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Abstract

The lack of a common benchmark for the evaluation of the gaze
estimation task from RGB and RGB-D data is a serious limitation
for distinguishing the advantages and disadvantages of the many
proposed algorithms found in the literature. This paper intends to
overcome this limitation by introducing a novel database along with
a common framework for the training and evaluation of gaze esti-
mation approaches. In particular, we have designed this database to
enable the evaluation of the robustness of algorithms with respect to
the main challenges associated to this task: i) Head pose variations;
ii) Person variation; iii) Changes in ambient and sensing conditions
and iv) Types of target: screen or 3D object.

CR Categories: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Tracking; H.1.2 [Models and Principles]:
User/Machine Systems—Human Information Processing

Keywords: gaze estimation; RGB; RGB-D; remote sensing;
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1 Introduction
In recent years there has been a growing interest in accurate and re-
liable gaze estimation systems, due to their potential importance in
the development of diverse applications related to human computer
interfaces, entertainment, marketing, assistance of people with dis-
abilities, etc. Moreover, gaze is also of high interest in the sociol-
ogy and psychology research where it is considered to be one of the
most important cues in non-verbal behavior analysis.

Significant efforts have been devoted to the design of automatic
gaze tracking solutions, leading to methods which differ according
to their sensing technique and principles: from -highly intrusive-
electro-oculography to more flexible video-oculography [Hansen
and Ji 2010] (i.e. gaze tracking relying on video input). Solutions
are available in the market, but most of them rely on costly and spe-
cialized hardware such as calibrated setups of infra-red (IR) light
sources and IR cameras [Guestrin and Eizenman 2006], limiting the
applications and conditions under which they properly function.

Natural light based methods are the best candidates in terms of
availability, cost and potential applications. Two main approach
categories can be identified in the literature: model-based, that
leverage parametric and geometric description of the gaze obser-
vations but often require high-resolution images to extract the gaze
features through for instance, the iris and pupil fitting techniques
[Ishikawa et al. 2004; Winfield and Parkhurst 2005]; and appear-
ance based methods avoiding this fitting by inferring a mapping
from the high-dimensional image data to the low-dimensional space

of gaze parameters that can be learned from data [Baluja and
Pomerleau 1994; Noris et al. 2010; Lu et al. 2011], making them
adequate to handle low-resolution images. Nevertheless, gaze es-
timation from remote standard (RGB) cameras remains a very dif-
ficult task. The challenges are numerous: person variability, head
pose variations, eyelid movements, illumination conditions, specu-
lar reflections, image resolution and contrast.

Even though the evaluations made by researchers have clearly ad-
vanced the development of gaze tracking technologies, one seldom
finds evaluations done on the same data and conditions. This makes
it difficult to clearly compare algorithms and identify their advan-
tages and disadvantages. The main reason is the lack of a standard
benchmark dataset.

We intend to fill this gap by releasing a database for gaze estima-
tion from remote RGB, and RGB-D (standard vision and depth),
cameras. We have designed the recording methodology in order to
systematically include, and isolate, most of the variables which af-
fect the remote gaze estimation algorithms: i) Head pose variations;
ii) Person variation; iii) Changes in ambient and sensing conditions
and iv) Types of target: screen or 3D object. We have also de-
fined a set of benchmarks which are intended to evaluate each one
of these aspects in an independent manner, and pre-processed the
data to extract and provide complementary observations (e.g. head
pose) helping researchers to focus on only a subset of the problem
if wanted. To our knowledge, this is the first dataset to be made
publicly available for this task. We believe this is an important con-
tribution to the community, and we therefore encourage researchers
to develop gaze estimation algorithms and to report results using
this data. Please visit our website to obtain this dataset1.

We summarize below the main aspects of the dataset. Section 2 de-
scribes the recording methodology and sessions of the dataset. Sec-
tion 3 summarizes the pre-processed information provided along
with the data. Section 4 provides a description on how to use this
dataset, including the definition of different benchmark protocols.
Section 5 illustrate the usage of this dataset by evaluating the per-
formance of a gaze estimation method under one of the defined pro-
tocols. Finally Section 6 raises some conclusions and perspectives.
Further details (protocols, methodology and results) are provided in
the technical report [Funes Mora et al. 2014].

2 Data
Set-up. The recording setup is as shown in Fig. 1, and comprises
the elements described below along with their purpose or function:
• Kinect: this consumer device provides standard (RGB) and

Depth video streams at VGA resolution (640× 480) and 30fps.
• HD camera: the Kinect was designed with a large field of view

imposing less restriction on user mobility but this is problematic
for eye tracking based on VGA resolution. Therefore, we also
recorded the scene with a full HD camera (1920x1080) at 25fps.

• LEDs: 5 LEDs visible to both cameras were used to synchronize
the RGB-D and HD streams.

• Flat screen: we used a 24” screen to display a visual target.

1EYEDIAP database: www.idiap.ch/dataset/eyediap

www.idiap.ch/dataset/eyediap


Figure 1: Recording setup

• Small ball: we used a 4cm diameter ball as a visual target with a
double purpose: to serve as a visual target in a 3D environment
and be discriminative in both RGB and depth data such that its
3D position could be precisely tracked (see Section 3)

As shown in Fig. 1, the cameras are right below the computer
screen, such that the eyes of the participant are observed from be-
low and minimize eyelid occlusions. Participants were asked to sit
in front of the setup at a distance depending on the type of visual
target (see next paragraphs), and to gaze the specified visual target.
Speaking activity and facial expressions were not restricted.

Recording sessions. In order to evaluate different aspects of
gaze estimation algorithms, we designed a set of recording sessions,
each one characterized by a combination of the four main variables
that can affect gaze estimation accuracy: visual target, head pose,
participant and recording conditions. These are described below:
Visual Target. It is the object which the participant was requested to
gaze at. To be representative of different applications, we included
the following cases: Discrete screen target (DS), where a small cir-
cle was uniformly drawn every 1.1 seconds on random locations in
the computer screen; Continuous screen target (CS), in which the
circle was programmed to move along a random trajectory for 2s,
to obtain examples with smoother gaze movement; 3D floating tar-
get (FT): a ball with a 4cm diameter hanging from a thin thread
attached to a stick that was moved within a 3D region between the
camera and the participant. In contrast to the screen target, the par-
ticipant was at a larger distance (1.2m instead of 80-90cm) from the
camera to allow sufficient space for the target to move.
Head pose. To evaluate methods in terms of robustness to head
pose, we asked participants to keep gazing at the visual target while
(i) keeping an approximately static head pose facing towards the
screen (Static case, S); or (ii) performing head movements (trans-
lation and rotation) to introduce head pose variations (Mobile case,
M). Sample distributions are visible in the Technical report [Fu-
nes Mora et al. 2014].
Participants. We have recorded 16 people: 12 male and 4 female.
Recording conditions. For participant 14, 15 and 16, some sessions
were recorded twice, in two different conditions (denoted A or B):
different day, illumination and distance to the camera.
Sessions summary. We recorded 94 sessions of 2 to 3 minutes, for
a total of more than 4 hours of data. Each session is denoted by
the string “P-C-T-H” which refers to the participant P=(1-16), the
recording conditions C=(A or B), the target T=(DS, CS or FT) and
the head pose H=(S or M) respectively. See Fig. 2 for examples.

3 Data processing
Besides the raw data itself, we also provide additional information
that is essential for deriving ground truth measures or simply useful
to exploit the dataset and run experiments. More details on how we
estimated them can be found in [Funes Mora et al. 2014].

RGB-D sensor calibration. We provide the calibration parameters
for the RGB-D stereo ensemble, which were obtained using an open
source calibration toolbox [Herrera C. et al. 2012]. This allows to
combine the RGB-D data into a textured 3D surface.
RGB-D to screen calibration. We provide the calibration between
the camera coordinate system (3D) and the 2D screen coordinates.
RGB-D and HD camera synchrony and calibration. The HD data
was synchronized with the RGB-D video stream thanks to the use
of the 5 LEDs [Funes Mora et al. 2014]. In addition, standard stereo
calibration between the two cameras was achieved.
Head pose and eyes tracking. For each participant we created a 3D
mesh corresponding to his/her specific facial shape by fitting a
3D Morphable Model [Paysan et al. 2009] to depth data using the
method described in [Funes Mora and Odobez 2012]. Furthermore,
given this template, we tracked the 3D head pose using the Iterative
Closest Points (ICP) algorithm, from which an approximate loca-
tion of the eyeballs within the camera 3D space was then derived.
Floating target tracking. For the recording sessions using a ball as
visual target, we provide the 3D center of the ball at every time step
t, computed using chromatic filtering and ICP fitting.
Manual annotations. Further manual annotations of when the data
is considered as being unreliable for gaze estimation (and evalua-
tion) are provided. This corresponds to moments of eye blinking or
when the person is distracted (not looking at the target). The man-
ual annotations were done for the frontal sessions involving screen
targets. Given the low occurrence of these cases, we currently did
not label it in the other sessions (it will be considered as noise).
Nevertheless, further annotations could be made if needed.

4 Considered tasks
In this section we describe different evaluation benchmarks that can
be used to evaluate the accuracy of a gaze estimation algorithm and
its robustness to different variants such as head pose, illumination
conditions, etc. We first summarize the main elements of the eval-
uation protocol framework, including the performance measures,
and then list a set of benchmarks.

4.1 Evaluation protocol and measures

This section introduces notions involved in the description of ex-
periments: what is understood as gaze estimation algorithm; defini-
tions of train, test and evaluation sets; and performance measures.
Gaze estimation algorithm. It is denoted as a func-
tion G which, provided a training set V and test data
T = {Ii, i = 1 . . . T}, outputs a set of gaze estimates
G = H(T |V) with G = {gi, i = 1 . . . T}.
The output of the gaze estimation depends on the application. Here
we consider two very common cases: A 3D gaze ray g = {o,v}
defined by its origin o ∈ R3 and a unitary vector v ∈ R3; or
Screen coordinates g = s ∈ R2 (pixels) which are often used for
screen based applications in HCI. Note that provided our additional
information (camera-screen calibration) it is possible to infer screen
coordinates from the 3D gaze ray [Funes Mora et al. 2014].
Training data. The training data consist of pairs of data (images)
and associated ground truth information leading to the training set
V = {(Î, ĝ)t̂, t̂ = 1, . . . , N}. We consider different ways to col-
lect these samples: Temporal, i.e. data corresponds to section(s)
of a larger video; or Structured: the training data is collected in a
structured manner in order to fulfill a specific requirement of the
gaze estimation algorithm (e.g. to obtain the closest samples to a
predefined number of points in a screen with specific ĝ values).
As ground truth data, we used the 3D location ĝ := p̂ ∈ R3 of the
3D visual target, or the ĝ := ŝ ∈ R2 screen coordinates (note that
given our calibration p̂ can be computed from ŝ).
Test data T . It is assumed to be a temporal section of a larger
video within the frame index range [t0, t1].
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Figure 2: Recorded data samples using: a–c) the RGB-D camera; and d–e) the HD camera, for which a patch of 640 × 480 pixels of the
original images is shown for comparison to the VGA resolution data. In these examples the participant is gazing at: a,d) the screen target
with a static head pose; b) the floating target with a static head pose; c,e) the floating target while moving the head.

Evaluation data. We define as evaluation set Ê the samples used
to compute an algorithm’s performance. This is a subset of the test
data obtained by removing the samples where either the data or the
ground truth is corrupted, due to blinking and distractions, extreme
head poses which compromise the eye visibility (e.g. occlusion by
the nose), and train and test set intersection.
Interpolation based methods and convex-hull. We considered
the issue of algorithms needing test data that match the training
conditions, like many appearance based methods that are mainly
capable of estimating gaze only within the convex hull of the train-
ing data gaze directions. In our dataset, such condition cannot
always be guaranteed, particularly when considering the floating
target cases. To allow fair comparison for such methods, we will
provide an evaluation set for which the test samples outside of the
convex hull of eye-in-head gaze directions are taken out from the
evaluation set. Users will need to report which of the evaluation
sets they used for evaluation. Note that comparing performances
on both the convex hull and in the full range will be interesting to
distinguish algorithms which are capable of extrapolating gaze esti-
mation (typically, those that are model-based) and those that cannot.

Performance measures. For an index t in the evaluation set Ê ,
with estimated gaze direction (ot,vt) or screen coordinates st, we
considered the following performance measures to compare algo-
rithms (formulas can be found in [Funes Mora et al. 2014]:
The 3D distance error εdt, useful for the 3D gaze estimation tasks,
and that conveys how close the estimated 3D gaze ray passes near
the visual target 3D position p̂t.
The Angular error ε◦t, which is a normalization alternative to εdt,
measuring the error in terms of directional error.
The Screen pixel error εst, used for the screen pixel coordinate pre-
diction task. Note that by using the provided calibration, we can
compute an angular error from screen coordinates predictions.

The above errors allow to compute statistics (usually the mean)
on the evaluation set Ê , like the mean distance error εd =
1
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d
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Sensitivity. In addition to accuracy, we can report additional perfor-
mance measures, like sensitivity that can be used to measure algo-
rithm robustness under different experimental conditions.

4.2 Predefined experimental protocols

To allow comparisons between algorithms and their merit under dif-
ferent experimental conditions, we have defined a set of protocols
that differ mainly in the recordings of our database that are used
for training and testing the algorithms2. Notice this dataset has two
main types of visual targets: 3D floating target (FT) and screen
target (CS or DS). Therefore, the defined evaluation protocols can

2To allow direct comparison with other methods, researchers are
strongly encouraged to (i) use the benchmarks defined here; or (ii) publish
their protocol details (e.g. people id, frames numbers) in case they define
their own evaluation protocols using the provided dataset.

have variations according to the preferred visual target. We sum-
marize them below. More details in [Funes Mora et al. 2014].
Protocol 1: Gaze estimation accuracy. In this protocol, we evalu-
ate the accuracy of an algorithm H under minimal variation of all
parameters which are not gaze variations. More precisely, for a ses-
sion S, where the only variation is in the gaze itself, we define the
training set V as the first half of S. The test set T is defined as the
second half of S. The result of such experiment is the mean angu-
lar error ε◦. The relevant sessions can be derived from the type of
visual target.
Protocol 2: Robustness to head pose variations. The objective here
is to measure how much the gaze accuracy decays due to head pose
variations. Experiments can be conducted with the static head pose
(S), and then with head pose variations (M). The average errors
under both conditions, as well as the sensitivity of the algorithm to
head pose variations are then reported.
Protocol 3: Person dependence. The goal is to evaluate how well a
methodH generalize to unseen users. This can be conducted using
a leave-one-person-out experimental set-up.
Protocol 4: Condition variations. Finally, in this case the goal is to
study the generalization properties of a methodH to different con-
ditions. To this end, experiments can be conducted for participants
12, 13 and 14 for which recording sessions under different set-up
and illumination conditions are available.

5 Evaluation protocol example

To illustrate the usage of the dataset, here we describe in detail the
data related to one of the benchmarks: the gaze estimation accuracy
protocol (Protocol 1) for the 3D floating target and using the RGB-
D stream as input data for the gaze estimation algorithm. Note
that this configuration is one of the most challenging cases in our
dataset, for which the typical eye image size is ≈ 14× 10 pixels.

Head pose and 3D target tracking. In Table 1 we show the total
number of frames corresponding to each session, together with the
number of frames for which we were able to successfully estimate
the head pose or the visual target position. Note that the head pose
recall is high (99.9%) as expected since in this protocol the record-
ings involving people with a near frontal and static head pose. The
recall of visual target location is lower (69%) due to the target being
outside the camera’s field of view, or too close to the sensor caus-
ing missing depth data. Nevertheless, these numbers show that a
large quantity of gaze labeled data is available for experimentation
(around 100 seconds per recording).

Protocol sets. Each session is divided equally into two temporal
sections: the first half is the training set and the second half is the
test set. The test set was filtered to define the evaluation set (the
criteria is described in the next section). Table 1 shows the number
of samples for each set (only considering samples with known head
pose and target location).

Gaze estimation method. We implemented an RGB-D based
method [Funes Mora and Odobez 2012] that relies on RGB-D data
to rectify the eye images viewpoint into a canonical head pose. We



Table 1: First to third row: number of frames of the recorded video (Total), and on which the head pose or floating target position estimation
succeeded. Fourth to sixth row: size of the training, test and evaluation sets for Protocol 1.

“P-C” (Participant-Conditions) for Session: “P”- “C”-FT-S
1-A 2-A 3-A 4-A 5-A 6-A 7-A 8-A 9-A 10-A 11-A 12-B 13-B 14-A 14-B 15-A 15-B 16-A 16-B Avg.

Total frames 4231 4441 4201 4291 4171 3571 4381 4381 4351 4201 4321 5769 5907 4411 5255 4411 4037 4261 5634 4538
Head Pose 4231 4441 4189 4291 4169 3568 4332 4372 4345 4186 4311 5769 5907 4411 5255 4411 4037 4257 5634 4532
Ball Target 2012 2323 2274 1752 2616 3064 2505 3471 3842 2561 2673 4429 4717 3924 3309 4014 3038 2383 4371 3119

Training 833 890 1164 581 1253 1319 924 1640 1868 1133 975 2097 2590 1827 1642 1922 1482 1272 2171 1451
Test 1179 1433 1100 1171 1361 1742 1550 1822 1968 1416 1688 2332 2127 2097 1667 2092 1556 1107 2200 1663

Evaluation 1049 1216 994 941 1229 1302 765 1778 1429 1063 1258 1967 1383 1658 1091 1566 890 1020 1495 1268

Table 2: Gaze angular error comparison for Protocol 1. The ’Head’ case only uses the estimated head orientation as gaze prediction.
“P-C” (Participant-Conditions) for Session: “P”- “C”-FT-S

1-A 2-A 3-A 4-A 5-A 6-A 7-A 8-A 9-A 10-A 11-A 12-B 13-B 14-A 14-B 15-A 15-B 16-A 16-B Avg.
ε◦(Head) 25.7 24.4 24.1 27.2 25.7 26.0 27.7 24.6 29.0 26.1 25.0 26.5 26.9 27.1 26.7 25.9 31.3 22.9 26.1 26.3
ε◦(PR-ALR) 6.8 6.8 6.8 11.3 12.6 7.2 16.3 5.9 10.4 7.4 8.0 8.9 4.8 5.7 6.6 6.3 8.0 6.9 6.8 8.1

refer to this method as pose-rectified adaptive linear regression (PR-
ALR). For each participant, a gaze appearance model of 42 samples
was extracted from the training set. These samples are regularly
distributed with gaze yaw values between ±40◦ and gaze elevation
values between ±30◦. Since PR-ALR is an interpolation based ap-
proach, we only considered the test samples within the convex-hull
of the data used in the gaze appearance model, i.e. the evaluation
set consisted of only the test samples for which the ground truth
measures respected the same yaw and elevation gaze criteria.
Estimation accuracy. To demonstrate the data variability, we
computed the gaze angular errors obtained when assuming the par-
ticipant is gazing towards the front, that is, assuming the gaze di-
rection is given by the head pose direction. The results of the ex-
periments are shown in Table 2. Note that both methods output a
3D gaze ray and we used the same evaluation set such that these
results are directly comparable. The angular errors shown by the
“Head” case provides evidence of the large gaze variability within
the data. The gaze estimation accuracy is drastically improved once
the PR-ALR gaze estimation algorithm is used.

Still, the errors are high in comparison to results reported in the
literature, which is mainly due to the low resolution (∼14 × 10
pixels per eye) and poor contrast (e.g. participant 7-A has black
skin). In addition, outliers (blinks, distractions, etc) were not yet
taken out from the evaluation set3.

Notice this is one of the most challenging scenarios in our database,
but this experiment is adequate to demonstrate how to use the data,
the defined protocols, and how to characterize an experiment.

6 Conclusion
We have described a novel dataset for the development and evalu-
ation of gaze estimation algorithms from RGB or RGB-D data that
addresses the need of the community for standarized benchmarks.

The database is rich and diverse as it is representative of the main
challenges of this task. Most variables (head pose, person, condi-
tions and type of target) have been systematically isolated, with the
goal of properly characterizing a gaze estimator in terms of accu-
racy and robustness to adverse conditions.

The recording methodology, and a summary of the recorded data,
have been described. We have also listed the additional information
provided to the users, such as the setup calibration, target position,
and head and eye tracking information. We have described in more
detail an experiment which serves as usage example.

We believe this database is of high value to researchers as it will
help to advance the development of gaze estimation technologies
under less constrained conditions.

3Annotations are provided to remove outlier samples for some sessions.
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