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Abstract— The development of an adaptive controller for a 
flexible link manipulator is the subject of this article. The 
system’s measurements are assumed to be corrupted with 
noise of a priori known bounds. A Set Membership Identifier 
computes the feasible set (orthotope) within which the 
parameter vector resides. The orthotope’s vertices provide 
the parameter-vector’s bounds, which are used to compute 
the predicted system-output uncertainty. The controller 
tunes its gains through an on-line minimization of a cost that 
penalizes the control effort, the induced uncertainty on the 
system output, and the tracking error. The scheme is applied 
in simulation studies on a planar single flexible-link 
manipulator. 

Keywords: Adaptive control; Robust control; Set 
membership identification; Flexible link manipulator. 

I.  INTRODUCTION  
Identification techniques in the modeling of flexible 

manipulators comprise several peculiarities due to the 
system’s lightly damped behavior [15]. Limited sampling 
capabilities, as well as quantization errors from the 
measurement devices, complicate the identification of the 
system’s infinite spectrum. Relying on the assumed modes 
method, and after truncation of the infinite spectrum, the 
system’s dynamics can be described as a nonlinear 
ordinary equation. For a single flexible-link manipulator 
situated in the horizontal plane, the discrete system can be 
parameterized as an Auto Regressive Moving Average 
(ARMA) system. Several techniques have been developed 
and tested for identification of these lightly damped 
(possibly non-minimum phase) systems and can be 
classified in frequency or time domain methods [11]. 
However most of these techniques fail in the case of large 
levels of noise corrupting the measurements. 

For the case, where the measurements’ (shaft angle and 
angular velocity, tip acceleration, etc.) noise is a priori 
bounded, this can be considered as an induced parametric 
uncertainty on the ARMA-system’s parameter vector; a 
measure of the system parametric uncertainty is identified 
online, using a parameter-set estimator. The motive in 
these estimation schemes is to identify a feasible set of 
parameters that is consistent with the data and the model 
structure [12], [13]. The resulting identified system 
description can be cast as a nominal one coupled with 
certain parametric uncertainty. 

The control design problem for such systems has 
profound interest in the scientific community. The primary 
objective is to provide a control scheme that stabilizes the 
system despite its parametric uncertainty. These robust 

control schemes are quite conservative, and do not directly 
address the induced uncertainty on the future output 
values. The online optimization of the control input paying 
regard to the model accuracy has been addressed in [8], 
where a worst-case controller design is suggested. 

In this article, the objective is to minimize the 
predicted shaft-angle output uncertainty while tracking a 
reference input signal. The proposed adaptive scheme 
includes a Set Membership (SM) estimator [6], [7] that 
identifies a set within which the system parameter is 
located. Given this set, a predictor computes the induced 
uncertainty in the predicted output values. The controller is 
derived through the minimization of a cost function which 
penalizes the predicted output uncertainty, the tracking 
error, and the control effort [1], [2], [10]. 

The adaptation mechanism is due to the online measure 
of the plant uncertainty provided by the SM-estimator. 
Subsequently, the volume of the feasible parameter set is 
reduced as time progresses, and the predicted output 
uncertainty decreases. This results in a control effort which 
emphasizes more the effects of the tracking error and the 
control effort, rather than the output uncertainty as time 
advances. 

This paper is structured in the following manner. The 
flexible-link manipulator dynamics is addressed in the next 
Section, followed by a Section devoted in the recursive 
SM-identification technique. The controller development 
is in Section IV, followed by simulation studies in Section 
V. The article concludes with a summary of the generated 
research. 

II. FLEXIBLE-LINK MANIPULATOR DYNAMICS 
Consider the case of a single rotating flexible-link 

situated at the horizontal plane, as shown in Figure 1. A 
direct torque-actuator with inertia HI  rotates the link with 
the linear density, and Young’s modulus E  carrying a 
load of mass M and inertia MI at its tip. The PDE 
describing the link’s motion ( , ),  [0, ]z x t x l∈  is: 

2 4

2 4
( ) ( , ) ( ) ( , ) 0x z x t EI x z x t

t x
ρ

∂ ∂
+ =

∂ ∂  
 (1) 

subject to the ensuing boundary conditions: 
(0, ) 0,z t =   (2) 

2

2 2
(0, ) ( ) (0, ) ( ),H

d d d
I z t EI x z t T t

dt dx dx
= +   (3) 
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( , ) ( ) ( , ),

d d
M z l t EI x z l t
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2 2
( , ) ( ) ( , )M

d d d
I z l t EI x z l t

dt dx dx
= −   (5) 

where ( , )z x t  is the beam’s displacement from the 
reference coordinate system, and ( )T t the applied torque. 

 

 
Fig. 1 Model of Single Rotating Flexible Link 

  

Application of the assumed-modes method generates an 
infinite dimensional ODE. Truncation of the modal 
spectrum generates the following state model (using n 
modes): 
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where 2

T H MI I Ml I= + +  is the total inertia of the link 

(including motor and payload), iζ  is the assumed 
structural damping for the ith flexible mode, and the 
natural frequencies are computed from 2( )i iEI luω ρ= , 

and iu  stems from the solution of the nonlinear equation 
5 2 4 6

6 2 6 4 2

6 2 4 2 3

3
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3
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The modal shapes are calculated from 
( ) sin( ) cos( ) sinh( ) cosh( )i i i i i i i i ix u u u ux x x xφ α β γ δ= + + +

 
where the constants iα , iβ , iγ  and the iδ  are computed 
from  [9] for 0, ....,i n= . 

The shaft angle can be computed as 
[ ] [ ]11,0, (0),0, , (0),0ny qφ φ= …

 
where 

[ ]0 0, , , T
n nq q q q q= � �… . The applied torque is provided by 

a dc-motor with a current amplifier and is proportional to 
the applied voltage u(t), or ( ) ( )T t Ku t=   

Under the assumption of a periodic sampling of the 
system the discrete dynamics from u(t) to y(t) as a general 
ARMAX(p,r) model. 

III. ORTHOTOPIC SET MEMBERSHIP IDENTIFICATION 
The ARMAX(p,r) model’s description is : 

1 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ), ( ), ( )

p r

i j
i j

T m

y n a n y n i b n u n j e n

n n e n y n e nθ ϕ

= =

= − + − + =

= + ∈ℜ

∑ ∑
  (6) 

in which ( )e n  is an unknown error process that is 
uncorrelated and independent of ( )u n ,ϕ  is the regression 
vector of the r most recently delayed values of the input, 
and the present value and p delayed values of the output, 
as described below: 

( ) [ ( 1) ( 2) ... ( ) ( ) ( 1) ... ( )]T n y n y n y n p u n u n u n rϕ = − − − − −   (7) 
and θ  is the parameter vector to be identified: 

1 2 0 1[ ... ... ]T

p ra a a b b bθ =   (8) 
The noise sequence ( )e n  is assumed to be point-to-point 
restricted, namely: 

2( ) 1,n e n nγ ≤ ∀   (9) 
and induces an uncertainty in the utilized identified 
model, ˆˆ ( ) ( ) ( )y n n nθ ϕ= , and can be thought as the 
source of parametric uncertainty. Generally, the meaning 
of the SMI is that certain a priori information that is 
known about the system or its related signals, helps limit 
the space of parameters that are considered as estimates of 
θ . 

 Under the assumption of a model description (6) and 
the a priori noise bounds from (9), a recursive algorithm 
can be devised [14] to compute an ellipsoid ( )nΩ at time 
n within which the true parameter vector is contained. The 
ellipsoid is: 

(10) 

where ˆ( )nθ  is the WRLS estimate of the parameter 
vector, ( )C n  is the covariance matrix, and the symmetric 

positive definitive matrix ( ) ( ) ( )W n C n nξ=  indicates 

how far the ellipsoid extends in each direction from ˆ( )nθ , 
and λ  leads to the minimization of the ratio of the 
ellipsoid’s volume at n  and n-1 : 

0

det( ( ))
( ) : ,

det( ( 1))min
W n

n
W nλ

λ +∈ ℜ
−

⎧ ⎫
⎨ ⎬
⎩ ⎭

  (11) 

where det( ( ))W n  is a quantity proportional to the 
ellipsoid’s volume. 

Ω(n) = θ : (θ − θ̂ (n))T C(n)

ξ(n)
(θ − θ̂ (n)) ≤ 1,θ ∈ℜ r + p⎧

⎨
⎩

⎫
⎬
⎭

C(n) = ϕ T (n)ϕ (n)⎡⎣ ⎤⎦

ξ(n) = θ̂ T (n)C(n)θ̂ (n) +
λ(i)

γ
i

(1 − γ
i
y 2 (i))

i =1

n

∑
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 After the computation of the ellipsoid, an orthotope 
( )p nΩ that encloses it ( ( ) ( )pn nΩ ⊂ Ω ) can be 

computed. This orthotope oriented parallel to the 
parameter coordinate axis and centered on the centroid of 
the ellipsoid, is computed via the following equation: 

1 ˆ( ) : ( ( )) 1, 1, ...,
( )

p

i i

i

n n i r p
n

θ θ θ
σ

Ω = − ≤ = +
⎧ ⎫
⎨ ⎬
⎩ ⎭

  (12) 

The points of the section between the orthotope and the 
ellipsoid are: 

1

,

ˆ ˆ,

( )

i i i i i i

i i iW n

θ θ σ θ θ σ

σ

− +

−

= − = +

=
  (13) 

and the orthotope’s volume: 

12 ...r p
p r pV σ σ+

+Ω
= × ×   (14) 

IV. WEIGHTED MINIMUM UNCERTAINTY PREDICTION 
CONTROL (WMUPC) 

 The identified system from the orthotope can be 
retyped as: 

1

, ,
1 0

( ) ( ) ( 1) ( )
n m

i k j k
i j

y k a y k i b u k j e k
−

= =

= − + − − +∑ ∑   (15) 

where at time k, and the system’s ARMA-model 
parameters are bounded within intervals as 

, , ,[ , ],i k i k i ka a a− +∈  

, , ,[ , ].i k i k i kb b b− +∈  Due to this uncertainty the system output 
( 1)y k +  cannot be predicted, and can be found confined 

within an interval [16] min max( 1) [ ( 1), ( 1)].y k y k y k+ ∈ + +
Let the midpoint of the “interval’’ parameter [17] 

( 1)y k +  be defined as 
min max( 1) ( 1)

( ( 1))
2

y k y k
m y k

+ + +
+ � and its width 

max min( ( 1)) ( 1) ( 1)w y k y k y k+ + − +� . 
The control objective is to minimize the cost: 

2

1 2

2

3

2( ( )) [ ( ( 1))] [ ( ( 1)) ( 1)]

[ ( )] 0, i

J u k a w y k a m y k r k

a u k a

= + + + − +

+ >
(16) 

The first term ( 1a ) is the weighted coefficient that 
penalizes the uncertainty of the output due to the 
parametric uncertainties, the second term ( 2a ) minimizes 

the tracking squared error, and the third term ( 3a ) 
penalizes the control effort. For systems without 
uncertainty ( ( ( 1)) 0)w y k + = , this cost minimization 
results in a weighted one-step-ahead controller.  

 The control development is based on a two stage 
process. In the first stage, the output uncertainty is 
predicted, subsequently, this is used in the cost function 
and the controller is computed.  

 At time k, the prediction algorithm is provided with 
a vector of the past input and output sequences 

( ), ( ), 1, ...u k j y k j j− − = , the current output ( )y k , and 
the uncertainty intervals on the system parameters. The 

predictor’s objective is to provide the interval within 
which the output is bounded. The lower boundary of the 
predicted output interval ( 1)y k +  can be found as: 

1
min

,
1 0

, ,
1

1

, ,
1

0, 0,

( 1) inf ( 1 ) ( )

min ( 1 ), ( 1 )

min ( ), ( )
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∑ ∑

∑

∑

 (17) 

The first and second term depend on known parameters 
and are lumped into minA , then min ( 1)y k +  can be 
simplified as: 

[ ]min min

0 , 0 ,
( 1) min ( ), ( )

k k
y k b u k b u k A− ++ = +   (18) 

Similarly, the expression for max ( 1)y k +  is: 
max max

0, 0,( 1) max ( ), ( )k ky k b u k b u k A− ++ = +⎡ ⎤⎣ ⎦   (19) 
For the control development, the substitution of (18) and 
(19) to the cost function (16) yields: 

{ }

max

1 0, 0,

min 2

0, 0,

max

2 0, 0,

2min 2

0, 0, 1 3

( ( )) {max ( ), ( )

min ( ), ( ) }

{(max ( ), ( )

min ( ), ( ) ) / 2 } ( )

k k

k k

k k

k k k

J u k a b u k b u k A

b u k b u k A

a b u k b u k A

b u k b u k A r a u k

− +

− +

− +

− +

+

= +

− −

+ +

+ + − +

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦#

  (20) 

Let max min

1A A A−� , 
max min

2 ( 1)
2

A A
A r k

+
− +� , then the 

cost can be rewritten as: 
2

1 1 0,

2 2

2 2 0, 3

( ( )) { ( ) ( )}

{ ( ) ( )} ( )

k

k

J u k a A u k w b

a A u k m b a u k

= +

+ + +
  (21) 

where 0,( )kw b  and 0,( )km b  correspond to the width and 

midpoint of 0,kb , respectively, and the interval number 

properties [17] 0, 0,( ( ) ) ( ) ( )k kw u k b u k w b=  and 

0, 0,( ( ) ) ( ) ( )k km u k b u k m b=  have been used. Expanding the 
binomial expressions and grouping the terms that depend 
on ( )u k  in (21) yields: 

[ ] [ ]

2 2 2

1 0 2 0 3

2 0 2 1 1 0

2 2

1 1 2 2

2

1 2 3 4

( ( )) ( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( )

( ) ( )

( ) ( ) ( )

J u k a w b a m b a u k

a m b A u k a A w b u k

a A a A

u k u k u kδ δ δ δ

= + +

+ +

+ +

= + + +

⎡ ⎤⎣ ⎦

  (22) 

Since 1 0δ > , the cost has a minimum. Depending on the 
sign of ( )u k  this cost can be partitioned to: 

2

1 1 2 3 4

2

2 1 2 3 4

( ( )) ( ) ( ) ( ) , ( ) 0

( ( )) ( ) ( ) ( ) , ( ) 0

J u k u k u k u k

J u k u k u k u k

δ δ δ δ

δ δ δ δ

= + + + ≥

= + − + <
 

The cost function local minima are: 
2 2

* *2 3 2 3
1 4 2 4

1 1

( ) ( )
sign( ( )), sign( ( ))

4 4
J u k J u k

δ δ δ δ
δ δ

δ δ

+ −
= − = − − . 
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where 1, 0
sign( )

0, 0

x
x

x

>
=

≤

⎧
⎨
⎩

.The smaller value of these 

minima is selected as the global minimum which will 
result either in the selection of 1 ( )u k  or 2 ( )u k  as the 

optimum input * *( ) ( ),iu k u k= *

1,2arg{min }i ii J
=

= and the 
controller is: 

* *2 3 2 3
1 2

1 1

( ) max 0, ( ) min 0,
2 2

,u k u k
δ δ δ δ

δ δ

+ −
= − = −

⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

V. SIMULATION STUDIES 
The aforementioned algorithm was applied in simulation 
studies for the single DOF flexible manipulator with 
parameters shown in [9]. The objective is to identify the 
parameter vector of the system’s first two modes while 
bounding its values within an interval and control the 
shaft angle of this flexible link in order to track a 
reference signal. The identification part will apply on the 
discretized time invariant transfer fuction ( )y u� , where 

y�  is the shaft’s angular velocity and u is the input current 
signal. Based on the identified parameters and their 
bounds, the control of the system’s angle y will become 
feasible. 
The representation of the system ( )y u�  in a difference 

equation form for samplimg period 6.28 secsT m=  is: 
( ) [9.0814, 35.6214, 52.9789, 35.4146,8.9766,

3.9194, 5.8293, 3.8999, 0.9901]

[ ( 1), , ( 5), ( 1), ( 4)]T

y n

u n u n y n y n

= − −

− − ⋅

− − − −

�

� �… …

 

In order to execute the Orthotopic Set Membership 
Identification (OSMI), it is assumed that the initial values 
of the system’s parameters can vary randomly within an 
interval of width of 1% of their nominal values. Applying 
the algorithm, the parameters’ convergence to their 
nominal values is succeded, as presented in Fig. 2 for the 
parameter 1a = 3.9194  and SNR = 80dB . In the same 
figure, the upper and lower identified bounds of parameter 

1a 1 1(a , a  )− +  are presented. Despite the closeness of the 
initial estimate to the nominal one, the initial computed 
bounds are significantly larger (600 times the nominal 
value); however these bounds are reduced extremely fast 
and the width is reduced to 1% of the nominal value 
within the first 20 steps.  

By increasing the width of the interval to 100% of the 
nominal value 1a  ( 1a = 3.9194  and SNR = 80dB ), 
convergence can be easily observed after a few more 
iterations as presented in Fig. 3. 
According to the OSMI algorithm, the estimated and the 
nominal values of the length-n parameter vector reside 
within an n-dimensional ellipsoidal, the volume of which 
is a quantity proportional to the prediction uncertainty. 
Fig. 4, presents the reduction of the identified ellipsoid’s 
volume versus the number of iterations for various noise 
corrupting levels. As anticipated, the volume of the 
ellipsoid converges to a lower value for larger SNRs. 
 

 
Fig. 2. OSMI 1a -parameter’s: a) upper and lower bounds, 

and b) estimated value convergence  

 
Fig. 3. OSMI 1a -parameter’s: a) upper and lower bounds, 

and b) estimated value convergence  
 

 
Fig. 4. Ellipsoidal Volume Convergence (vs. SNR) 

 
A typical convergence from the frequency domain point 
of view of the identified transfer function (using the 
center of ellipsoid) for various SNRs at different time 
instants is shown in Figures 5 and 6.  
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Fig. 5. Magnitude of System ( )y u� for SNR=40dB at 

different time instances 
 
In these Figures, the magnitude of the system’s frequency 
response is presented for several number of iterations 

{ }10,15, 30, 3000,15000k ∈ . In general, the algorithm 
seems to quickly identify the higher harmonics, and thus 
the second mode of the transfer function, even after a few 
number of iterations and a small SNR. As time proceeds, 
the first mode slowly seems to be identified with 
obviously better convergence for SNR=80dB as presented 
in Fig. 6. When the iterations reach 15000, the estimated 
frequency response is almost identical to the nominal one 
for SNR=80dB, a fact that does not occur in Fig. 4 due to 
the significantly smaller SNR. 
 

 
Fig. 6. Magnitude of System ( )y u� for SNR=80dB at 

different time instances 
 
An integrator is appended to the identified transfer 

function for the computation of 
1

11
s zy y

u z u

−

−

Τ
=

−
�

 function for 

control purposes. Let the identified transfer function 
( )y u� be: 

1 2

0 1

1 2

1 2

...
( )

1 ...

m

m

n

n

b z b z b z
H z

a z a z a z

− − −

− − −

+ + +
=

+ + + +
  (23) 

and the appended one (with the integrator) 
1 2 ( 1)

0 1 1

1 2 ( 1)

1 2 1

...
( )

1 ...

m

m

n

n

d z d z d z
G z

c z c z c z

− − − +

+

− − − +

+

+ + +
=

+ + + +
  (24) 

where 0 0d = , 1 , 1, ..., 1i i sd b T i m
−

= = +  and 1 1 1c a= − , 

1 , 2, ...,j j jc a a j n
−

= − =  and
1n nc a+ = − . The parameters’ 

bounds of (24) are computed using the corresponding 
ones from (23) as 

max min

0 0

min min
1

max max
1

0,

,
, 1, ..., 1s

s

i i

i i

d d

d b T
i m

d b T

−

−

= =

=
= +

=

⎫⎪
⎬
⎪⎭

  (25) 

max max min min
1 1 1 1

max max min max
1 1

min min min max
1 1

max min min max
1 1

1, 1

min{ , },
2,...,

max{ , }

,

j j j j

j j j j

n n n n

c a c a

c a a a
j n

c a a a

c a c a

− −

− −

+ +

= + = +

⎫= − ⎪ =⎬
= − ⎪⎭
= − = −

  (26) 

Based on the identified transfer function the WMUPC is 
applied for tracking purposes of a square waveform for 
the shaft angle. Fig. 7 presents the reference input, the 
predicted output uncertainties and the actual system 
output. 
As shown in the first iterations, despite the fast 
convergence of the identified parameter values, the 
system’s output cannot satisfactory track the reference 
signal. This is due to the sensitivity of the identified 
transfer function with respect to these parameter values; 
even a 0,1% error in these (at 3000 iterations) can result in 
erroneous results from an identification point of view as 
highlighted in the identified magnitude response from 
Figures 4 and 5. However after 2000 iterations the 
output’s value accurately follows the reference command. 
 

 
Fig. 7. System’s output’s: a) upper and lower bounds, and 

b) value convergence tracking a square waveform 
reference input 

VI. CONCLUSIONS 
The development of an adaptive minimum uncertainty 
controller for a single flexible-link manipulator is the 
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subject of this article. The system’s output (shaft angle) is 
corrupted by noise of a priori known bounds. Rather than 
identifying a nominal transfer function, an orthotope is 
computed, within which the nominal one resides. This 
orthotope is computed based on set membership 
identification techniques and is consistent with the model 
structure and the noise bounds. The orthotope’s vertices 
are fed to the minimum uncertainty controller, whose 
control objective is to minimize a cost that penalizes the 
tracking error, the predicted uncertainty of the output and 
the control effort. This scheme, when applied in 
simulation studies for tracking purposes of a reference 
signal showed satisfactory results, despite the identified 
system’s extreme sensitivity with respect to the estimated 
parameters. 
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