Closing The Performance Gap between Causal
Consistency and Eventual Consistency

Jiaging Du Calin lorgulescu

Amitabha Roy

Willy Zwaenepoel

EPFL

ABSTRACT

It is well known that causal consistency is more expensive to
implement than eventual consistency due to its requirement
of dependency tracking and checking for causality. To close
the performance gap between the two consistency models,
we propose a new protocol that implements causal consis-
tency for both partitioned and replicated data stores.

Our protocol trades the visibility latency of updates across
different client sessions for higher throughput. An update,
either from a local client or a remote replica, is only visi-
ble to other clients after it is replicated by all replicas. As a
result, a read operation never introduces dependencies to its
client session. Only update operations introduce dependen-
cies. By exploiting the transitive property of causality and
total order update propagation, an update always has at most
one dependency. By reducing the number of tracked depen-
dencies and the number of messages for dependency check-
ing down to one, we believe our protocol can provide causal
consistency with similar cost to eventual consistency.

1. INTRODUCTION

Distributed data stores are a critical infrastructure
component of many large-scale online services. Choos-
ing a consistency model for those data stores is challeng-
ing. The CAP theorem shows that among Consistency,
Availability, and (network) Partition-tolerance, a repli-
cated system can only have two properties out of the
three. Having all the three is impossible.

Among different consistency models, causal consis-
tency [2] preserves the virtues of eventual consistency
[11]: high availability, partition-tolerance, and low up-
date latency. In addition, it guarantees that replicated
updates are applied at each replica in an order that re-
spects causality [2, 7]. However, causality does not come
for free. With existing solutions, causal consistency is
much more expensive to implement than eventual con-
sistency due to tracking and checking dependencies.

The problem addressed in this paper is to provide an
efficient and scalable implementation of causal consis-
tency for both partitioned and replicated data stores.
We propose a solution to close the performance gap be-
tween causal consistency and eventual consistency.

In a distributed data store, causality comes from two
sources: 1) previous updates in the same client session

and 2) reading updates created by a different client ses-
sion. FEach update causally depends on previous up-
dates in the same session, which we define as internal
dependencies. It also causally depends on updates of
other sessions whose values are read previously in the
same session, which we define as external dependencies.
To provide causal consistency, a replica does not apply
an update propagated from another replica until all its
causal dependency states are installed locally.

Existing systems [6, 8, 9] that provide causal con-
sistency track both internal and external dependencies
by maintaining some dependency metadata at the client
side. A client associates each update operation with the
dependency metadata. When an update is propagated
to another replica, the replica checks whether all the de-
pendencies of this update have been applied at the local
copy using its dependency metadata. Hence dependency
checking during update replication may require mes-
sages to other local partitions. Compared with even-
tual consistency, this is the major performance over-
head of causal consistency. Storing and transmitting
dependency metadata also consumes CPU cycles, stor-
age, and network bandwidth. To reduce the overhead of
tracking and checking unnecessary dependencies to ap-
plications, Bailis et al. propose to let applications assist
dependency tracking with better semantics knowledge
[3, 4]. In this paper, we target causal consistency in the
data store level, which is transparent to applications.

To demonstrate the problem, we compare the through-
put of causal and eventual consistency by an experi-
ment in a distributed key-value store. The data store
provides read and write operations on a single item.
It implements causal consistency as in COPS [8] and
Eiger [9]. A client only tracks the nearest dependencies
because of the transitivity of causality. In the exper-
iment, a client reads a random item at each partition
and updates one random item at a randomly selected
partition in the local data center. The update is then
propagated to replicas at remote data centers for repli-
cation. This workload stretches causal consistency since
it creates dependencies across all partitions for each up-
date operation. Notice that this workload is not rare in
real world applications. For instance, the default page
of a user of Twitter or Facebook loads at least dozens

600

—8— Eventual Consistency
—6— (Causal Consistency

500 |

400 |

300 |

200 |

Throughput (Kops/sec)

100

Number of Partitions

Figure 1: Throughputs of a distributed data
store with eventual and causal consistency. Each
partition is replicated by three replicas. Clients
read an item from each partition once and up-
date an item at one partition.

of or even hundreds of states. Any subsequent updates
via the page, such as commenting on other users’ posts,
causally depends all the loaded states.

Figure 1 shows the throughputs of causal and even-
tual consistency. As more partitions are added to the
system, the performance gap between the two becomes
larger. For causal consistency, dependency checking
messages to each local partition are the major source
of performance degradation.

The fundamental reason of tracking and checking de-
pendencies is that, when a client issues an update to the
data store, it does not know for sure whether all its pre-
viously accessed states, i.e., its dependencies, are fully
replicated. To make sure that this update appears after
all its dependencies at all replicas, each remote replica
performs dependency checking before it applies the up-
date. To completely remove the overhead of tracking
and checking dependencies, one may ask why we can-
not wait until a state is fully replicated and then access
it. However, if a system behaves like this, it becomes
strongly consistent, losing the advantages of partition-
tolerance and low update latency provided by causal
consistency.

2. OVERVIEW OF SOLUTION

We propose a protocol that provides causal consis-
tency for data stores that are both partitioned and repli-
cated. It improves throughput by slightly increasing the
visibility latency of updates across different client ses-
sions. It completely removes the necessity of tracking
and checking external dependencies.

The protocol allows a client to read other clients’
updates only after they are fully replicated. In other
words, updates that are not fully replicated are only vis-
ible to their originating clients, not other clients. Doing

this does not compromise the virtues of causal consis-
tency, because an update from a local client returns
right after it is executed locally.

To distinguish updates from different clients, we as-
sociate each update with the id of the client/user that
issues the operation. This introduces a small amount
of metadata to each update. However, compared with
existing approaches [4, 6, 8, 9], this metadata is much
smaller and its size is constant. In addition, online so-
cial networks naturally require storing and associating
user ids with user generated content in the database to
distinguish data of different users [1, 5]. For this type
and other similar applications, our protocol does not
introduce more metadata.

To determine whether an update is fully replicated by
all replicas of a partition, replicas of the same partition
exchange replication confirmation messages in our pro-
tocol. This is not necessarily required by eventual con-
sistency. To minimize the overhead of replication confir-
mation, we rely on version vectors [2, 10] to summarize
the local and remote updates that a replica has applied.
Replicas periodically exchange their version vectors and
a replica knows which updates are fully replicated by ex-
amining the latest received version vectors. A tradeoff
between the visibility latency of updates and the cost of
replication confirmation exists. Notice that, if the inter-
val is set to one hundred milliseconds, which is totally
fine for online social networks, the overhead of replica-
tion confirmation would become negligible, compared
with the update replication traffic.

Since a client can still access its own updates before
they are fully replicated, our protocol still tracks and
checks internal dependencies. Similar to existing ap-
proaches, it exploits the transitivity of causality to only
track the nearest internal dependencies, i.e., the nearest
previous update. The protocol also propagates the local
updates of a partition to its replicas in their execution
order. As a result, an update only possibly depends on
one state created by the same client session. Only if
this dependency is from a different partition, the de-
pendency checking process at a remote replica requires
a message to another local partition.

In summary, our protocol only tracks internal depen-
dencies. For any type of workloads, an update has at
most one dependency, which is constant and small. Our
protocols trade the visibility latency of updates across
different client sessions for higher throughput. As al-
most all existing causally consistent systems target on-
line social networks, we believe delaying the visibility of
other users’ updates by less than a second is completely
acceptable.

3. MODEL AND DEFINITION

In this section we describe our system model and de-
fine causality.

3.1 Architecture

We assume a distributed key-value store that man-
ages a large set of data items. The key-value store pro-
vides two basic operations to the clients:

e PUT(key, val): A PUT operation assigns value val
to an item identified by key. If item key does not
exist, the system creates a new item with initial
value val. If key exists, a new version storing val
is created and overwrites the existing one.

e val + GET(key): The GET operation returns the
value of the item identified by key.

The data store is partitioned into N partitions, and
each partition is replicated by M replicas. A data item is
assigned to a partition based on the hash value of its key.
In a typical configuration, the data store is replicated
at M different data centers for high availability and low
operation latency. The data store is fully replicated.
All N partitions are present at each data center.

A client is collocated with the data store servers in
a particular data center and only accesses those servers
in the same data center. The application tier relies on
the clients to access the underlying data store. A client
does not issue the next operation until it receives the
reply to the current one. Each operation happens in the
context of a client session.

3.2 Causality

Causality is a happens-before relationship between
two events [2, 7]. We denote causal order by ~». For
two operations a and b, if a~» b, we say b depends on
a or a is a dependency of b. a~» b if and only if one of
the following three rules holds:

e Thread-of-execution. a and b are in a single thread
of execution. a happens before b.

e Reads-from. a is a write operation and b is a read
operation. b reads the state created by a.

e Transitivity. There is some other operation ¢ that
a~»cand c~b.

We define the nearest dependencies of a state as all
the states that it directly depends on, without relying
on the transitivity of causality.

4. PROTOCOL

In this section, we present our protocol that efficiently
implements causal consistency for both partitioned and
replicated data stores.

4.1 Definitions

The protocol tracks only internal dependencies of each
client session by introducing some dependency meta-
data at both the client and server side. It also asso-
ciates each data item a small and constant amount of

Symbols | Definitions

N number of partitions

M number of replicas per partition
uid client user id

DT, dependency time of client uid
DP,i4 dependency partition of client uid
po the m*" replica of the n'? partition
vvn version vector of p

vvsy version vector set of pJt

RVVT replication version vector of pJ
US,ia update space of client uid

RS replication space of pJ

GSP global space of pI

d item tuple (k,v,ut,sr,dt,dp,idt,idr)
k key

v value

ut update time

sr source replica id

dt dependency time

dp dependency partition id

idt item dependency time

idr item dependency replica id

Table 1: Definition of symbols.

dependency metadata. Table 1 provides a summary of
the symbols used in the protocol.

Client States. Without losing generality, we assume
a client has one session to the data store. A client has
a unique user identifier, uid. It maintains for its session
a dependency time, DT,;4, and a dependency partition
id, DP,iy. These two states record the (logical) update
time and the local partition when and where the last
update of the client issues.

Sever States. Each partition maintains a wversion
vector (VV) [2, 10]. The version vector of partition p}
is VV;*, which consists of M non-negative integer ele-
ments. VV[m] counts the number of updates p}' has
executed locally. VV™[i] (i # m) indicates that p}} has
applied the first VV/"[i] updates propagated from pi, a
replica of the same partition located at another data
center. Each partition also maintains a replication ver-
sion vector (RVV). RVV)" at p has a similar structure
to VV)". It indicates that the first RVV,"[i] updates orig-
inated from p!, (0 <i< M —1) have been fully replicated
by all replicas of pi.

A partition p)' divides its storage space into three
parts to record updates of different stages. It temporar-
ily stores an update from a local client with uid at the
client’s private update space, US4y, which is only visible
to its own client. The partition also temporarily keeps
an update propagated from a remote replica for repli-
cation in the partition’s replication space, RS}, which is
not visible at all to clients. Only updates in the parti-
tion’s global space, GS}, are visible to all clients. When

Algorithm 1 Client operations at client with uid

Algorithm 2 Server operations at partition p}’

: Get(key k, user id uid)

send (GETREQ k) to server pi

receive (GETREPLY V)

return v

: Put(key k, value v, user id uid)

send (PUTREQ k,v,uid,DT,;y,DP,;4) to server pl
receive (PUTREPLY ur)

update dependency: DT,y < ut, DP,jq < n

SIS S

the partition knows that updates in the update space
and replication space are fully replicated, it moves them
to the global space to make them visible to all clients.

A partition updates an item by either executing an
update request from its clients or by applying a propa-
gated update from one of its replicas at other data cen-
ters. We call the partition that updates an item to the
current value by executing a client request the source
partition of the item.

Item Metadata. We represent an item d as a tuple
(k,v,ut,sr,dt,dp,idt,idr). kis a unique key that identifies
the item. v is the value of the item. ur is the update
time, the logical creation time of the item at its source
partition. sr is the source replica, the replica id of the
item’s source partition. dt is the dependency time, the
update time of the item’s nearest internal dependency.
dp is the dependency partition, the source partition id
of the item’s nearest internal dependency. idt is the
item dependency time, the update time of the previous
version of the item, if exists. idr is the item dependency
replica, the creation replica id of the previous version of
the item, if exists.

We show all the possible metadata in the tuple for
completeness. Some are not always necessary in im-
plementation, such as sr, dt, and dp. idt and idr are
not indispensable for providing causal consistency, as
we show next in explanations of the protocol. They are
used to detect and resolve conflicts caused by concur-
rent updates on the same item, which is important for
certain applications.

4.2 Protocol

We now present how our protocol executes GET and
PUT operations from clients and replicates PUT op-
erations while preserving causality. Algorithm 1 and
2 show the pseudocode of the protocol running at the
client and server side, respectively.

GET. A client sends a read request with an item
key to the partition that stores the corresponding item.
Upon receiving the request, the partition first checks
whether a recent update to the required item by the
client resides in its private update space, i.e., its own
update that is not fully replicated yet. If not, the par-
tition reads the item from the global space. It then re-

e e e T e o e

,_.
©

N N
N =

O ON N
AN

26:
27:

28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

43

o
e

upon receive (GETREQ k, uid)

if dd € US,;y s.t. d.k=k then
obtain d from US,;4
else obtain d from GS

send (GETREPLY d.v) back to client

upon receive (PUTREQ k,v,uid, DT, ;4,DP,;4)

increment version vector: VV[m] < VV'[m]+ 1
create new item d
set key: d.k <+ k
set value: d.v < v
set user id: d.uid < uid
set update time: d.ut < VV"|m]
set source replica: d.sr < m
set dependency time: d.dt < DT,;4
set dependency partition: d.dp < DP,;;
if 3 latest d' € {US,;yUGS™} s.t. d'.k=d.k then
set item dependency time: d.idt < d’.ut
set item dependency replica: d.idr < d'.sr
add d to USm'd
send (PUTREPLY d.ut) back to client
for each server pi, i € {0.M —1} do
send (REPLICATE d) to pi, in order of d.ut

: upon receive (REPLICATE d)

if d.dp # n then
wait until VVJ, [d.sr] > d.dt via a depen-

dency check message to pjj ,,

add d to RS}
update version vector: VV.!"[d.sr] + d.ut

upon every A time

for each server p, i€ {0.M —1} do
send (REPCONFIRM VV/™) to p!,

upon receive (REPCONFIRM VVF)

VVS™k] + VVE
for i€ {0.M—1} do
RVVIi] < min({VVSZ[jlli] | j € {0.M —1}})
for d € {US,;4 | all valid uid} do
if d.ut < RVV)"[m] then
ApplyUpdate(d)
remove d from US4
for d € RS)} do
if d.ut < RVV"[d.sr] then
ApplyUpdate(d)
remove d from RS}

: function APPLYUPDATE(d)
44:
45:
46:
47:
48:
49:
50:
51:
52:

if 3d' s.t. d.k=d.k then
if d.sr =d'.sr then
add d to GS}
else if d.idr =d'.sr Nd.idt = d'.ut then
add d to GS}}
else if d.ut ®d.sr > d .ut +d' .sr then
add d to GS}!
else discard d
else add d to GS}}

turns the item value back to the client. Since a partition
never returns the updates of other clients unless they are
fully replicated, read operations do not introduce any
external dependencies. A partition does return a previ-
ous update of the same client if it is not fully replicated
yet, which preserves read-your-own-writes session con-
sistency.

PUT. A client sends an update request, including
an item key, update value, and the client’s dependency
time and dependency partition id, to the partition that
manages the item. Upon receiving the request, the par-
tition increments its local logical clock in its version vec-
tor and creates a new version of the item by assigning it
a tuple that consists of the key, value, update time, up-
date replica id, dependency time, dependency partition
id. If the partition already has an item with the same
key, it sets the item dependency time and item depen-
dency replica id of the new item to the existing one’s de-
pendency time and dependency replica id, respectively,
for conflict detection during replication. The partition
then stores the newly created item in the client’s pri-
vate update space. It sends a reply with the update time
and its partition id back to the client. Upon receiving
the reply, the client updates its dependency time and
dependency partition id to track the nearest internal
dependency.

Update replication. While a partition sends an up-
date reply to the client, it also replicates the update by
sending it to all replicas of the same partition at differ-
ent data centers. A partition always propagates out its
updates in the order of their update time. When a parti-
tion receives a propagated update, it checks its internal
dependency if the update depends on a previous up-
date to a different partition. The dependency checking
requires one round of messages to the corresponding lo-
cal partition. Its dependency is satisfied automatically
if it depends on an update to the same partition, be-
cause of the total order update propagation. After the
dependency checking, the partition stores the update in
its replication space and increments the corresponding
element in its version vector. The replicated update is
not visible to the partition’s local clients until it is fully
replicated by all replicas of the partition.

Replication confirmation. To make local and repli-
cated updates visible to all clients, a partition needs to
find out when they are fully replicated. Replicas of the
same partition periodically exchange their version vec-
tors to tell each other the updates they have replicated.
A partition builds its RVV by choosing the minimum
one of each element from all the received version vectors.
The RVV safely tells which updates from each replica
of a partition are fully replicated. After the RVV is up-
dated, the partition goes through updates in its update
space and replication space. It moves all fully replicated
updates to its global space so that they are visible to

all local clients.

Conflict detection. Our protocol detects and re-
solves conflicting updates to the same item using stan-
dard techniques [8], as function APPLYUPDATE in Al-
gorithm 2 shows.

S. FUTURE WORK

We plan to implement the proposed protocol and
compare its performance with eventual consistency and
existing implementations of causal consistency. It is
also interesting to investigate how our protocol should
handle various failures.

References

[1] Big data in real-time at twitter. http://www.
slideshare.net/nkallen/q-con-3770885, 2010.

[2] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto. Causal memory: Definitions, implementation,
and programming. Distributed Computing, 9(1):37-49,
1995.

P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. The potential dangers of causal consistency
and an explicit solution. In Proceedings of the Third
ACM Symposium on Cloud Computing, page 22. ACM,
2012.

(3

[4

P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Bolt-on causal consistency. In Proceedings of the 2013
ACM SIGMOD International Conference on Manage-
ment of Data, pages 761-772. ACM, 2013.

[5] N. Bronson, Z. Amsden, G. Cabrera, et al. Tao: Face-
book’s distributed data store for the social graph. In
USEXNIX ATC, 2013.

[6] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:
scalable causal consistency using dependency matrices
and physical clocks. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 11. ACM, 2013.

[7] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, 1978.

[8] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: scalable causal
consistency for wide-area storage with cops. In Proceed-
ings of the 28rd ACM Symposium on Operating Systems
Principles, pages 401-416. ACM, 2011.

[9] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-
replicated storage. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Imple-
mentation, pages 313-328. USENIX Association, 2013.

[10] D.S. Parker Jr, G. J. Popek, G. Rudisin, A. Stoughton,
B. J. Walker, E. Walton, J. M. Chow, D. Edwards,
S. Kiser, and C. Kline. Detection of mutual inconsis-
tency in distributed systems. IEEE Transactions on
Software Engineering, (3):240-247, 1983.

[11] W. Vogels. Eventually consistent. Communications of
the ACM, 52(1):40-44, 20009.

