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Abstract- Grasping plays a central role in our daily life. To interact with objects surrounding them, 

people use a large diversity of hand configurations in combination with forces ranging from the small 

ones involved in manipulating a pen for writing, to larger forces such as when drinking a cup full of 

water, and even larger ones such as when wielding a hammer. In this paper we present a setup to 

capture human hand configuration and motion as well as the forces applied by the hand on objects 

while performing a task. Hand configuration is obtained through the use of a data glove device while 

interaction forces are measured through an array of tactile sensors. Current approaches in the state-of-

the-art are limited in that they only measure interaction forces on the fingers or the palm, ignoring the 

important role of the sides of the fingers in achieving a grasp/manipulation task. We propose a new 

setup for a “sensorized” data glove to address these limitations and through which a more complete 

picture of human hand response in grasping and manipulation can be obtained. This setup was 

successfully tested on five subjects performing a variety of different tasks. 
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1. INTRODUCTION  

Capturing and analyzing human hand motion is essential for several applications in fields such as robotic tele-

manipulation where a mapping is needed in order to use the motion of a human hand to control the motion of a 

dexterous robotic hand [4], or in the field of immersive virtual reality (VR) [6] or VR-hand rehabilitation [5] 

where a user can grasp and manipulate virtual objects after mapping the user’s hand motion to the motion of a 

virtual hand, or in the biomechanical field where one needs to measure and understand the mechanics of human 

manipulation in order to transfer these skills to robotic/prosthetic hands [1].  

Vision-based methods have been proposed in the literature for manually classifying static human hand 

configurations [1, 3], or tracking hand motions [8]. Other hand tracking methods rely on data glove devices [4-

6]. However, all these methods focus only on recording the hand joint angles ignoring the interaction forces 

between the hand and the manipulated object. Recently, the authors in [7] propose to cover the inner part of the 

hand with tactile sensors in order to quantify these interaction forces. This work is relevant for tasks such as 

holding a bottle or pick and place tasks. When dealing with many other tasks such as using a screw-driver or 

opening a tightly screwed bottle cap, the opposition of thumb surfaces against the sides of the fingers plays an 

important role [11] in applying the right amount of force and torque for successfully accomplishing the task. In 

other tasks such as writing or engraving/sculpting, this side opposition is essential for sufficient power coupled 

with fine control at the tool tip.  

In order to capture side opposition one must employ tactile sensors on the sides of the fingers to measure the 

tactile response. But how this contributes to the overall grasp depends very much on the position and the 

orientation of the thumb grasping surfaces relative to the finger sides. As will be explained later, the thumb 

sensors of the Cyberglove exhibit nonlinearities which are difficult to model and several methods have been 

proposed to tackle this. When the application is fine tele-manipulation [4, 9], calibration stresses the 3D 

position accuracy of the finger-tips. Others [10] propose a calibration procedure focused on imitating the 

demonstrated hand posture as a whole. To the best of our knowledge there is no existing calibration method 

that has reported on capturing correct orientation of grasping surfaces especially that of the thumb vis-à-vis its 

opposition to the sides of the fingers. 

We address these limitations in our proposed setup through two novel contributions involving the glove design 

and glove calibration. The rest of the document is organized as follows. Section 2 describes the construction of 

the “sensorized” data glove. Section 3 outlines our hand kinematic model and describes a new calibration 

procedure which focuses both on position and orientation of grasping surfaces. Section 4 shows the grasp 

response obtained using this infrastructure. Section 5 concludes the paper. 



2. DATA GLOVE CONSTRUCTION 

 

Figure 1. The Cyberglove data glove combined with 2 Tekscan tactile sensor arrays to form a “sensorized” 

glove for measuring human grasp response. 

The main components of our setup are illustrated in Figure 1(a) and comprise of the Cyberglove, used to 

measure hand joint angles, and the Tekscan sensor array, used to measure the tactile response from the grasping 

surfaces of the hand.  

The Cyberglove has 22 bend sensors strategically located over the hand joints. Since bending can be detected 

anywhere along the sensor length, the glove can adapt well to different hands sizes. The glove needs to be 

calibrated in order to transform raw sensor output to hand joint angles.  

The Tekscan sensor array consists of 18 sensors patches which are matrices of pressure sensitive sensing 

elements or sensels. As can be seen in the figure, the patches in one array are strategically located so as to cover 

the grasping surfaces of the human hand. We employ two such tactile arrays in an overlapping configuration in 

order to cover the frontal grasping surfaces of the hand as well as the sides of the fingers. The Tekscan software 

provides methods for calibration whereby the raw sensor information can be converted to absolute force units. 

The final “sensorized” glove can be seen in Figure 1(b). We synchronize the two data streams in order to 

analyze the tactile response along with the grasping configuration. The combined data is obtained at a 

frequency of 200Hz.  

3. HAND KINEMATIC MODEL AND CALIBRATION 

We are interested in capturing human hand posture. The first requirement is to build a hand kinematic model 

which is able to achieve most of the human hand postures, and which can be customized to accommodate 

hands of different sizes. The second requirement is to calibrate the glove sensors to the hand joints as they are 

defined in the kinematic model.  

Kinematic Model 

 

Figure 2. Kinematic model of the hand along with the 4 hand measurements for its customization 

As shown in Figure 2(a), we model each finger as a separate kinematic chain which is positioned with respect 

to a coordinate frame located at the wrist. Following a common approach in the modeling of finger kinematics 



[4, 9], we model the fingers with 4 revolute joints: 2 joints at the metacarpophalangeal junction (MPJ) for 

flexion and abduction and one joint each at the proximal and distal interphalangeal (IJ) junctions.  

Modeling the thumb [9] requires 5 joints as it exhibits the ability for pronation/supination at the MPJ which 

needs to be taken into account for accurate positioning. Furthermore, this twisting motion of the thumb is not 

controllable but is a function of the flexion and abduction angle at the carpometacarpal junction (CMJ). 

Modeling this twist becomes even more essential when one is interested in the degree to which the grasping 

surfaces of the thumb are in opposition to those of the fingers. While thumb-twist has been modeled [4, 9] by a 

revolute joint with axis along the thumb metacarpal, we choose to locate this at the proximal interphalangeal 

junction with axis along the proximal phalanx. This is because the thumb-twist effect most influences the 

orientation of the proximal and distal grasping surfaces. 

This kinematic model is determined by the link lengths and the location of the base of each chain with respect 

to the origin. These are set to default values corresponding to an average sized human hand provided by 

Cyberglove. We customize the kinematic model for each human demonstrator using 4 measurements of the 

subject’s hand, Figure 2(b), to scale the default values. Grasping surfaces of the palm are not controllable in 

this model. They lie in the plane of the wrist at predetermined locations which also get scaled appropriately 

according to the hand measurements.  

Calibrating the Cyberglove 

Calibration of the fingers (index, middle, ring, pinky), is done by asking the subject to randomly explore the 

workspace of the finger joints by moving them between the opened and closed positions. Maximal and minimal 

joint values are recorded and subsequently mapped to the joint limits of a normal human hand. This method is 

feasible as the glove sensors vary linearly with respect to the finger joint angles. Thumb calibration is a bigger 

challenge because there is no sensor embedded in the glove for measuring thumb-twist, and there exists a 

coupling between the MPJ flexion and abduction sensors which depends on the hand configuration. Using a 

linear combination of the abduction and flexion angles to approximate the thumb-twist, [4, 9] observe good 

positional accuracy of the thumb finger-tip, but no result on the orientation was reported.  

To calibrate the thumb we use a data-driven approach to model the non-linear relationship between the 4 

sensors of the glove and the 5 joint angles of the kinematic model. The subject moves the thumb tip in a series 

of moves designed to completely explore the workspace of the thumb. During this procedure, we track the 

position and orientation of the thumb tip with respect to the wrist through appropriately placed markers and the 

Optitrack vision system. Next, for each position and orientation measured, an inverse kinematic solution is 

found by minimizing the position and orientation error between the observation and the 6D pose of the thumb-

tip predicted by the forward kinematic model. Gaussian mixture regression is then used to model the 

relationship between the corresponding input (glove sensors) and output (joint angles) sets obtained. 

Regression parameters are obtained through cross-validation on the training set. We obtain a test set error of 

0.71 cm in position with a standard deviation of 0.475 cm and 6.62 degrees in orientation with a standard 

deviation of 4.84 degrees. 

4. HAND CONFIGURATION WITH TACTILE RESPONSE 

 
Figure 3. Averaged normalized tactile response overlaid on the grasp configuration. The left image shows the 

task of hammering with a 3 cm diameter cylindrical handle, the right shows hammering with an 8 cm 

diameter handle. 

We examine the use of our setup in the context of two tasks which require the use of the finger sides. The first 

task involves hammering with different sized hammers. Figure 3 shows the grasp response captured using our 

setup. We see that the thumb usage in opposing the fingers has been well captured. The small handle (left 

image) is gripped by 3 fingers (middle, ring and pinky) opposing the palm. However, the thumb tip in 

opposition to the side of the index finger also forms an important part of this grasp. For the large handle (right 

image) the thumb is employed in a different manner, moving across to oppose the frontal finger surfaces and 

cooperating with them in opposing the palm. Note that the thumb metacarpal is not subject to thumb-twist in 

the kinematic model thus better capturing the grasping intention of the base of the thumb. 



Next we examine the task of writing 

where the subject is asked to write 3 

different letters. In Figure 4 we see 

that the grasp involves the thumb, 

index and middle fingers, with the 

thumb-tip working against the index-

tip and side of the middle finger. 

From the interaction forces we can 

make out each continuous stroke in 

forming a letter as well as when the 

subject lifts up the pen in-between 

strokes. Further we see that, for the 

letters demonstrated, while the 

interaction forces over the task 

duration are different for each letter, 

it is always the thumb-tip and 

middle-side grasping patches that 

take a dominant role in shaping the 

letter while the index-tip acts in 

support.  

5. DISCUSSION 

The state-of-the-art in measuring human grasp response does not account for the sides of the fingers which play 

an important role in accomplishing several commonly encountered tasks. We address this limitation with a new 

setup for a “sensorized’ data glove and a new calibration procedure to model the nonlinearities in the thumb 

response. Results show that our method is able to capture both the interaction forces and also the intention of 

the demonstrator in employing hand parts in opposition especially with regards to the use of the finger sides. 

This provides a more complete picture for the study of human grasping and manipulation with a view to 

transferring these skills to autonomous behavior in prosthetic or anthropomorphic robot hands. 
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