osteoporosis	48%
Rheumatoid arthritis	50%
Migraine (prophylaxis)	50%
Migraine (acute)	52%
Diabetes	57%
Asthma	60%
Cardiac arrhythmias	60%
Schizophrenia	60%
Depression	62%
	For depression, the data apply specifically to the drug class known as selective serotonin reuptake inhibitors.
	Source: Brian B. Spear, Margo Heath-Chiozzi, and Jeffrey Huff, "Clinical Application of Pharmacogenetics," <i>Trends in Molecular</i>

Medicine (May 2001).

What does this mean in practice?

Monitoring drugs in lab animals

INDUCTIVE LINK

3-Dimensional integrated sensor

SENSING PLATFORM

INTEGRATED CIRCUITS

COIL FOR POWER AND DATA TRANSMISSION

Operation and measurements

Therapeutic drug monitoring (TDM)

- ▲ TDM measures the real concentration values to estimate clinical parameters
- ▲ An *a posteriori* adaptation for patients' parameters

Pharmacokinetic models

- ▲ Intravenous bolus dose
 - **▽**One-compartment model

$$C = \frac{\operatorname{dose}}{V} \cdot e^{-k_{el} \cdot t}$$

One-compartment model

C: concentration value V: body volume

Kel: elimination rate

http://sepia.unil.ch/pharmacology/index.php?id=71

Pharmacokinetic models

▲ Oral dose

$$C = \frac{F \cdot \operatorname{dose} \cdot k_a}{V \cdot (k_a - k_a)} \cdot \{e^{-k_{el} \cdot t} - e^{-k_a \cdot t}\}$$

Two-compartment model

C: concentration value
F: constant factor
V: body volume
Ka: absorption rate
Kel: elimination rate

http://sepia.unil.ch/pharmacology/index.php?id=71

Bayesian approach

▲ Blood samples are measured to adjust the parameters

$$\min_{\{k_a, k_{el}, V\}} (\sum_{i=1}^{N_1} \frac{(C_{\text{obs}_i} - C_{\text{calc}_i})^2}{\text{variance}_i} + \sum_{j=1}^{N_2} \frac{(P_{\text{pop}_j} - P_{\text{pop}_j})^2}{\text{variance}_j})$$

Machine learning approaches

A mathematical model that can 'learn' from data

Supervised learning cases

- ▲ Advantages
 - ∇ Accept any data type (continuous/discrete)
 - ∇ Robust in various domains
- **▲** Limitation
 - ▼ Training data can bias the model

Drug administration decision support system (DADSS)

▲ Train the SVM model based on previous patients' data

Drug administration decision support system (DADSS)

- ▲ Train the SVM model based on previous patients' data
- ▲ Compute the drugconcentration-to-time curve for a new patient

Drug administration decision support system (DADSS)

- ▲ Train the SVM model based on previous patients' data
- ▲ Compute the drugconcentration-to-time curve for a new patient
- ▲ Compare concentration value according to the therapeutic range

Drug administration decision support system (DADSS)

- ▲ Train the SVM model based on previous patients' data
- ▲ Compute the drugconcentration-to-time curve for a new patient
- ▲ Compare concentration value according to the therapeutic range
- Recommend dose and administration frequency to clinicians

General flow

The verification problem

- ▲ Verify that a therapeutical protocol is
 - **∇**Consistent
 - **∇**Complete
- ▲ Verify that a drug administration control unit is an *implementation* with the protocol
 - **∨**Model checking

Formal model of *Imatinib* protocol

Advantages of formal models

- ▲ Reason about properties in a formal way
 ∇heck for properties and invariants
- ▲ Synthesize optimal control policies for drug administration
- ▲ Golden model to verify hardware implementation

Lesson learned

- ▲ Very few protocols have a formal description
 ▽Corner cases are hazardous for patients
- ▲ Personalization of drug dosage is important

 ∨But used in still few cases
- ▲ Modeling human body reaction is critical ▼But often hard to achieve in deterministic way

Outline

- ▲ Introduction
- ▲ Electronic implants: a lab under the skin
- ▲ Drug monitoring and administration
- **▲** Conclusions

Back to megatrends

- ▲ Health care and systems
 - **▽**Predictive medicine
 - **▽**Participative medicine
 - **▽**Personalized medicine
 - **▽**Preventive medicine
- ▲ Strong need to generate relevant data (sensors) and to process big data
- ▲ Strong societal and economic push

Soft care – healthy individuals

- ▲ Health care of elderly and isolated persons
 ▼Telemedicine
- ▲ Well-being of active persons
 - **▽**Weight monitoring
 - **∇**Sport activity monitoring
 - **▽**Habits
- ▲ Potentially large market for selling devices, software and services

Opportunities and challenges

- ▲ E-health is an unstoppable life-changing trend with unlimited possibilities
- ▲ The market is articulated:
 - ∇Some areas are harder than others to penetrate
 - ▼Many problems are still not well understood
 - ▼Ethics and regulations play a major role
- ▲ Exciting field for researchers and developers

Nano-Tera.ch: Mission

Research, Design & Engineering of complex tera-scale systems using nano-scale devices and technologies

Foster research and crossbreeding of technologies

Main application domains are Health and Environment with transversal themes such as Energy and Security

- Develop new markets
- Improve living standards
- Better the quality of health and environment
- Foster a vision of engineering with social objectives
- Promote related educationl programs

Nano-Tera.ch: key figures

- 118 projects (19+25 RTD large projects)
- **30** MCHF/year (approximatively 50% in cash + institutional matching)
- **36** Swiss research institutions involved (currently)
- **189** research groups (currently)
- ~700 researchers
- ~180 PhD thesis supported
- ~ **750** papers published
- ~ 1300 presentations
- **37** awards
- 24 patents

	Current reporting period (2012)			TOTAL since beginning of the program		
	Journals, books	Conf. Proceedings	Total	Journals, books	Conf. Proceedings	Total
RTD 2009	48	69	117	144	133	277
RTD 2010	44	77	121	82	147	229
RTD add-on	1	3	4	1	3	4
NTF	6	10	16	14	36	50
SSSTC	6	9	15	6	9	15
	105	168	273	247	328	575

Conclusions

- ▲ New electronic health systems and services will be enabled by advances in biology and medicine combined with progress in cyber-physical systems
- ▲ The rationalization of health care will provide advanced care to a broader audience at lower cost
- ▲ Human factors will still be central to decisions in medicine decision support will be automated

Thank you

