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Abstract—To be considered for an IEEE Jack Keil Wolf
ISIT Student Paper Award. We characterize the secret message
capacity of the triangle network, that consists of a source, a relay
and a destination connected through orthogonal erasure channels.
A passive eavesdropper, Eve, wiretaps any one of the three
channels. The source and the relay can each generate unlimited
private randomness; the relay and the destination can publicly
provide strictly causal channel state information. Our achievable
scheme is expressed through a linear program (LP) with 11
inequalities that captures a minimal set of secret key generation
methods and the use of them for message encryption. Our
outer bound is expressed also through a linear program, in this
case with 41 constraints, constructed from general information
inequalities. We prove that the optimal value of the outer bound
LP is no larger than that of the scheme LP, which implies that the
solution of the achievable scheme LP is the capacity. We find that
equipping the relay with private randomness increases the secrecy
rate by more than 40% in some cases and that cut-set bounds,
directly applied in the network, are not always tight. Because
the derivation of the inner and outer bound are both lengthy,
we describe in this paper the achievability scheme, outline the
outer bound, and provide the full derivations online [1]. We also
make available Matlab functions that take as input the erasure
probabilities and evaluate the inner and outer bounds.

I. INTRODUCTION

Consider a three node network (triangle), that consists
of a source, a relay and a destination connected through
orthogonal erasure channels, as depicted in Fig. 1a. A passive
eavesdropper, Eve, wiretaps any one of the three channels.
The source and the relay can independently generate unlimited
private randomness; the relay and the destination can publicly
provide strictly causal channel state information. The main
contribution of this paper is a complete characterization of the
secret message capacity for the triangle network. We find this
new result interesting for two main reasons.

First, our scheme synthesizes the potential of erasures, pri-
vate randomness, feedback and network structure for secrecy.
Although separately each of these elements have been ex-
ploited for secrecy (e.g., see [2]–[4]), combining them enables
new schemes and can offer significant benefits. Moreover, all
practical networks are lossy; given the level of sophistication
of network nodes, generating private randomness is not a
challenge; feedback is already part of almost all operating
network protocols today; thus we believe that this is a setup not
only interesting theoretically but also relevant from a practical
perspective. Our result enables to exactly calculate what are
the benefits for secrecy over the triangle network when we
take advantage of the network losses, when we enable the
relay node to generate private randomness and when we take
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Figure 1: Our networks. Causal channel state feedback are sent
over a separate noiseless public channel (not shown).

advantage of feedback (see numerical examples in Section II,
Fig. 2).

Second, the result builds on a linear programming approach
for secure capacity of erasure channels with state feedback
that we have gradually developed during the last few years,
which we think is interesting in itself. We started from the
point-to-point single channel network (Fig. 1b (top)), went to a
network with two parallel channels (Fig. 1b (bottom)), then to
a network with two sources with limited common randomness
(V-network, Fig. 1c), building to the triangle network in this
work. In each of these steps the achievability scheme could be
expressed as an LP that required new techniques – introduced
new constraints to the LP – yet also re-used the techniques
(constraints) of the previous steps. Moreover, the achievability
LPs include as a special case the classical information flow
LP without secrecy over the same configurations; essentially
augment them with (non-trivial) secrecy-related constraints. To
prove that the solution of the achievable LP schemes achieve
the capacity, we develop the outer bound also as a linear
programs, and prove that the two LPs have the same optimal
value. We provide the detailed derivations and proofs in [1].

The paper is organized as follows. Section II summarizes
the main result, in Section III we describe our scheme,
while Section IV briefly outlines the outer bound. Section V
summarizes related work.

II. MAIN RESULT

a) Model and definitions: We consider the network in
Fig. 1a where a source S has a message W to send to a
destination D, such that it remains secret from an eavesdropper
Eve. The eavesdropper arbitrarily selects one of the three
channels to wiretap.

All three channels are erasure channels with erasure proba-
bilities δk and δkE , denoting the erasure probabilities toward
the network node (U or D) and toward Eve (in case she
is present on the given channel). All three channels are
independent (e.g. operate in different frequency bands) and



D can receive simultaneously over both S −D and U −D.
The channel inputs are length L vectors of Fq symbols,

which we call packets. To simplify notation, throughout the
paper we express entropy and rate in terms of packets. We
denote by Xk,i the inputs of channel k in the ith transmission,
while Yk,i, Zk,i are the corresponding output at the network
node and Eve respectively.

After each transmission, U and D causally send a public ac-
knowledgment revealing the state of each channel, i.e. whether
or not an erasure occurred (⊥ is the symbol of erasure). This
feedback, after the ith transmission, is Fi and it is assumed to
be publicly available to all network nodes as well as to Eve.
Formally, we have that:

Pr {Y1,i, Y2,i, Y3,i, Z1,i, Z2,i, Z3,i|X1,i, X2,i, X3,i}

=

3∏
k=1

Pr {Yk,i|Xk,i}Pr {Zk,i|Xk,i}

Pr {Yk,i|Xk,i} =

{
1− δk, Yk,i = Xk,i

δk, Yk,i =⊥,
, k ∈ {1, 2, 3}

Pr {Zk,i|Xk,i} =

{
1− δkE , Zk,i = Xk,i

δkE , Zk,i =⊥,
, k ∈ {1, 2, 3}

We assume that S and U can generate private randomness
ΘS , ΘU of unlimited rate, independently of each other and
from any other randomness in the system.

Message W consists of N packets. A secure communication
scheme has parameters (N, ε, n) and satisfies the following
reliability and security conditions:

Definition 1. An (N, ε, n)–scheme has three sets of encoding
functions fk,i, k ∈ {1, 2, 3} as well as a decoding map φ. The
channel inputs are computed as

Xk,i = fk,i(W,ΘS , F
i−1), k ∈ {1, 2}

X3,i = f3,i(Y
i−1
2 , F i−1,ΘU ).

D can decode the message with high probability:
Pr {φ(Y n1 , Y

n
2 ) 6= W} < ε. Furthermore, W remains

secret from each eavesdropper:

I(W ;Znk ) < ε, k ∈ {1, 2, 3}.

Definition 2. A rate R ∈ R is securely achievable if for any
ε > 0 there exists a (N, ε, n)–scheme for which R− ε < 1

nN.

In this paper, we characterize the secret message capacity of
the triangle network, i.e. the largest securely achievable rate.

Theorem 1. The secret message capacity of the triangle
network is the solution of the following linear program. All
parameters are nonnegative: mi, ki, c, ci, ri, R ≥ 0.

maxR

s.t.: R ≤ (1− δ1)m1 + (1− δ3)m3 (1)
k1 +m1 + c1 ≤ 1 (2)

k2 +m2 ≤ 1 (3)

k3 +m3 + c3 +
r3

1− δ3
≤ 1 (4)
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Figure 2: Comparison of secret message rates with/without
exploiting erasures and with/without feedback. In all cases
δiE = δi + 0.2.

m1(1− δ1)
1− δ1E
1− δ1δ1E

≤ (k1 + c1)δ1E(1− δ1) + r3 + c3(1− δ3)

(5)

m2(1− δ2)
1− δ2E
1− δ2δ2E

≤ k2δ2E(1− δ2) + k1(1− δ1) (6)

m3(1− δ3)
1− δ3E
1− δ3δ3E

≤ (k1 + c1)(1− δ1) + r3δ3E
1− δ3

1− δ3δ3E
+ (k3 + c3)δ3E(1− δ3) (7)

k2(1− δ2) ≥ c+ r3 (8)
c ≥ c1(1− δ1δ1E) + c3(1− δ3) (9)
c ≥ c3(1− δ3δ3E) + c1(1− δ1) (10)

(1− δ3)m3 ≤ (1− δ2)m2 + c1(1− δ1) (11)

The role of constraints (1)-(11) are explained in the next
section. The matching outer bound is provided in [1].

Solving the LP in Theorem 1 allows to evaluate 1) the
benefit of exploiting erasures 2) the benefit of exploiting
feedback 3) how much private randomness at the relay U can
help. Fig. 2 compares four schemes: secret message capacity
refers to our scheme in Theorem 1; we show our scheme’s
performance when we do not use private randomness at U ;
we plot secret message capacity without feedback to show the
benefits of exploiting erasures for secrecy yet without using
feedback [5], [6]; and finally FEC+SNC refers to applying a
link-by-link error correction coding (FEC) and then using the
secure network coding scheme [2], [7]. In this example the
benefit of private randomness is marginal, however in some
other cases the difference can be more than 40% (see [1]).

III. ACHIEVABLE SCHEME AND THE ASSOCIATED LP

We here describe our LP formulation for maximizing the
secret message rate: based on our previous work we start
from the single channel network, and gradually build up to the
triangle network. In all the cases we can prove that the solution
of the achievability LP equals the secret message capacity by
providing matching upper bounds.

Our description below explains ideas and thus the phras-
ing is not completely formal. To help readability we often
use “number of packets” instead of time fractions or rates.
E.g. we say “S sends k random packets”, which in the
actual scheme means sending k′ packets for some k′ such



that limn→∞
1
nk
′ = k, where n is the overall number of

transmissions. Rigorous descriptions and proofs are available
in the references.

A. Point-to-point single channel [4]
Consider the erasure channel depicted in Fig. 1b (top),

where δ is the erasure probability to D and δE the erasure
probability to Eve. Our aim is to maximize R, the secret
message rate at which S can send a message securely to D.
We use the following two ideas:

(I1) Time-sharing between two phases: in a first phase –
for a time fraction k – we create a secret key between S and
D; in the second phase – for a time fraction m – we use the
created key to encrypt and send the message.

(I2) The amount of key we need to secure the message
equals the amount of the message transmissions that Eve will
actually observe (which is less than the message size).

Amount of key we can create: We use the scheme intro-
duced in [4], [8]. S sends k i.i.d. random packets generated
from its private randomness; D publicly acknowledges the
packets it has received. S creates linear combinations of the
packets that D has received. The number of linear combina-
tions is equal to the number of packets that D received and Eve
did not receive. These linear combinations are created using
MDS codes to ensure that they are independent of each other,
and that Eve has no information about them. This scheme,
used for a time fraction k, enables to create a key of rate
kδE(1− δ).

Amount of key we need for encryption: To securely
send the message in the second phase, we first “expand” the
secret key by using coding, to create a larger number (to be
determined) of new (no longer independent) keys. We then use
ARQ: S repeatedly sends each message until D acknowledges
reception. Each time S sends (or repeats) a message, we
encrypt it by XOR-ing it with a different packet from the
expanded key. To ensure secrecy, we need to ensure that all the
keys in the transmissions that Eve receives, are independent.
Eve receives m(1− δ) 1−δE

1−δδE packets; thus this is the amount
of independent keys we need to create in the first phase.

LP formulation: We have three variables: R, the secret
message rate that we maximize, k, the fraction of time that
we use to create a secret key from private randomness, and m
the fraction of time we use to send the message. Constraint
(12) is a capacity constraint: using the erasure channel at a
fraction m of the time enables a message rate at most m(1−
δ). Constraint (13) expresses that we timeshare between key
generation and message sending. Constraint (14) ensures that
we have created sufficient key to securely encrypt the message.
Our LP formulation of further schemes follow the structure
introduced here. The parameters are nonnegative: m, k,R ≥ 0.

maxR

s.t.: R ≤ (1− δ)m (12)
m+ k ≤ 1 (13)

m(1− δ) 1− δE
1− δδE

≤ kδE(1− δ) (14)

B. Two parallel channels [9]
Consider the setting displayed in Fig. 1b (bottom) where

there are two parallel independent erasure channels, with
erasure parameters δ1, δ1E (channel 1) and δ2, δ2E (channel 2).
We assume that there is one eavesdropper who might select
any one of the channels to eavesdrop on.

Clearly, on both channels we can apply the scheme we have
previously described for a single channel and thus achieve the
sum rate; but we can do even better using the following idea:

(I3) Create two keys, one for each channel. During the
key generation phase, all the random packets that S sends
through channel 1 and D successfully receives, can be used
as a secret key on channel 2 (and symmetrically).
Indeed, if Eve is on channel 1, any packet received through
channel 2 becomes a shared randomness between S and D
such that it is secret from Eve, and thus contributes to the key
used on channel 1.

Scheme: The optimal scheme is a two-phase scheme
as before, where we now divide the message between the
two channels. The only difference is that we more efficiently
generate keys using the idea I3.

LP formulation: The LP formulation of the scheme with
detailed explanation can be found in [9].

C. V-network with limited common randomness [9]
Consider the V-network in Fig. 1c: two sources S1 and S2

are connected to a common destination D through independent
erasure channels. S1 and S2 can generate unlimited amounts
of private randomness, but have access to only a rate limited
common random source Ψ. The common randomness between
the two sources is a valuable resource as it affects the key
generation rate achievable by approach (I3) (packets received
by D through one of the channels and used as a key on
the other). To avoid wasting the common randomness we
introduce two techniques:

(I4) We send part of the common random packets using
ARQ (ensuring that each packet the source sends is received).

(I5) We send another part of the common packets using
approach (I3), with a twist: sources S1 and S2 transmit
linear combinations of common random packets, so that, the
set of received packets (either by the destination, or the
eavesdropper, or both) are independent. Using coding this is
possible without knowing Eve’s channel state.

Scheme: Our scheme combines key generation methods
that exploit the common randomness (through (I4) and (I5))
and the key generation that uses private randomness (as seen
in the case of a point-to-point channel).

LP formulation: In the LP formulation of the scheme,
additional inequalities that describe the use of common ran-
domness appear. If S1 sends r1 packets with ARQ (I4) and c1
linear combinations from the common randomness (I5), while
S2 sends r2 and c2 respectively, these constraints are

H(Ψ) ≥ c+ r1 + r2 (15)
c ≥ (1− δ1δ1E)c1 + (1− δ2)c2 (16)
c ≥ (1− δ2δ2E)c2 + (1− δ1)c1. (17)



For the complete LP and detailed explanation we refer to [9].

D. Triangle network

Consider now the triangle network in Fig. 1a. In this case
as well, the optimal scheme first generates sufficient amounts
of key and then employs it for message encryption. Note that
the relay U and the source S will share limited rate common
randomness, from random packets that S sends to U through
the S − U channel, which is very similar to the V-network
setup. Yet there is also a significant difference with the V-
network: the relay U does not have the message; it can only
receive it by consuming channel S−U resources. To overcome
this, we need to use two more ideas, that essentially reduce
the amount of message we need to send to U .

(I6) The encrypted message packets that travel on the
S−U−D path can potentially be encrypted with three types of
key: key that only S−U share (say KSU ); key that only U−D
share (say KUD), and key that S and D share (say KSD). The
source can send to U messages encrypted with KSU and KSD;
U will need to remove KSU from these encrypted messages
(since D does not have it), yet it does not need to remove
KSD. That is, U does not need to completely decrypt the
message, but can instead recombine packets and secure part
of the message sending phase with the KSD key. Conceptually,
U can use KSD as if it had access to it.

(I7) Assume that S creates a packet P from the common
randomness as we did in (I5). Instead of sending P as
previously, S now combines P with a message packet W and
sends P ′ = P +W to D. Note that D cannot yet decode W .
Packet P is available for U and is transmitted on the U −D
channel using ARQ. This transmission is utilized in two ways.
First, note that W = P ′ − P , thus they allow D to decode a
message packet. Thus, as far as D is concerned, transmission
of P from U can be considered as part of the message sending
phase, but there is no need to further encrypt them, because P
is independent from the message. Second, as far as Eve on the
U −D channel is concerned, these are random key generation
packets forwarded using ARQ, so they also contribute to the
key on the U −D channel (similarly to I4).

Our scheme described below builds on and brings together
all techniques (I1)-(I7). On each channel we have two phases.

Key generation

S −U channel: S sends k2 i.i.d. uniform random packets.
The packets that U receives form a k2(1 − δ2) rate common
randomness between S and U .
S −D channel: S sends k1 i.i.d. uniform random packets

from private randomness. It then utilizes the k2(1−δ2) packets
it has in common with U with a scheme akin to the V-
network, but with the (I7) modification: it divides the packets
to two disjoint sets of c and r3 packets. From the c packets,
it creates two streams of rates c1 and c3; c1 to be sent by S,
c3 by U . These packets are not independent, they are created
by expanding the c packets through multiplication with the
generator matrix of an MDS code of dimension c× (c1 + c2),
but they have the property that all received packets will form

an independent set (I5). S sends the c1 packets using idea (I7),
i.e., XOR-ed with message packets. All c1 such transmissions
use a different packet created from the common randomness,
while the same message packet is repeatedly used to form
the XOR-ed packets until D acknowledges its reception. Thus
all (encrypted) message packets are received, and all received
transmissions are independent.
U −D channel: U sends k3 i.i.d. uniform random packets

from its private randomness. Then, U sends the c3 packets
(each once), and finally sends the r3 packets using ARQ.

Amount of key that can be used in each channel

S−U channel: The k2 packets enable a key rate k2δ2E(1−
δ2) (I1)-(I2). Moreover, the k1 packets sent through the S−D
channel also contribute to the encryption (from I6), resulting
in an overall key rate of k2δ2E(1− δ2) + k1(1− δ1).
S − D channel: From the S − D channel’s perspective

there is no difference between the k1 packets from the private
randomness and the c1 packets that are XOR-ed with message
packets. Indeed, all these packets are i.i.d. random packets and
they are independent of the message packets that are to be sent
in the message sending phase of this channel. Additionally,
there are r3 + c3(1 − δ3) packets that D receives from U
and S can also generate (I3, I4, I5), which adds to a rate of
(k1 + c1)δ1E(1− δ1) + r3 + c3(1− δ3).
U − D channel: Using the k3 private random packets,

the c3 common randomness packets (I5), as well as the r3
packets sent using ARQ (I4) results in a secret key rate
(k3 + c3)δ3E(1 − δ3) + r3

δ3E(1−δ3)
1−δ3δ3E . Moreover, U will send

c1(1−δ1) packets from the S−U common randomness using
ARQ; for an eavesdropper on the U − D channel these are
random packets independent from the message, thus U can
additionally use c1(1 − δ1) δ3E(1−δ3)

1−δ3δ3E key packets (the rate
follows from the key rate achieved by I4).

Encryption and message sending phase

The message packets are split into: c1(1 − δ) packets
delivered with c1; m1(1 − δ) packets W1 to be sent through
the S − D channel; and m2(1 − δ2) packets W2 to be sent
through the S − U −D path.
S − U channel: Let K(1)

2 and K
(2)
2 denote the matrices

formed of the k1(1− δ1) and the k2δ2E(1− δ2) key packets,
respectively. The encrypted packets W ′2 are

W ′2 = W2 ⊕
[
K

(1)
2 K

(2)
2

] [G(1)
2

G
(2)
2

]
︸ ︷︷ ︸
G2

(18)

where G2 is a (k1(1 − δ1) + k2δ2E(1 − δ2)) × m2(1 − δ2)
generator of an MDS code. Packets W ′2 are sent using ARQ.
S − D channel: Similarly, let K1 denote the key created

for the S −D channel.

W ′1 = W1 ⊕K1G1, (19)

where G1 is a (k1δ1E(1−δ1)+ c3(1−δ3)+r3)×m1(1−δ1)
MDS code generator. Packets W ′1 are sent using ARQ.



U −D channel: The message sending phase on the U −D
channel takes three steps. U first sends the c1(1− δ1) packets
from the S−U common randomness using ARQ; these enable
D to decode the c1(1 − δ1) message packets (I7). U then
calculates

W ′′2 = W ′2 ⊕K
(2)
2 G

(2)
2 = W2 ⊕K(1)

1 G
(1)
2 , (20)

to remove the K(2)
2 G

(2)
2 that D does not know. U computes[

W ′3a W ′3b
]

= W ′′2 G3 = W ′′2
[
G3a G3b

]
, (21)

where G3 is an m2(1 − δ2) × m2(1 − δ2) invertible ma-
trix such that G3a is of size m2(1 − δ2) × min{k1(1 −
δ1) 1−δ3δ3E

1−δ3E ,m2(1− δ2)} and G(1)
2 G3a is the generator of an

MDS code. W ′3a are sent using ARQ (implementation of I6).
Finally, let K3 denote the key that U creates. It uses K3 to

encrypt the remaining part of the message W ′3b:

W ′′3b = W ′3b ⊕K3G
′
3, (22)

where G′3 is a |K3| × (m2(1 − δ2) − k1(1 − δ1) 1−δ3δ3E
1−δ3E )+

generator of an MDS code. W ′′3b are sent using ARQ.

LP-formulation

Consider the LP formulation in Theorem 1. Variables
m1,m2,m3 correspond to the message phase on each channel,
while the other variables correspond to various key generation
methods. Inequality (1) is a rate constraint arising from the
length of message sending phases on the S −D and U −D
channels. The next three constraints (2)-(4) formulate the time-
sharing constraints on each channel.

Inequalities (5)-(7) ensure that each channel has sufficient
amount of key at its disposal to secure against the eaves-
dropper on the given channel in the message sending phase.
Inequalities (5)-(6) come directly after accounting for the
corresponding key rates. Since U uses keys only in the last step
of the message sending phase, (7) is not that straightforward,
but a short calculation shows that (7) guarantees security on
the U −D channel. For space considerations we delegate the
calculation to [1].

Constraints (8)-(10) correspond to the amount and the use
of common randomness that S and U share, along the lines of
(15)-(17), but with the difference that now the key generation
packets that U receives constitute the common randomness.
Inequality (11) limits the length of the message sending phase
on the U − D channel, the constraint follows from the fact
that U does not have access to W .

IV. OUTER BOUND: BRIEF OUTLINE

The capacity of any cut of the network is an obvious outer
bound. The triangle network has two cuts, the S−UD and the
SU−D cut. We show that the capacity of the triangle network
does not reduce to the minimum of the cut values. In other
words, the min-cut value of the network is not achievable in
general.

We use the proof technique developed in [9] to derive
the matching outer bound. We derive a number of general

inequalities and then treat the different entropy and mutual in-
formation terms as arbitrary nonnegative variables. This turns
the information inequalities into linear constraints resulting in
another linear program, which we call the outer bound LP. We
then show through a number of reduction steps that the value
of the outer bound LP is the same as the value of the LP in
Theorem 1. The outer bound program has 41 constraints which
makes it impossible to present while respecting the page limit.
We make available online [1] the complete converse proof
where we present the derivation of the inequalities as well as
the step-by-step reduction to the LP in Theorem 1.

V. RELATED WORK

Wyner pioneered investigating the problem of secret com-
munication over a wiretapped noisy channel [5]. These results
were generalized for various channels (e.g. [10]–[13]) and also
for networks [6] and more specifically for broadcast erasure
networks in [3]. Secure network coding [2] operates over an
error-free network showing how to exploit network structure
for secrecy. Public feedback significantly improves secrecy
capacity as observed by [14], [15], which results were applied
for the erasure broadcast channel in [8].
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