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ABSTRACT  

We present a dielectric elastomer actuator (DEA) for in vitro analysis of mm2 biological samples under periodic 
compressive stress. Understanding how mechanical stimuli affect cell functions could lead to significant advances in 
diseases diagnosis and drugs development. We previously reported an array of 72 micro-DEAs on a chip to apply a 
periodic stretch to cells. 

To diversify our cell mechanotransduction toolkit we have developed an actuator for periodic compression of small cell 
populations. The device is based on a novel design which exploits the effects of non-equibiaxial pre-stretch and takes 
advantage of the stress induced in passive regions of DEAs. The device consists of two active regions separated by a 
2mm x 2mm passive area. When connected to an AC high-voltage source, the two active regions periodically compress 
the passive region. Due to the non-equibiaxial pre-stretch it induces uniaxial compressive strain greater than 10%. Cells 
adsorbed on top of this passive gap would experience the same uniaxial compressive stain. The electrodes configuration 
confines the electric field and prevents it from reaching the biological sample. A thin layer of silicone is casted on top of 
the device to ensure a biocompatible environment. This design provides several advantages over alternative technologies 
such as high optical transparency of the area of interest (passive region under compression) and its potential for 
miniaturization and parallelization. 

Keywords: Dielectric elastomer actuator, deformable cell culture system, compressive strain, optically transparent 
 

1. INTRODUCTION 
The human body is constantly exposed to a complex set of mechanical forces. Ranging from gravity to muscle 
contraction, these forces can induce changes in the structure, composition or function of our biological tissues.[1] A good 
example of this is the bone loss observed in astronauts after a long stay in space.[2] It is now widely accepted that 
mechanical forces affect various fundamental cellular functions such as differentiation, proliferation and gene 
expression. However, the mechanotransduction processes by which cells can convert mechanical stress into biochemical 
reaction are still not fully understood. 

Several techniques have been developed to isolate and study the effect of mechanical forces on cellular functions. The 
most common one is to culture cells on a deformable silicone substrate which can then be subjected to different types of 
mechanical loads. With this approach, the entire biological sample (a few centimeters in size, with up to several 
hundreds of thousands of cells) is subjected to the same mechanical strain. Working with such large populations limits 
the scope of the studies to communal behaviors. In addition, the effect of different strain levels or frequencies are 
challenging to study due to inevitable variation between biological samples. In response to these limitations, various 
devices were developed to apply mechanical loads on single cells or small populations.[3][4] Although these approaches 
enable single cell response monitoring (by opposition so communal behavior), most of them exhibit low screening 
throughput and requires complex setup and manipulations. 

Dielectric elastomer actuators (DEAs) offer various desirable properties such as large actuation strains and fast actuation 
speeds. In addition they can be made from bio-compatible materials and the fabrication processes are not as complex as 
for MEMS. Significant advances were achieved in theoretical modeling and material engineering throughout the last 
years. It led to the development of devices capable of giant actuation strain (>1000%)[5], actuators with sub-millisecond 
response time[6] and compliant electrodes with self-healing capabilities[7]. 
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ability to have an array of actuators on a single membrane is therefore a great benefit. Various parameters can be studied 
simultaneously by having for example a gradient of strain across one axis of the array. 

Moreover, the region where cells will be exposed to high compressive stress (passive gap) is highly transparent in the 
visible range. In comparison, the previously reported device had the cells located on top of the active region.[8] As in the 
device schematize in Fig. 2, the optical properties where therefore limited by the electrodes which resulted in poor 
optical transparency. This parameter is of great importance for biologists. It allows inspection of cells with high 
resolution inverted optical microscopes. For example, with optical access to the biological sample the evolution of cell 
morphology can be monitored under periodic compression.  

A third benefit to this design is the electric field confinement. As can be seen from Fig. 3, the electrodes are completely 
overlapping which minimizes the fringing electric field outside the dielectric elastomer membrane. It ensures that the 
biological sample is protected from the electric field generated by the actuator. Biological samples are essentially 
composed of living cells and cell culture medium (ionic liquid). Strong electric field reaching this region could affect cell 
development or lead to ionic diffusion from the cell culture medium into the elastomer membrane and modifies the 
actuators behavior and performances. 

Cells adhere to bio-compatible surface by the mean of protein adsorption [12] and exhibit low Young’s modulus. It can 
therefore be assumed that the actuation strain generated in the device membrane will also be experienced by the 
biological sample. The main performance metric to consider for the design optimization is the maximum compressive 
strain that can be induced in the passive gap during actuation. Cell mechanotransduction studies typically require 5-20% 
compressive strain. It is also important to ensure good strain uniformity over a given area. Our goal is to achieve better 
than 1% uniformity over a 500μm x 500 μm area. Sub-section 2.2 and 2.3 will discuss the geometrical considerations 
and the role of pre-stretch in the design optimization. 

2.2 Geometrical considerations 

There are a few geometrical parameters to consider when optimizing this design. The first and most important one is the 
ratio between the length L of the electrodes and the width g of the passive gap. Equation 2 gives the relation between 
these geometrical parameters and the strain generated in the membrane. The variables Stensile and Scompressive correspond to 
the tensile strain generated in the active area and the compressive strain induced in the passive gap respectively. The 
most interesting scenario is when the ratio between L and g is higher than ½. In this specific case there is an 
amplification effect and the generated tensile strain can induce a much larger compressive strain. For example if the 
active regions length is 5 times longer than the passive gap, the amplification factor α is equal to 10. This means a 1% 
tensile strain in the active area would induce a 10% compressive strain in the passive gap. 

 ௅௚ = ଵଶ ௌ಴೚೘೛ೝ೐ೞೞ೔ೡ೐ௌ೅೐೙ೞ೔೗೐ = ଵଶ  (2) ߙ

A second geometrical parameter to consider is the ratio between the widths of the active area w and the membrane Y 
respectively. The maximum ratio would be equal to one, which corresponds to the case where the electrodes are as wide 
as the membrane. The closer the ratio gets to unity, the more the actuation strain is affected by the fixed boundary 
conditions. First, it limits the maximum actuation strain of the device which is one of the main figures of merit used for 
DEAs. Second, it induces strain non-uniformity in the active regions which indeed results in non-uniform compression of 
the passive gap. In the extreme case of a w/D ratio equal to unity, the strain would be maximal in the center of the 
passive gap and gradually decrease to zero along the direction perpendicular to the actuation. This strain non-uniformity 
might not be a critical issue for most applications but it is definitely an important aspect to consider in the frame of this 
project. The strain uniformity in the passive gap should be maximized in order to ensure a good control over the strain 
that will be experienced by the biological sample. 

 

2.3 Role of the pre-stretch 

Another important design parameter is the pre-stretch applied on the dielectric elastomer membrane. Its amplitude and 
orientation can be adapted to significantly modify the behavior and performances of the device. Equation (3) defines pre-
stretch λ and presents the notation that will be used in this paper. The sets of variables (X, Y) and (X’, Y’) correspond to 
the initial and final dimensions of the membrane respectively. 

Proc. of SPIE Vol. 9056  90561Q-4

Downloaded From: http://spiedigitallibrary.org/ on 03/20/2014 Terms of Use: http://spiedl.org/terms



 

 

ߣ  = ൫ߣ௫;  ௬൯ (3)ߣ	

௑ߣ		݁ݎℎ݁ݓ  = ௑ᇲ௑ ௬ߣ		݀݊ܽ	 = ௒ᇲ௒   

The first role of pre-stretch is to improve the maximum actuation strain of the device. It can be used to suppress 
electromechanical instabilities which are usually the first failure mode to occur in DEAs.[13] The optimal parameters in 
terms of actuation strain can be calculated based on the dielectric elastomer physical properties. It is important to note 
that pre-stretch doesn’t need to be equibiaxial but its optimal amplitude (λx·λy) indeed depends on its orientation. For 
pre-stretch greater than this optimal value there is performance degradation. It increases the membrane stiffness which 
results in higher working voltage and lower actuation strain. 

The second role of pre-stretch is to ensure that pure compressive strain is induced in the passive gap when the device is 
under actuation. This requirement is motivated by the final application of the device. Mechanotransduction studies 
usually try to isolate the effect of a single mechanical stimulus on biological cells. It is therefore important to achieve a 
uniform and pure compressive strain distribution in the passive gap. For an equibiaxial pre-stretch, both the length L and 
width w of the electrodes increase under actuation. As a result, the passive gap is exposed to compressive stress along 
one direction and tensile stress along the orthogonal direction (in the place of the membrane). This configuration is 
indeed not generally desirable for mechanotransduction study. 

One consequence of pre-stretch is mechanical stiffening of the elastomer membrane. This effect is directional and 
consequently non-equibiaxial pre-stretch can be used to induce anisotropy in the mechanical properties of the membrane. 
One solution to eliminate the tensile stress component in the passive gap is to apply a non-equibiaxial pre-stretch for 
which λy is much larger than λx. In that configuration the entire membrane becomes very stiff along the width w of the 
electrodes. The active areas only expand along the length L of the electrode and the passive gap is therefore exposed to 
pure uniaxial compressive stress.  

The value of λx should be chosen carefully in order to maximize the compressive strain in the passive gap. For uniaxial 
pre-stretch we have λy>1 and λx

uniaxial=1/ඥߣ௬ <1 (unconstrained and completely relaxed). Due to the small dimensions of 
the passive gap, the mechanical loss of tension in the active regions occurs at a very low strain. In order to avoid this and 
to achieve reasonable compressive strain, a small pre-stretch should be applied in the actuation direction. As a design 
rule, λx should be equal to or greater than the targeted compressive strain multiplied by λx

uniaxial. It is important to realize 
that pre-stretch along the actuation direction also stiffens the membrane which tends to lower the actuation strain. There 
is therefore a tradeoff here which limits the maximum compressive strain that this design can generate. 

 

3. EXPERIMENTAL RESULTS 
3.1 Fabrication process 

An important part of the development work resides in the fabrication process. Figure 4 presents a schematic view of the 
device at every major steps of the fabrication process. First, a 75 μm thick Dow Corning Sylgard 186 silicone elastomer 
membrane is casted on a high quality PET film using a Zehntner ZAA 2300 automatic film applicator coater. After 
curing, a 3cm x 10 cm section of the membrane is peeled from its substrate and pre-stretched  λ=(0.9;2.75). (a) Circular 
Plexiglas frames with a 44mm inner diameter are used to hold the pre-stretch and ease the handling of the membrane. 
Adhesives Research Inc. ARclear® 8154 adhesive and Dow Corning® 734 Flowable Sealant are used to ensure strong 
adhesion between the membrane and the frames throughout the entire process. (b) Compliant electrodes are patterned on 
the top surface of the membrane: An uncured conductive carbon black-elastomer composite is printed on the membrane 
by stamping using a Teca-Print Pad Printing Machine TPM 101. After curing, (c) the device is flipped and the printing 
process is repeated in order to pattern electrodes on the bottom side of the membrane. At this point of the process flow, 
the device is already a working DEA. Electrodes are patterned on both sides and the membrane is in the optimal pre-
stretch state in terms of compressive strain that can be generated in the passive gap. It is however not ready for the 
intended biological applications. (d) Using again the same stamping technique, a few microns thick silicon encapsulation 
layer is printed over the electrodes on one side of the actuator. This encapsulation layer plays two roles. First, it provides 
an electrical insulation between the electrodes and the cell culture medium that will eventually cover them. Second, the 
encapsulation material is chosen to be bio-compatible and ensure the cells viability. Once the encapsulation layer is 
cured, (e) a new set of Plexiglas frames are fixed to the membrane using Adhesives Research Inc. ARclear® 8154 and 
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Table 1.  Design parameters of the sample CS003. 

Membrane geometry 
Membrane width X [mm] 22 
Membrane height Y [mm] 22 
Membrane thickness after pre-stretch t [μm] 31 

Electrodes geometry
Electrodes length L [mm] 10 
Electrodes width w [mm] 10 
Passive gap length g [mm] 2 

Pre-stretch parameters 
Pre-stretch along the membrane height λy 2.75 
Pre-stretch along the membrane width λx 0.9 
Effective pre-stretch along the membrane width λx/λx

uniaxial 1.2 
 

The actuation strain of the device was measured experimentally. The DEA was connected to a DC high-voltage source 
and placed under an Olympus SZ40 Zoom Stereo Microscope. One of the eyepieces was removed and replaced by a 
camera adapter and a camera. Images of the actuator were captured at 0V and then at every 50V from 3kV up to 4.6kV. 
Optical zooms of the microscope and the camera, as well as the position of the sample were kept constant during the 
experiment to maintain the same reference scale. 

The images were post-processed using the NI Vision Assistant. Filtering and border tracking tools were used to locate 
the borders of the passive gap and calculate its width g. The data were then normalized over its initial value. Figure 6 
presents the compressive strain in the passive gap as a function of the electric field in the active regions. The electric 
field is calculated as the ratio between the applied voltage and the membrane thickness. A maximum compressive strain 
of 12.5% was obtained at 4.6kV which corresponds to a 153V/μm electric field. It was limited by the mechanical loss of 
tension which could be observed at higher voltages. Higher pre-stretch along the actuation direction could potentially 
lead to greater compressive strain. 

 
Figure 6. Experimental characterization of the sample CS003. Compressive strain generated in the passive gap as a function 
of the applied electric field. 
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4. CONCLUSION 
We presented a novel DEA design that harnesses stress in passive regions of the membrane. The device was developed 
for cell mechanotransduction studies and presents notable advantages, namely its high optical transparency, its good 
electric field confinement (minimal stray electric field) and its compatibility with matrix configuration which would 
enable high screening throughput experiments. 

The important geometrical design parameters were presented and discussed. It was shown that with suitable designs, 
small tensile strain in the active areas can be used to induce much larger compressive stress in the surrounding passive 
region. The importance and roles of pre-stretch were also presented and discussed. It was shown that non-equibiaxial 
pre-stretch is the best option and that both λx and λy should be chosen carefully in order to optimize the maximum 
compressive strain that can be induced in the passive gap. A device based on this design was fabricated and 
characterized. A maximum compressive strain of 12.5% was achieved under 4.6kV which corresponds to a 153V/μm 
electric field. 

On the short term, future work will focus on demonstrating that biological samples can be cultured on top of the DEA 
and periodically compressed. On the longer term, the design will be miniaturized (500μm x 500μm passive gap) and 
integrated into a matrix configuration for parametric studies with high screening throughput. It is anticipated that this 
will lead to improved deformable cell culture systems for cell mechanotransduction studies. Advances in that field of 
research could lead to better diagnosis and treatment of various diseases ranging from dystrophy to cancer progression 
and metastasis. 
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