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1 Motivation

Controlling legged robots is challenging due to the fact that
they should keep balance and perform locomotion. Bipeds are
even more prone to failure since the support region for their
Center of Mass (CoM) is limited. Although many methods
exist in literature that keep the CoM inside the support region
during locomotion, the resulting statically-stable walking is
not fast or natural like humans. Dynamically-stable walking
however produces faster and more natural motions as it lets
the CoM fall outside the support region, while the robot takes
proper steps to maintain balance dynamically and walk. Chal-
lenging aspects of this approach are proper prediction of the
future states, avoiding tilting or rolling of feet, fast motions,
using heels and toes for faster walking, keeping knees straight
in order to avoid consuming unnecessary energy, human-like
CoM height profile and finally being compliant to softly han-
dle impacts produced at each touchdown. These aspects are in
addition to considering physical constraints like torque limits,
frictions and self collisions. In this work we want to propose
a generic method that needs minimal tuning, covers a wide
range of speeds and does not rely on off-line optimizations.
We aim at reducing the problem size from joint to Carte-
sian space in order to avoid dealing with high dimensional
joint trajectories and their complicated geometrical consis-
tency. The proposed method should be computationally af-
fordable and robust against various sources of perturbations
internally or externally.

2 Our Approach

Here we break down the controller into three layers where we
simplify the algorithm step by step.

First Layer: In this layer we generate actuator torques given
the desired motion in the Cartesian (task) space. Various
methods in the literature use kinematic models of the robot
to convert Cartesian velocities [4, 3] or forces [1] to actua-
tor variables. For our torque controlled robot Coman [12],
considering the dynamics-model of the robot however will
help us calculating the required torques when targeting ag-
ile and versatile motions. Although large feedback gains will
increase the tracking accuracy, they make the robot less com-
pliant. Adding feed-forward torques will help to achieve the
same preciseness with smaller feedback gains, still being able
to reject perturbations and behaving more compliantly. In-
spired from [9] we use task-space inverse dynamics to gen-

erate the joint torques given Cartesian accelerations. How-
ever similar to [10] we use the whole body optimization ap-
proach instead of pseudo-inversion as it enables us to take
into account the torque limits, the CoP region and friction
polyhedrals as inequality constraints. In this method, one op-
timizes contact forces, joint accelerations and torques at the
same time under aforementioned constraints, together with
the equation of motion and joint/Cartesian space accelera-
tion relations as equality constraints. Our problem is ef-
ficiently formulated in a fast quadratic optimization library
called CVXGEN [7] which solves it per time-step in less than
1.2ms. Introduction of soft constraints makes our method
slightly different from [11] and [10] in the sense that we can
accept infeasible input accelerations and still produce a feasi-
ble motion.

Second layer: Our whole-body optimization in the first layer
helps us planning trajectories for the CoM and feet in the task-
space with reduced dimensions. Thus in the second layer of
our controller, we define arc trajectories for swing foot and
track them by PD controllers which produce Cartesian ac-
celerations. Various methods like [6], [2] and [8] optimize
these trajectories off-line which makes their method harder
to generalize for other environment conditions. However we
use soft transitions and SLERP (spherical linear interpolation)
functions to smoothen these trajectories. The input to this
layer is the next footstep location that is determined by the
third layer of the controller.

Third layer: One needs to simplify the robot’s model to pre-
dict the future motion with less computational cost during dy-
namic walking. A common approach is to use simple inverted
pendulums or with springs, ankles or inertia mass. Spring
Loaded Inverted Pendulum (SLIP) model is usually used to
predict running. Although Mordatch [8] for example has de-
rived a closed form solution for evolution of the CoM state
with polynomial approximations, such nonlinear prediction is
computationally expensive. For the purpose of walking how-
ever, Linear Inverted Pendulum Models (LIPM) appear more
frequently in the literature and they enable simpler or even lin-
ear predictions of motion if no inertia is assumed for the mass.
Some methods have control over the CoP trajectory during the
swing phase to follow the LIPM model [6, 4]. However they
rely on ankle torques to modulate the motion which is less
robust in case of arbitrary foot shapes, unstructured terrains
or contacts made of soft materials. Similar concept is used in
[5] for 1-step prediction. The swing foot touches down in a



location where the energy of the robot is captured after being
pushed and thus going to rest condition.

In [3], the top level planner uses LIPM and controls both
the CoP trajectory and multiple footstep locations which is
more elaborated and robust, but still being linear and in closed
form. This method solves a Model Predictive Control (MPC)
problem which optimizes a sequence of footsteps and CoP
trajectories that induce a desired given reference speed. How-
ever relying on ankle torques has previously-mentioned draw-
backs, in addition to the fact that the low level control method
in [3] is kinematics-based and less compliant.

Inspired by this work, we have formulated a similar MPC
problem which merely optimizes footstep locations assuming
no ankle for the LIPM unlike [3]. Given reference forward
and steering speeds via a joystick, the third layer forms a ref-
erence footstep plan. It then optimizes future states of the
robot and footsteps that act as discrete inputs to this system,
regarding the reference footstep plan and the LIPM model.
The first footstep location is then used to calculate swing arc
trajectories in the second layer. With such novel linear and
closed form simple formulation which is again implemented
in CVXGEN, we are able to adjust future footsteps in every
time-step. Together with the low-level compliant controller,
our method is responsive to pushes or other large perturba-
tions by taking proper footsteps. It only uses ankle torques
for smaller perturbations which is done compliantly in the
low-level controller, not in the planning level.

3 Results and Discussions

The proposed controller is able to produce a wide range of for-
ward speeds from —0.2m/s to 0.4m/s on our simulated kid-
sized robot Coman which has only around 1m height. This
performance is comparable with methods like [2] which pro-
duce 1.14m/s on Atlas robot which has a height of around
190cm. However we do not have heel touchdown and toe lift-
off phases unlike [2] which restrict our motion geometrically
regarding ankle joint limits. Our robot is also able to rotate
about the yaw axis with maximum speed of +1rad /s which
is notably more than similar methods like [3]. However walk-
ing forward and steering at the same time can not be done at
these maximum speeds due to large swing motions of feet.
Our method can dynamically recover from strong pushes of
10N lasting 0.3s on the kid-sized robot Coman. It can also
perform blind walking robustly over slopes of —10° to 15
and an uneven terrain with =5¢m height variations. We have
also verified its robustness against internal perturbations such
as sensor noises up to 3° of standard deviation, communica-
tion loops with 10ms delays and various types of model er-
rors like shifting the CoM 1cm or making different parts of
the body 1kg heavier.

In summary, we have transferred the joint control problem to
task space in the first layer with our whole-body inverse dy-
namics formulation. We have also proposed an on-line simple
trajectory planning method to replace the use of off-line op-
timizations. Finally in the third layer which is the novelty
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Figure 1: Top: The Coman robot and our hierarchical control archi-
tecture. Bottom: The walking sequence at 0.2m/s where
the robot is pushed twice by a 10N force lasting 0.3s. It
recovers by taking proper correcting footsteps.

of this work, we have formulated a discrete-time MPC prob-
lem that optimizes future footsteps of the robot in closed form
and linearly. Our controller is compliant and precise while
considering various physical constraints in its first layer. It
covers a wide range of speeds and performs robustly when
subject to various internal or external perturbations. The
method is generic and we have applied it on another hu-
manoid robot (Atlas) in simulations, achieving similar per-
formance [13]. All movies of this work could be found on
http://biorob.epfl.ch/page-99800-en.html.
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