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Abstract

Due to their exceptional mechanical and optical properties, dielectric silicon nitride (SiN) mi-

cromembrane resonators have become the centerpiece of many optomechanical experiments. Effi-

cient capacitive coupling of the membrane to an electrical system would facilitate exciting hybrid

optoelectromechanical devices. However, capacitive coupling of such dielectric membranes is rather

weak. Here we add a single layer of graphene on SiN micromembranes and compare electromechan-

ical coupling and mechanical properties to bare dielectric membranes and to membranes metallized

with an aluminium layer. The electrostatic coupling of graphene coated membranes is found to be

equal to a perfectly conductive membrane. Our results show that a single layer of graphene sub-

stantially enhances the electromechanical capacitive coupling without significantly adding mass,

decreasing the superior mechanical quality factor or affecting the optical properties of SiN mi-

cromembrane resonators.

2



Hybrid devices capable of coupling different systems are presently one of the hot topics in

quantum technologies [1, 2]. Recent proposals [3, 4] outline optoelectromechanical systems,

where a mechanical resonator is strongly coupled to an optical and an electrical resonator

at the same time. The centerpiece of these proposals is a mechanical micromembrane inside

an optical resonator which is capacitively coupled to an LC circuit [3]. Recently, such a

hybrid optoelectromechanical system has been realized based on SiN-Al membranes [5]. For

these applications it is essential to have a strong electromechanical coupling relative to the

mechanical properties of the membrane.

A key feature of SiN micromembranes is their ultrahigh quality factor (Q) reaching 106−

107, low mass and excellent optical transparency with losses less than 10−5 in the near

infrared [6–8]. In order to not downgrade these essential properties it was proposed to use

dielectric polarization forces on bare SiN membranes for the electromechanical coupling [3].

Such forces on a dielectric are however, inherently weaker than the forces on conductors.

In this work, we deposit a single layer of graphene onto SiN membranes (SiN-G) [9] and

compare their mechanical properties and electromechanical coupling to bare SiN membranes

and to membranes covered with an aluminium layer (SiN-Al) [10]. We show that this

single layer of graphene allows superior electromechanical coupling without deteriorating

the exceptional properties of SiN membranes. Importantly, our setup uses graphene in a

floating electrode configuration. Thereby graphene is not in contact with a metal and the

interaction happens electrostatically. In this fashion we avoid the large contact resistance

associated with connecting graphene and a metal electrode [11–13].

We used commercial high and low-stress 50 nm thick Si3N4 membranes (Norcada Inc.)

for both the SiN and SiN-G resonators. Single layer graphene was grown on copper foil

using standard CVD techniques [14]. The graphene on copper was cut to size, the copper

wet-etched and the graphene transferred to the surface of the membrane in the aqueous

environment. A thin layer of PMMA was used to support the graphene during the etching

and transfer process. Once dry, the PMMA layer was removed from the graphene using

acetone vapor. The final structure was robust enough for subsequent fabrication steps,

for instance for making a round opening window in the graphene for future optical cavity

applications or lithographically defining gates for control of the carrier density and type. In

the experiments described below we used membranes without the opening in the graphene

layer. A characterization by Raman spectroscopy of the single layer graphene on SiN-G chips
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FIG. S1. Schematic drawing of the experimental setup. The micromechanical membranes are

placed on top of coplanar electrodes. Two types of electrodes are used: interdigited finger electrodes

and quarter-segment electrodes.

is presented in the supplementary information. The Al covered membranes were fabricated

in-house by standard cleanroom processing. The high-stress stoichiometric SiN layer is

100 nm thick. The aluminium layer is 50 nm thick and it is patterned by a lift-off step.

The Al layer could also be fabricated with a round hole in the center of the membrane for

optical access. A small rim (5% of the membrane size) along the anchor of the membrane

was spared out in order to minimize damping [10, 15].

Two types of coplanar electrode chips were used: interdigitated electrodes and quarter-

segment electrodes. Schematic drawings of two types of electrodes are depicted in Fig. S1.

The electrodes fabricated by standard cleanroom processing are made of a 200 nm thick gold

layer sitting on borosilicate glass substrate or SiN covered silicon substrate. The membranes

are placed membrane downwards onto the electrode. The electrode chips feature pillars

with a height of 600 nm and 1 µ in order to define a small gap between membrane and

electrodes. Optical measurements of the gap distance d and the membrane vibrations have

been made with a white light interferometer (vibrometer MSA-500 from Polytec GmbH).

The gap distance ranged from 3.5 to 14 µm which is larger than the height of the dedicated

pillars. The larger measured distance can be ascribed to electrode chip unevenness coming

from dirt and chip stress gradients and has been reduced down to the pillar height size in
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subsequent experiments.

The experimental setup is schematically depicted in Fig. S1. The membrane-electrode

sandwich is placed in a vacuum chamber (pressure below 1× 10−5 mbar) and is electrically

connected to an external voltage source. For quality factor measurements, the membranes

were placed on a piezo for stimulation. The quality factors were extracted from the mem-

brane ring-down time and the -3dB bandwidth of the resonance peak.

A key feature of micromechanical membranes is their Q of up to several million. Such high

quality factors are a requirement for strong optomechanical coupling and for high resolution

measurements. In the first experiment we compared the quality factors of the 3 different

types of membranes. Fig. S2 shows the measured quality factors of a bare SiN, SiN-Al,

and SiN-G membrane. On the SiN-Al membrane a rim of 5% of the membrane dimension

remained uncoated, whereas graphene is fully covering the entire SiN-G membrane. The

quality factors are highly mode dependent and the measured values are in correspondence

with values measured by Yu et al. [10]. There are clearly two sets of Q-values. According to

[10], the lower set (below ∼ 100000) is limited by clamping losses. The higher set is limited

by intrinsic damping, such as bulk or surface losses. It can be seen from the measurements

that there is no significant difference between the different membrane types in both sets. The

graphene sheet seems to be mechanically invisible and it does not significantly contribute

to the energy loss. Thus with graphene it is not required to spare out the membrane area

close to the clamping edge as it is for metal layers. The additional metal layer of the SiN-Al

membrane downshifts the resonance frequencies compared to the other two membranes, as

can be clearly seen in Fig. S2 for low mode numbers. This divergence increases for higher

mode numbers, which makes a direct comparison difficult.

It is crucial for an efficient hybrid optoelectromechanical device to have strong elec-

tromechanical coupling between the membrane and the electrical circuit. The electrostatic

interaction for SiN membranes is due to dielectric polarization forces (the electric field in-

teracts with a dielectric) [3, 16–18] and in some of the experiments presented here it is also

due to the quasi-permanent electric charges in a dielectric. The interdigitated electrodes

have been design to generate strong electric field gradients that are required for the dielec-

tric polarization force. The interaction for conductive SiN-Al [1] is due to the electrostatic

force between conductors (the electric field interacts with charges on a conductor). For this

case the quarter-segment electrodes have been designed. Using the two electrode geometries

5



FIG. S2. Quality factors with increasing mode numbers of a SiN-G membrane compared to a bare

SiN and a SiN-Al membrane. The membranes have a diameter of 0.5×0.5 mm2 and are all made

of high-stress stoichiometric SiN.

allows us to characterize the comparative performance of both types of membranes. It also

allows us to conclude to which type the SiN-G membranes belong.

Neglecting the effect of free charges on the membrane, the electrostatic force between a

dielectric or conductive thin membrane and electrodes can generally be described by

F = cAf(d)U2 (S1)

with A - the membrane area, U - the potential difference over the electrodes, c - the elec-

trostatic force constant that characterizes the coupling performance, and f(d) - a function

describing the distance dependence of the force.

We extract the intrinsic coupling strength c of each membrane type from measuring the

mechanical frequency shift due to the so-called spring softening effect which results in a

quadratic frequency drop with the DC-bias voltage UDC . The relative frequency shift is

given by (see supplementary information)

∆ω

ω0

= −αU2
DC . (S2)

Using α found from the frequency shift data (S2), the electrostatic force constant c can be

calculated from

c = 2α[−f ′(d)]−1hρω2
0η
−1 (S3)

with the membrane thickness h and the membrane mass density ρ; while η (of order unity)

quantifies the spatial overlap between the membrane mode shape and the fixed electrodes, in
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particular compensating for the gap between quarter-segment electrodes and for the circular

hole in the SiN-Al membranes’ center (see supplementary information).

Here the coupling performance of SiN-G membranes is compared to that of the SiN and

SiN-Al membranes using the two types of capacitor+membrane chips described above. In

the first set, SiN and SiN-G membranes are coupled to interdigitated electrodes; in the

second set, SiN-Al and SiN-G membranes are coupled to quarter-segment electrodes.

For the interdigitated electrode geometry and the range of membrane-capacitor distances

d used in the experiments, the electrostatic force for both dielectric and perfectly conducting

membranes (an appropriate model for our SiN-G membranes) is well approximated by

f(d) = A−10 e−κd (S4)

with A0 - a scaling constant with units of area. For the data presented below, we use

A0 = 1 µm2 For our specific setup, we determined numerically that κ = 1.05µm−1 for both

dielectric and perfectly conducting membranes.

In Fig. S3a the electrostatic spring softening of a SiN-G membrane on top of an inter-

digitated electrode is shown. From the fit parameter α obtained from this data the force

constant c is calculated for the membranes using Eq. (S3) and the exponential force law

(S4). The resulting average force constants for the bare SiN and SiN-G membranes on inter-

digitated electrodes are shown in the left part of Fig. S3c. SiN-G is seen to outperform SiN

by a factor of 5.5. Also shown are the theoretical values determined semi-analytically for

dielectric (SiN, εr = 7.6) and perfectly conducting membranes; the average force constant

of SiN-G is seen to be compatible with the latter.

Next, we use the quarter-segment coplanar electrodes with a SiN-Al or a SiN-G membrane

as a floating electrode. The results of this set of experiments are well described by another

force law (in the regime where d is smaller than the inter-electrode gap):

f(d) = 1/d2. (S5)

The measured spring softening of a SiN-G membrane placed over quarter segment elec-

trodes is shown in Fig. S3b. From the fit parameter α obtained from this data the force

constant c is calculated for the conducting membranes again with Eq. (S3) but now using

the quadratic force law (S5). On the right side of Fig. S3c the extracted average force con-

stants of SiN-G and SiN-Al membranes are shown. The experimental values again agree
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well with the theoretical value for a perfect conductor. The large standard deviation of the

force constant can be assigned to uncertainties in the distance d measurement and lateral

misalignment which can contribute up to 20% error. The relatively large average c value

of the SiN-G membranes might be an effect due to the excess graphene on the frame, as

discussed in the supplementary information.

An additional complication with SiN membranes which is eliminated by using SiN-Al or

SiN-G membranes is the accumulation of free charges on the dielectric SiN membrane. The

charging has been investigated by increasing the DC voltage and then inverting the polarity.

If quasi-static charges are present, a spring hardening (increase in oscillation frequency)

instead of softening will be observed. The results of this experiment are shown in Fig. S4

with a bare SiN, a SiN-Al and a SiN-G membrane on interdigitated electrodes. From the

observed spring hardening, shown in Fig. S4a, it can be concluded that free electric charges

are indeed available on the bare SiN membranes. We note that the force on a charge is

a function of the inverse of the distance (∝ 1/d) and may therefore be partly responsible

for the somewhat higher value of the coupling constant c for SiN shown in Fig. S3c. The

charging of the bare SiN membrane is investigated in more detail in the supplementary

information.

Fig. S4b and Fig. S4c present the results of the same charging experiment conducted with

a SiN-G on similar interdigitated electrodes and with SiN-Al membranes on quarter-segment

electrodes, respectively. Assuming that the electrode design does not influence the charging

effect, we conclude that the absence of spring hardening for SiN-G shows that the single

layer of graphene as well as the Al layer eliminates charging.

We performed further characterization of the SiN-G membranes by studying the depen-

dence of the ac amplitude and the dc displacement on the coupling voltage (Fig. S5). If the

AC driving voltage is small compared to the DC bias voltage, the electrostatic force becomes

F = cAf(d)(UDC + UAC)2 ≈ cAf(d)(U2
DC + 2UACUDC). (S6)

Thus the mechanical resonance peak amplitude is approximately a linear function of the

DC voltage, for a fixed AC driving voltage, and the static deflection of the membrane is a

quadratic function of the DC voltage. As seen from Fig. S5 the experimentally observed

behavior supports the model.

In conclusion we have shown that SiN-G membranes with a single layer of graphene are
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promising canditates for efficient optoelectromechanical hybrid coupling devices. Further-

more, by using the graphene sheet on SiN in a floating electrode configuration, we overcome

the unsolved problem of high contact resistance between metal electrodes and graphene.

They show electromechanical coupling which is as good as for an ideal conductor. The en-

hanced electromechanical coupling of conductive membranes lowers the threshold for strong

coupling, as predicted for dielectric membranes [3], accordingly. The single graphene layer

is mechanically invisible and does not negatively influence the membrane performance. Un-

like the real metal coating, graphene does not require patterning in order to maintain the

highest mechanical quality factors of a bare SiN membrane. Also, unlike the metal coating,

graphene does not add any noticeable mass to the membrane which is an advantage for high

sensitivity applications, such as, e.g., the optical detection of radio waves with metallized

silicon nitride membrane resonators [5]. The lower mass achieved by SiN-G membranes as

compared to SiN-Al membranes used in the reference would improve the quantum efficiency

of RF-to-optical conversion by up to 4 times (by the ratio of the masses). Finally, the use

of graphene overcomes the complications of charging effects in SiN membranes, which has

shown to be difficult to control.
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a!

c!

b!

SiN-G!SiN-G!

FIG. S3. Extraction and comparison of the electrostatic force constant c. a) Resonance frequency of

fundamental mode of a 0.5× 0.5 mm2 SiN-G membrane on interdigitated electrodes as a function

of DC voltage. The distance between membrane and electrodes is d = 7.0 µm. b) Resonance

frequency fundamental mode of a 0.5 × 0.5 mm2 SiN-G membrane on quarter-segment electrodes

as a function of DC voltage. The distance between the membrane and electrodes is d = 6.3 µm. c)

Comparison of force constants c (according to (S3) using (S4) and (S5)) for different combinations

of electrodes and membranes. On the left, c extracted for bare SiN (4 experiments) and SiN-G (3

experiments) membranes on interdigitated electrodes are shown. The electrode fingers are 4 µm

wide with a gap of 2 µm between the fingers. To the right, c of SiN-Al (3 experiments) and

SiN-G (4 experiments) on quarter-segment electrodes are shown, with a gap between the segments

of 60 µm. The error bars represent the standard deviation of the conducted experiments. The

solid and dashed grey lines represents the theoretical values for the scenario of a pure dielectric

polarization force and an electrostatic force on the conductive membrane, respectively.
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SiN-Al!SiN-G!SiN!

a! b! c!

FIG. S4. Response of the resonance frequency of fundamental mode of a bare SiN, a SiN-G,

and a SiN-Al membrane to DC polarity inversion. First the voltage was increased in the positive

direction. Then the polarity was reversed and the voltage was increased in the negative direction.

a) Response of a bare SiN membrane (1×1 mm2, d = 4.0µm) on interdigitated electrodes; electrode

fingers are 4 µm wide with a gap of 2 µm between the fingers. b) Response of a SiN-G membrane

(0.5× 0.5 mm2, d = 5.5µm) on interdigitated electrodes; the electrode fingers are 4 µm wide with

a gap of 5 µm between the fingers. c) Response of a SiN-Al membrane (1× 1 mm2, d = 11 µm) on

quarter-segment electrodes. The resonance frequency was determined from the thermomechanical

resonance peak.
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a! b!

FIG. S5. Response of fundamental mode of a 0.5 × 0.5 mm2 SiN-G membrane on interdigitated

electrodes. Response of a) resonance peak amplitude and b) quasi-static displacement to DC bias

voltage. The distance between membrane and electrodes is d = 6.5 µm. The electrode fingers are

4 µm wide with a gap of 5 µm between the fingers. The resonance peak amplitude was measured

for a white noise signal of UAC = 10 mV. The quasi-static displacement was measured with a

rectangular signal at 10 kHz (which is far below the fundamental resonance frequency and can

therefore be considered to be quasi-static). The error bars represent the standard deviation of 3

consecutive measurements. The grey lines represent a linear fit in a) and a quadratic fit in b).
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Supplementary Information for

Graphene on silicon nitride for optoelectromechanical micromembrane resonators

ELECTROSTATIC FORCE CONSTANT

In the case where the electrostatic coupling is symmetric with respect to the two electrode

polarities, the force on a segment of membrane floating above the electrodes can be described

by

F = cAf(d)U2 (S1)

with the area of the segment A, distance between fixed electrodes and membrane d, DC

voltage U between fixed electrodes, and an electrostatic force constant c; f(d) is a scaling

function with units of inverse area.

In writing the force law (S1) we have assumed the membrane dynamics to take place under

fixed voltage conditions. This requires the voltage source to supply and absorb charge at

the timescale on which the membrane motion modulates the capacitance. However, even

if we operate in the opposite limit, i.e. fixed charge on the capacitor, the appropriate

correction to the force law (S1) is negligible for our setup [1]; this is due to stray capacitance

(in the cables from the voltage source) that is much larger than that of the electrode-

membrane arrangement. Intuitively, the large stray capacitance acts as a charge reservoir

for the modulated electrode-membrane capacitor, effectively keeping the electrode voltage

constant.

The equilibrium of forces for an infinitesimal piece of membrane with the area dx × dy

and thickness h is

σ0h∇2w(x, y, t)− ρh∂
2w

∂t2
(x, y, t) + cU2f(d− w(x, y, t))ξ(x, y) = 0 (S2)

with the displacement function w(x, y, t), the tensile pre-stress σ0, and the mass density

ρ. ξ(x, y) is a Heaviside step function (or a product of such functions) taking into account

electrode gaps and edges, as well as the hole in the membrane metallization of some of the

membranes used.



The deflection of a membrane can be described by

w(x, y, t) =
∞∑
n=1

∞∑
m=1

AnmΦn,m(x, y) eiωt (S3)

with the mode shape function

Φn,m(x, y) = sin
nπx

Lx
sin

mπy

Ly
(S4)

Considering the first order Taylor approximation of the electrostatic force (S1), the equa-

tion of motion can be written as

σ0h∇2w − ρh∂
2w

∂t2
+
(
cU2f(d)− cU2f ′(d)w

)
ξ(x, y) = 0 (S5)

In a ”linear system”, the static force term cU2f(d)ξ(x, y) causes a static deflection of the

membrane. This static deflection does not influence the eigenfrequency and can thus be

neglected. Following Galerkin’s method, (S2) can be solved for the fundamental normal

mode by multiplying it with Φ1,1 and integrating over the entire membrane area A = L×L

with L = Lx = Ly∫∫
A

(
σ0h∇2w + ρhω2w − cU2f ′(d)wξ(x, y)

)
Φ1,1dx dy = 0 (S6)

which with (S3) can be written as

− 2
π2

L2
σ0h

∫∫
A

Φ2
1,1dx dy + ρhω2

∫∫
A

Φ2
1,1dx dy − cU2f ′(d)

∫∫
A

Φ2
1,1ξ(x, y)dx dy = 0, (S7)

where we have ignored the induced couplings to other membrane modes assumed to be weak.

The frequency can now be isolated from (S7)

ω2 = 2π2σ0
ρ

1

L2
+ c

U2f ′(d)

hρ

∫∫
A

Φ2
1,1ξ(x, y)dx dy∫∫
A

Φ2
1,1dx dy

(S8)

With the eigenfrequency ω0 of a membrane with zero voltage applied (U = 0)

ω0 =

√
2π

L

√
σ0
ρ

(S9)

and introducing the overlap factor η1,1 between the membrane mode Φ1,1 and the electrode

mask

η1,1 =

∫∫
A

Φ2
1,1ξ(x, y)dx dy∫∫
A

Φ2
1,1dx dy

, (S10)

S1



the first order Taylor approximation of ω becomes

ω ≈ ω0

(
1 +

c

2

U2f ′(d)

hρω2
0

η1,1

)
(S11)

which results in a relative frequency shift of

∆ω

ω0

=
c

2

U2f ′(d)

hρω2
0

η1,1. (S12)

For a membrane with a continuous electrode (ξ = 1 ⇒ η1,1 = 1) the frequency shift due to

the electrostatic spring softening effect becomes

∆ω

ω0

=
c

2

U2f ′(d)

hρω2
0

. (S13)

In our experiments, the electrostatic force factor c was determined by measuring the

relative frequency shift of a membrane as a function of U . The measured data was fitted

with
∆ω

ω0

= −αU2 (S14)

and c can then be obtained from

c = 2α[−f ′(d)]−1hρω2
0η
−1
1,1 (S15)

or

c = 2α[−f ′(d)]−1hρω2
0 (S16)

for ξ = 1.

THEORETICAL FORCE CONSTANT FOR A CONDUCTIVE MEMBRANE PLACED

OVER COPLANAR QUARTER-SEGMENT ELECTRODES

Symmetrical coupling

Dismissing fringe fields, the force between the plates of a parallel plate capacitor with

distance d is

FC =
1

2
ε0
A

d2
U2 (S17)

where ε0 is the vacuum permittivity. The potential of the floating conductive membrane

is U/2, given that it is placed symmetrically in relation to the two electrode polarities.

S2



Thus, the force on a conductive membrane segment of area A to coplanar quarter-segment

electrodes is

FC =
1

2
ε0
A

d2
(U/2)2 (S18)

and therewith the force constant (S1) becomes

csym =
1

8
ε0, (S19)

using the scaling function f(d) = d−2.

Hypothetical effects due to excess graphene

In our experiments with SiN-G membranes on quarter-segment electrodes, it is possible

that we may have additional capacitance contributions from the excess graphene outside the

membrane area (as opposed to the case of SiN-Al membranes where the Al layer is strictly

confined to within the SiN membrane area). Specifically, such extra contributions may occur

in a highly asymmetric manner with regard to the two electrode polarities.

This prompts us to derive the theoretical value of c for the case of highly asymmetric

capacitance between the conductive membrane and the two electrode polarities. In this

case the membrane will be essentially equipotential with one of the electrode polarities

whereby the electrostatic force vanishes on membrane segments above electrodes of this

polarity. Hence, under these circumstances, the membrane coupling to the electrodes is

extremely asymmetric wrt. the two polarities and c acquires a dependence on position in the

membrane plane: The force constant vanishes for the part of the membrane above electrodes

with which it is equipotential, while for membrane segments above the other polarity, with

which the potential difference is U , Eq. (S17) leads to

casym =
1

2
ε0, (S20)

which is four times the symmetrical value, Eq. (S19).

We will now discuss how the above effect, if present in our setup, would affect the force

constants extracted from experiment. In the simple case where the membrane mode is sym-

metric wrt. the two electrode polarities (while the electrostatic force is not), the experimental

force constant, as calculated using Eq. (S15), samples the effective and ineffective electrodes

equally, resulting in c = 1
4
ε0 (given that the perfect conductor model is valid for SiN-G).
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This is a factor of 2 enhancement relative to the theoretical value for the case of symmetrical

capacitances, Eq. (S19).

Due to a somewhat asymmetric electrode mask (featuring a centrally placed connection

bar not shown in Fig. 1 of the main text) and, more importantly, the possibility of mis-

alignment (estimated to be up to 25% of the membrane side length), the simple result for

the symmetrical membrane mode does not apply in general. In fact, by means of Eq. (S21)

presented below, we find that the addition of a large, asymmetrical capacitance wrt. one

polarity can enhance the fundamental mode frequency shift by a factor of 1.0−4.2 for align-

ments within the cited range. By assuming a flat distribution within this range, we find that

the effect would enhance the averaged force constant by a factor of 2.1. A related mecha-

nism, that would result in exactly the same enhancement as just described, is involuntary

charging of the membrane by short-circuiting with one of the electrode polarities with RC

time much less than the membrane oscillation period 2π/ωmem.

On the other hand, consider a similar short-circuiting but with RC time longer than the

membrane period while still much less than the scan time for the DC voltage U . In this

situation the dynamics take place with fixed charge on the membrane and without access

to the charge reservoir of the large stray capacitance as the latter now acts in series with

the much smaller membrane-electrode capacitance (compare to the situation described in

section ). We find that the fundamental mode frequency shift can be modified by a factor of

0.8− 2.5 within the alignment range stated earlier. Assuming a flat alignment distribution

once again, we find that the averaged force constant would be enhanced by a factor of 1.4

in case of such membrane charging.

Regarding SiN-G on quarter-segment electrodes, either of the above effects could serve

to explain, at least partially, the large error bars of the average force constant (presented in

Fig. 3c of the main text). Moreover, the effects of strongly asymmetrical capacitance and

charging with short RC time enhance the frequency shift in a way that is compatible with

the average experimental force constant lying above the theoretical value for symmetrical

coupling by a factor of 2.7.
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GENERAL ASYMMETRIC COUPLING TO QUARTER-SEGMENT ELECTRODES

We discussed in section the two limits of coupling a conductive membrane to quarter-

segment electrodes: Symmetric and strongly asymmetric. In calculating the experimental

force constants presented in the main text for the quarter-segment geometry, we assume that

the capacitance between the electrodes and the conductive layer on the membrane only has

contributions from the membrane area (however, see remarks regarding excess graphene in

section ). To be able to account for electrode mask asymmetry and misalignment, we model

the coupling as two capacitors in series: The capacitance between the positive electrode

segments with the membrane in series with that between the negative electrodes and the

membrane (note that d is much smaller than the gap between fixed electrodes). This leads

to the following generalization of the overlap factor η, Eq. (S10), for the quarter-segment

geometry [1]:

ηn,m = 4

 O
(2)
+(

1 +
O

(0)
+

O
(0)
−

)2 +
O

(2)
−(

1 +
O

(0)
−

O
(0)
+

)2 −
1

O
(0)
+ +O

(0)
−
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O

(1)
+

O
(0)
+

− O
(1)
−

O
(0)
−

1

O
(0)
+

+ 1

O
(0)
−


2
 , (S21)

where we have introduced the symbol

O
(j)
i ≡

∫∫
Ai

Φj
n,mξ(x, y)dx dy(∫∫

A

Φ2
n,mdx dy

)j/2 , (S22)

with i ∈ {+,−} and Ai being the area of the membrane above electrodes of polarity i. The

terms in Eq. (S21) can be interpreted as follows: The first (second) term represents the

frequency shift contribution from the membrane area above positive (negative) electrodes

with the local potential difference fixed at its equilibrium value, whereas the third term is a

correction due to the modulations of the membrane potential around the equilibrium value.

We use Eq. (S21) in calculating experimental c values in order to account for gaps, edges

and a slight asymmetry in the electrode mask as well as the central hole in the Al layer of

the SiN-Al membranes. The formula was also used to estimate the uncertainty in c due to

lateral misalignment of the membrane wrt. the electrodes (estimated to be up to 25% of the

membrane side length).
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RAMAN CHARACTERIZATION OF SIN-G MEMBRANES

The graphene on the SiN-G membranes was characterized by Raman spectroscopy. The

graphene flakes are covering the entire SiN membranes plus a large part of the surrounding

frame. In Fig. S1 the Raman spectra of a SiN-G membrane chip is shown. The graphene

spectra clearly show the typical spectrum of single layer graphene with a 2D-peak having

double the amplitude of the G-peak. In all 22 point measurements we made the D-peak

at 1300-1400 cm−1 was missing which indicates that the graphene layers is of good quality

with probably only few defect.

CHARGING OF BARE SIN MEMBRANES

In the case of charging, a linear force adds up to the quadratic electrostatic force. Thus,

a linear term has to be added to the relative frequency shift as a function of DC voltage

(S14)
∆ω

ω
= −αU2

DC − βUDC . (S23)

Fig. S2a shows the charging induced hysteresis recorded during the charging experiment

presented in Fig. 4a in the main document. In the experiment, the DC voltage was swept 4

times between 0 and +30 V. From sweep to sweep the spring softening becomes continuously

stronger. This is a clear sign for the accumulation of charge on the bare SiN membrane. In

the 5th sweep, the voltage is swept from 0 to -30 V and a spring hardening is observed. In

Fig. S4b, the initial sweep is fitted with the charge free model (S14) and the last continuous

sweeps 4+5 are fitted with (S23) which contributes for a linear force from free charge on

the membrane. The fit is of good quality and strongly supports the hypothesis of charge

accumulation on the membrane. The force constant of the linear force due to free charge

is one order of magnitude larger than the force constant of the electrostatic force. Hence,

free charge on the membrane significantly contributes to the electromechanical membrane

behavior especially at low DC voltages.

[1] Emil Zeuthen et al. In preparation.
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FIG. S1. Raman spectra of a SiN-G chip measured on a) the graphene covering the SiN membrane,

b) the graphene covering the frame, and c) the blank frame. The spectra were measured with a

532 nm laser with 10 mW power and 15 exposures with an exposure time of 15 s.
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FIG. S2. a) Detail of the charging experiment shown in Fig. 4a in the main document. The graph

shows the response of a bare SiN membrane (1×1 mm2, d = 4.0 µm) on interdigitated electrodes;

electrode fingers are 4 µm wide with a gap of 2 µm between the fingers. The voltage was swept

4 times between 0 to +30 V and backwards. In the end the DC voltage was swept from 0 to

-30 V. b) Fig. S4b shows the fitting of the initial voltage sweep 1 with (S14) and the last sweep

4+5 with (S23). The fitting parameters are for sweep 1: α = 2.9 × 10−6 V2, and for sweep 4+5:

β = 6.7× 10−5 V−1 while α was kept constant at α = 2.9× 10−6 V2.

S8


	Graphene on silicon nitride for optoelectromechanical micromembrane resonators
	Abstract
	 References
	 Electrostatic force constant
	 Theoretical force constant for a conductive membrane placed over coplanar quarter-segment electrodes
	 Symmetrical coupling
	 Hypothetical effects due to excess graphene

	 General asymmetric coupling to quarter-segment electrodes
	 Raman characterization of SiN-G membranes
	 Charging of bare SiN membranes
	 References


