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I. INTRODUCTION AND MOTIVATION

Wireless Body Sensor Nodes (WBSNs) are miniaturized and
ultra-low-power devices, able to acquire and wirelessly trans-
mit biosignals such as electrocardiograms (ECG) for extended
periods of times and with little discomfort for subjects [1].
Energy efficiency is of paramount importance for WBSNs,
because it allows a higher wearability (by requiring a smaller
battery) and/or an increased mean time between charges.

In this paper, we investigate how noise-aware design choices
can be made to minimize energy consumption in WBSNs.
Noise is unavoidable in biosignals acquisitions, either due to
external factors (in case of ECGs, muscle contractions and
respiration of subjects [2]) or to the design of the front-
end analog acquisition block. From this observation stems
the opportunity to apply inexact strategies such as on-node
lossy compression to minimize the bandwidth over the energy-
hungry wireless link [3], as long as the output quality of
the signal, when reconstructed on the receiver side, is not
constrained by the performed compression.

To maximise gains, ultra-low-power platforms must be
employed to perform the above-mentioned Digital Signal
Processing (DSP) techniques. To this end, we propose an
under-designed (but extremely efficient) architecture that only
guarantees the correctness of operations performed on the most
significant data (i.e., data most affecting the final results),
while allowing sporadic errors for the less significant data [4].

In particular, the paper describes how the knowledge of
the noise corrupting biosignals can be leveraged to minimize
power consumption on WBSNs. Section II puts our work
into context by acknowledging related efforts in the field,
Section III describes an application-level solution based on
lossy compression and low-power sensing, while Section IV
proposes significance-based DSP as an architectural technique
for inexact and ultra-low-power biosignals processing. Judi-
cious implementation of these approaches results in substantial
increases in WBSN energy efficiency, with minimal degrada-
tion of the quality of biosignal acquisitions.
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As illustrated in Figure 1, our contributions suggest that
inexactness offers multiple opportunities for ultra-low-power
WBSN designs, that we plan to synergistically exploit in our
future works.

II. RELATED WORKS

In recent years, advanced WBSN platforms have been
proposed that, in addition to acquire and wirelessly transmit
biosignals, also perform on-board processing. In this context,
proposed strategies fall in two categories: in the first one an
embedded bio-signal analysis is performed by the WBSN to
derive relevant features [2] [5]. By transmitting the analysis
results only, this approach minimizes the transmission band-
width, but it also hides the acquired signals from the users. The
second strategy, investigated in this paper, is to compress the
signal before transmission. On one hand, compressed signals
still require more bandwidth than analysis results. On the other
hand, this scenario allows the retrieval of the acquisitions at
the receiver, and is therefore preferable when detailed follow-
up inspections of the recordings must be performed.

Most biosignals admit a sparse representation in a trans-
formed domain. In the case of ECG for instance, only few co-
efficients carry most of the information in the Digital Wavelet
Transform (DWT) domain. An effective compression strategy
is therefore to discard less-significant DWT coefficients [6].
Alternatively, the sparse nature of the signals can be exploited
to sub-sample the signal and reconstruct it at the receiver side
by solving a convex optimization problem. The latter strategy
is named Compressive Sensing (CS) [7] [3].

Sparsity also implies that some DWT coefficients are more
significant than others, as they contribute more to the quality
of the results. Consequently, guarantees on computations of
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Fig. 1. Investigated WBSN platform. As inputs are partially corrupted by
noise, hardware and/or software inexactness is not the quality bottleneck of
the system.
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Fig. 2. Signal-to-noise ratio (SNR) of ECG signals after CS reconstruction
when varying the SNR before CS, for different compression ratios δ.

less-significant coefficients can be relaxed, resulting in a more
energy-efficient implementation of the DSP platform, with a
minimal impact on the overall results [4]. Conversely to related
works in the general-purpose field [8], approximate computing
is here selectively applied, with the goal of preserving the
quality of results even under high rates of errors in less
significant data.

III. CS-BASED ON-NODE COMPRESSION

Compressed Sensing leverages the sparsity of many bio-
signal to perform inexact (lossy) compression. It effectively
reduces the energy-hungry transmission bandwidth while re-
quiring little computational effort for the encoder, and is
therefore a well-suited strategy for maximizing the efficiency
of WBSNs. CS decoding algorithms are instead more complex,
but they are usually performed on less constrained platforms.

To briefly illustrate CS encoding and decoding, let’s define
x ∈ RN as the time series of the input signal, comprising
a component of additive white gaussian noise: x = xsig +
n. The signal admits an (approximate) sparse representation
in a dictionary Ψ (here, DWT) if most coefficients of α =
Ψ−1x are close to 0. When performing compressed sensing
[7], M < N linear combinations of the input are computed
on the transmission side: y ∈ RM = Φx = ΦΨα, where
Φ represent the sensing matrix and is independent from the
input signal. δ = M

N is defined as the Compression Ratio (CR),
stating the decrease in bandwidth requirements and, ultimately,
in the energy employed for wireless communication.

At the receiver side, the signal can be reconstructed by
solving a convex optimization problem:

min
α̂∈RN

||α̂||1 subject to: ||ΦΨ α̂− y||2 ≤ σ

Where || ||1 represent the `1 norm which is proven that
leads to sparse solutions and σ bounds the (non-sparse) noise
corrupting the data. The recovered signal x̂ is then computed
as x̂ = Ψα̂.

To investigate the performance of CS compression of biosig-
nals under the presence of noise, we added different levels of
zero-mean white gaussian noise to the ECG recordings pro-
vided in the MIT-Arrhythmia Database [9], performing their

reconstruction varying the compression ratio δ. We defined the
input Signal-to-Noise ratios before and after CS as SNRIN =

20 × log10
||xsig||2
||n||2

and SNROUT = 20 × log10
||x̂||2

||xsig−x̂||2
,

respectively.

Results are plotted in Figure 2, with SNRs above 21 dB
corresponding to a ”good” quality of the reconstructed ECGs
[10]. This figure highlights that SNRIN lower than 20 db the
quality of results is limited by the input noise for compression
ratios above 0.625. Only when SNRIN is above 21 dB further
increasing δ leads to tangibly higher-quality outputs. From
Figure 2 guidelines can also be derived for the design of the
analog-to-digital front-ends performing the signal acquisition,
whose precision (and, consequently, power consumption [11])
should be tailored to the performance of the overall system1.

IV. INEXACT COMPUTING

Inexactness intrinsic in the signal acquisition (noise) and/or
in the embedded DSP algorithms (lossy compression) can
be accounted for at the microarchitectural level, with the
aim of achieving further energy savings. This goal can be
obtained by aggressively downscaling the operating voltage
of DSP components, at the same time relaxing their computa-
tional reliability [12] [13]. While in conventional computing
paradigms, the correctness of all operations is required, in
inexact computing errors are selectively corrected based on
their corresponding impact on the final results.

As a practical example, we considered an application where
a WBSN nodes computes the DWT transform of an ECG
signal (α = Ψ−1x). We measured the quality of the output
(in terms of percentage root mean-square difference, PRD)
when a coefficient calculation is faulty, and hence set to zero.
Results, shown in Figure 3, highlight that the correctness
in the computation of certain coefficients must be ensured
to avoid signal degradation (high PRD), while others are
less critical (low PRD). A possible strategy is therefore to
provide guaranteed error protection for only parts of the
coefficients (the first 25% in Figure 3), employing only best-
effort protection to the remaining ones.

1The A/D converter power consumption is, on a first approximation,
proportional to the square of RMS of the input-referred noise.
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Fig. 3. Quality of reconstructed signals when a single DWT coefficient is
incorrect. Higher PRD values are worse, the maximum PRD threshold that
indicates the signal is of good quality for further processing is 9% [7].



This paradigm (named Significance-based computing [4])
is suitable for many applications in bio-signal processing
domain, as often biomedical applications exhibit a different
level of significance (error induced on the output) for different
operations. For instance, during frequency analysis of bio-
signals data, some frequencies are of higher importance, while
other frequencies instead play a less important role.

To assess the impact of significance-based computing on
achieving significant energy savings, we applied this paradigm
on a low-power simulated processing platform [14], executing
the DWT algorithm. We randomly injected memory errors at
varying rates to simulate several inexact working conditions.
We consider four cases of significance, namely: Case I: 12.5%
of the DWT coefficients are significant, Case II: 25%, Case
III, and Case IV: 50% of the DWT coefficients are significant
(and hence their correctness is guaranteed). For the significant
coefficients, we use a HW-assisted 4-bit Error Correcting Code
(ECC) protection, while for the least significant we only detect
the errors using two-dimensional parity codes and set the
faulty word to zero.

Figure 4 shows the normalized energy consumption values,
to the case with no protection mechanism, of the mentioned
significance cases. Compared to the case with no significance,
we can achieve up to 35% energy savings with significance-
based computing, particularly Case I. However, we need to
carefully select the significance case based on the operating
condition characterized by the expected error injection rate.
In fact, not knowing the expected error rate can lead to
either over-protection or significant signal degradation cases,
as shown in Figure 4(b). For instance, if the target platform
is expected to operate at all the error injection cases, then
Case III guarantees that the results signal is ”good” for further
analysis (PRD < 9% for all error cases [7]), while also
guaranteeing 20% energy savings with respect to a case where
all data is considered significant and protected by 4-bit ECC.
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Fig. 4. (a) Normalized energy consumption and (b) reconstructed signal PRD
with different significance cases.
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