
Cell Reports

Article
TERRA-Reinforced Association of LSD1 with MRE11
Promotes Processing of Uncapped Telomeres
Antonio Porro,1,2,3 Sascha Feuerhahn,1,2 and Joachim Lingner1,*
1ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, EPFL-Ecole Polytechnique Fédérale de Lausanne,
Lausanne 1015, Switzerland
2These authors contributed equally to this work
3Present address: Institute of Molecular Cancer Research, University of Zürich, Zürich 8057, Switzerland
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SUMMARY

Telomeres protect chromosome ends from being
recognized as sites of DNA damage. Upon telomere
shortening or telomere uncapping induced by loss of
telomeric repeat-binding factor 2 (TRF2), telomeres
elicit a DNA-damage response leading to cellular
senescence. Here, we show that following TRF2
depletion, the levels of the long noncoding RNA
TERRA increase and LSD1, which binds TERRA, is
recruited to telomeres. At uncapped telomeres,
LSD1 associates with MRE11, one of the nucleases
implicated in the processing of 30 telomeric G over-
hangs, andwe show that LSD1 is required for efficient
removal of these structures. The LSD1-MRE11 inter-
action is reinforced in vivo following TERRAupregula-
tion in TRF2-deficient cells and in vitro by TERRA-
mimicking RNA oligonucleotides. Furthermore, LSD1
enhances the nuclease activity of MRE11 in vitro.
Our data indicate that recruitment of LSD1 to depro-
tected telomeres requires MRE11 and is promoted
by TERRA. LSD1 stimulates MRE11 catalytic activity
and nucleolytic processing of uncapped telomeres.

INTRODUCTION

Telomeres are the nucleoprotein caps that protect the ends of

linear chromosomes from being recognized as sites of DNA

damage (de Lange, 2009). Due to the end-replication problem

and nucleolytic processing, gradual attrition of telomere length

occurs with aging (Baird, 2008). The proper maintenance of telo-

meres is crucial for chromosome stability. Loss or damage of the

chromosome ends initiates a DNA-damage response (DDR) and

triggers replicative senescence (d’Adda di Fagagna et al., 2003;

Deng et al., 2008; Denchi and de Lange, 2007; Takai et al., 2003).

Mammalian telomeres consist of double-stranded 50-TTAG
GG-30/50-CCCTAA-30 repeats terminating in 30 protruding sin-

gle-stranded G-rich overhangs. Telomeric DNA is associated

with specialized telomeric proteins that are known as shelterins
C

(de Lange, 2005). Shelterins play crucial roles in protecting chro-

mosome ends fromDNA-damage checkpoint signaling and DNA

repair (de Lange, 2009). Telomeric repeat-binding factors 1 and 2

(TRF1 and TRF2) bind directly the double-stranded telomeric

DNA recruiting TIN2, TPP1, and Rap1 to telomeres (de Lange,

2005). POT1 in association with its binding partner TPP1 binds

the single-stranded 30 G-rich overhangs (Baumann and Cech,

2001). TRF2-depleted telomeres as well as critically short telo-

meres elicit a robust ATM-mediated DDR (Denchi and de Lange,

2007; Karlseder et al., 1999; Okamoto et al., 2013), which in-

volves formation of ‘‘telomere dysfunction-induced foci’’ (TIFs)

(Takai et al., 2003). TRF2-depleted telomeres undergo telomere

fusion events by nonhomologous end-joining (NHEJ) (Celli and

de Lange, 2005). It has been proposed that TRF2-mediated

capping involves formation of t loop structures in which the telo-

meric 30 G overhang is tucked into the double-stranded part of

the telomeric DNA (Griffith et al., 1999). Consistent with this

notion, t loop formation depends on TRF2 (Doksani et al., 2013).

Telomere end fusions upon TRF2 removal are induced by

NHEJ and require prior removal of the telomeric 30 G overhangs

(Celli and de Lange, 2005; van Steensel et al., 1998). G overhang

removal involves at least two protein complexes with nuclease

activity: XPF/ERCC1 and MRE11/RAD50/NBS1. XPF-deficient

human cells have diminished G strand overhang loss upon

expression of the dominant-negative TRF2DBDM allele, and

Ercc1�/� mouse embryonic fibroblasts (MEFs) are protected

from telomere end fusions upon expression of Trf2DBDM (Zhu

et al., 2003). Cells from the hypomorphic mouse mutant

Mre11ATLD1/ATLD1, which have defects in the ATM-dependent

DDR, retain G strand overhangs upon deletion of Trf2 and have

reduced chromosome end fusions (Attwooll et al., 2009). This

effect can be explained by the necessity of checkpoint activation

to promote NHEJ at uncapped telomeres (Denchi and de Lange,

2007). However, in the presence of the presumed nuclease-defi-

cient Mre11H129N allele, which is proficient in checkpoint

signaling, 30 G strand overhangs were also retained in Trf2-

deleted cells. This therefore indicates that in addition to its roles

in ATM activation, the nuclease activity of MRE11 is required for

telomere 30 end processing (Deng et al., 2009a).

Although tightly packaged as heterochromatin, telomeres are

transcribed into a long noncoding RNA containing UUAGGG
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repeats, referred to as TERRA. TERRA is an RNA polymerase II

(RNAPII) transcript conserved throughout eukaryotes. It is tran-

scribed from subtelomeres toward chromosome ends (Azzalin

et al., 2007; Schoeftner and Blasco, 2008). TERRA remains

partly associated with telomeric chromatin and is regulated in

a cell-cycle-dependent manner, with low levels occurring in

late S phase (Azzalin et al., 2007; Deng et al., 2009b; Feuerhahn

et al., 2010; Porro et al., 2010). The nonsense-mediated mRNA

decay (NMD) factors regulate TERRA presence at telomeres

(Azzalin et al., 2007). TERRA transcription has been linked to

chromatin structure. TERRA expression is repressed by the

DNA methyltransferase enzymes DNMT1 and DNMT3b, which

methylate CpG dinucleotides present in the human subtelomeric

region (Nergadze et al., 2009; Yehezkel et al., 2008). Moreover,

also the SUV39H1 H3K9 histone methyltransferase and hetero-

chromatin protein 1a (HP1a), which binds H3K9me3, negatively

regulate TERRA transcription (Arnoult et al., 2012). TERRA has

been implicated in telomere length control. TERRA binds and

represses telomerase (Redon et al., 2010; Schoeftner and

Blasco, 2008), but this effect can be alleviated by TERRA binding

proteins (Redon et al., 2013). Induction of TERRA in Saccharo-

myces cerevisiae leads to telomere shortening in cis through

stimulation of exonuclease I (ExoI) rather than through inhibition

of telomerase (Pfeiffer and Lingner, 2012). Furthermore, TERRA

foci in S. cerevisiae can trigger the assembly of telomerase into

large clusters prior to their recruitment to short telomeres (Cusa-

nelli et al., 2013). TERRA has also been proposed to regulate the

exchange of RPA by POT1 at single-stranded telomeric DNA at

the end of S phase (Flynn et al., 2011).

Lysine-specific demethylase 1 (LSD1) (also known as KDM1

and AOF2) is an amine oxidase that catalyzes lysine demethyla-

tion in a flavin adenine dinucleotide (FAD)-dependent oxidative

reaction (Lan et al., 2008; Shi et al., 2004). LSD1 removes

mono- and dimethyl groups from lysine 4 (H3K4) (Shi et al.,

2004) and lysine 9 (H3K9) (Metzger et al., 2005) of histone 3.

LSD1 also acts on nonhistone proteins including p53, E2F1,

and DNMT1 (Huang et al., 2007; Kontaki and Talianidis, 2010;

Wang et al., 2009).

Here, we discover that TERRA collaborates with LSD1 and

MRE11 at uncapped telomeres. Upon TRF2 depletion, TERRA

expression increases, and LSD1 is tethered to telomeres.

LSD1 recruitment to dysfunctional telomeres requires the MRN

complex and is stimulated by TERRA, which associates with

LSD1 and enhances the binding affinity between LSD1 and

MRE11. LSD1 has no visible impact on the chromatin state of

uncapped telomeres, but it is required for the nucleolytic removal

of the telomeric 30 G overhang. Because LSD1 stimulates

MRE11 nuclease activity in vitro, it may promote removal of 30

G overhangs at dysfunctional telomeres through MRE11 in vivo.

Our data indicate that TERRA and LSD1 cooperate to regulate

MRE11 activity for the processing of uncapped telomeres.

RESULTS

Telomere Deprotection Modulates TERRA Association
with LSD1
Telomere uncapping induced by TRF2 knockdown leads to

TERRA upregulation in human fibroblasts (Caslini et al., 2009).
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We observed that also in HeLa cells, functional small hairpin

RNA (shRNA)-mediated depletion of TRF2 (Figures S1A and

S1B) leads to TERRA accumulation (Figure 1A, lower panel).

Because TERRA may participate in telomeric heterochromatin

formation (Arnoult et al., 2012; Deng et al., 2009b), we hypothe-

sized that it might assemble chromatin-modifying complexes at

dysfunctional telomeres in analogy to other long noncoding

RNAs like Xist and HOTAIR, which also regulate chromatin

(Penny et al., 1996; Tsai et al., 2010; Wutz et al., 2002). In order

to identify chromatin-remodeling complexes that are associated

with TERRA, we performed native RNA immunoprecipitation

experiments with several RNA binding proteins and chromatin-

modifying enzymes (data not shown). Immunoprecipitation of

endogenous LSD1 from HEK293T and HeLa cells specifically

retrieved endogenous TERRA, but not U2 small nuclear RNA

(snRNA) or 18S rRNA (Figures S1C and S1D, lower panels).

Because a substantial fraction of TERRA interacts with hnRNP

A1 (Redon et al., 2013), immunoprecipitation of endogenous

hnRNP A1 was used as positive control (Figure S1C, lower

panel). To rule out potential nonspecific interactions and to

determine whether the association between TERRA and LSD1

was not occurring postlysis in nuclear extracts, we further per-

formed analogous RNA immunoprecipitation experiments with

formaldehyde-crosslinked HeLa cells followed by stringent

washing conditions. Consistent with a bona fide interaction, we

observed that 2%–3% of TERRA was immunoprecipitated with

antibodies against endogenous LSD1, whereas TERRA did not

immunoprecipitate with IgG control (Figure 1A, lower panel).

Several cytoplasmic, mitochondrial, and nuclear RNAs

were not associated with LSD1 as assessed by RNA immu-

noprecipitation of crosslinked extracts (Figure S1E, lower panel),

whereas HOTAIR, which was previously shown to be associated

with LSD1-containing complexes (Tsai et al., 2010), served as a

positive control (Figure S1E, lower panel). Although the fraction

of TERRA bound by LSD1 was similar in wild-type (WT) cells

(shEV) and cells depleted for TRF2 (shTRF2), the absolute

amounts of TERRA-LSD1 complexes increased upon TRF2

removal, presumably due to the higher levels of TERRA that

became available for binding to LSD1 (Figure 1A, lower panel).

To further confirm the specificity of the association between

LSD1 and TERRA, we ectopically expressed HA-tagged LSD1

from transiently transfected plasmids in HEK293T cells (Fig-

ure 1B). Approximately 2% of TERRA was specifically immuno-

purifiedwith HA-tagged LSD1, whereas no TERRAwas detected

in extracts derived from empty vector control cells incubated

with HA antibody (Figure 1B, lower panel). For all these experi-

ments, the levels of recovered proteins with respect to the input

confirmed an efficient immunoprecipitation (Figures 1A, 1B, and

S1C–S1E, upper panels). Notably, the percentage of TERRA that

associates with LSD1 is comparable to the fraction of TERRA

bound to TRF1 and TRF2 (Deng et al., 2009b). Together, these

experiments indicate that TERRA is associated with LSD1

in vivo.

LSD1 Binds the UUAGGG Repeat Array of TERRA
Transcripts through Its SWIRM/AOL-N-ter Domain
To determine whether LSD1 interacts with TERRA directly and

to assess sequence requirements, we carried out RNA



Figure 1. LSD1 Binds TERRA In Vivo and In Vitro

(A) Western blotting was used to evaluate immunoprecipitation (IP) efficiency of endogenous LSD1 in RNA-IP experiments (upper panel). RNA-IP assays with an

antibody against endogenous LSD1 were performed in HeLa cells transfected with control vector (shEV) or depleted for TRF2 (shTRF2). IP-recovered RNA was

detected with probes annealing with TERRA or 18S rRNA (lower panel). IB, immunoblot.

(B) Western blotting was used to evaluate immunoprecipitation efficiency of ectopic HA-LSD1 in RNA-IP experiments (upper panel). RNA-IP assays with HA

antibody were performed in HEK293T cells transfected with HA-tagged LSD1 or expression vector alone. IP-recovered RNAwas detected with probes annealing

with TERRA or 18S rRNA (lower panel).

(C) Western blotting was used to detect the binding of LSD1, hnRNP A1, and hnRNP K in HeLa nuclear extracts to NeutrAvidin bead-bound biotinylated

(UUAGGG)3, (CCCUAA)3, TelBam3.4, or TelSau2.0 RNA oligonucleotides.

(D) Coomassie staining was used to detect His-LSD1 affinity purified from E. coli.

(E) Western blotting was used to evaluate the capturing of bacterial-expressed and Ni-NTA-purified His-LSD1 on bead-coupled (UUAGGG)3, (CCCUAA)3, or

subtelomeric sequences containing TelBam3.4 and TelSau2.0 RNA oligonucleotides.

EV, empty vector; HA, hemagglutinin; His, histidine. See also Figure S1.
pull-down experiments. TERRA molecules consist of sub-

telomeric- and telomeric-derived sequences. Immobilized bio-

tinylated (UUAGGG)3 RNA oligonucleotide (TERRA), but not

antisense (CCCUAA)3 (ARRET) or subtelomeric sequences con-

taining RNA oligonucleotides (TelBam3.4 and TelSau2.0), re-

tained LSD1 from HeLa nuclear extracts (Figure 1C) and purified

His-LSD1 (Figures 1D and 1E). HnRNP K and hnRNP A1, which

bind to C-rich and G-rich RNAs (Burd and Dreyfuss, 1994;

Klimek-Tomczak et al., 2004; Thisted et al., 2001), respectively,

were detected as controls (Figure 1C).

We next delineated the TERRA interaction domains of LSD1.

Glutathione S-transferase (GST)-LSD1 fragments were ex-

pressed in E. coli, purified and incubated with bead-coupled

TERRA-mimicking oligonucleotides (UUAGGG)3 (Figures 2A–

2C). Full-length (FL) LSD1 and LSD1 fragments encompassing

the SWIRM and parts of the AOL domain (SWIRM/AOL-N-ter)

were retained on the beads specifically in the presence of

TERRA-mimicking (UUAGGG)3 oligonucleotides (Figure 2C).

The biochemical properties of the recombinant GST-SWIRM/

AOL-N-ter domain of LSD1were further characterized in electro-

phoretic mobility shift assays (EMSAs). The binding affinity of

purified LSD1 (Figure S2A) for RNA increased with oligonucleo-

tide length (Figure S2B). The dissociation constant of the RNA

binding domain of LSD1 for (UUAGGG)10 was 70 ± 1 nM (Figures

2D and 2E), whereas DNA of the same sequence was not bound

(Figure S2C). FL HA-tagged LSD1 had similar binding affinity for
C

(UUAGGG)10 as GST-LSD1 (1–382) (data not shown). Binding

specificity was further addressed by EMSA in competition

experiments in which the binding to labeled (UUAGGG)10/7
TERRA repeats was challenged with excess of unlabeled subte-

lomeric (Figure 2F) oligonucleotides or WT and mutant telomeric

repeats (Figure 2G). RNA oligonucleotides mimicking subtelo-

meric elements barely competed (Figure 2F), and LSD1 showed

specificity for the AGGG sequence within the UUAGGG repeats,

but it did not recognize the UU dinucleotide (Figure 2G). We

conclude that LSD1 associates directly via its SWIRM/AOL-N-

ter domain with TERRA, with moderate sequence specificity

for the WT UUAGGG repeat array of the transcript.

LSD1 Binding to Telomeres Is Increased upon TRF2
Depletion and Correlates with TERRA Levels
Because LSD1 associates with TERRA and because TERRA is a

component of telomeric chromatin (Azzalin et al., 2007), we

reasoned that LSD1 might also be physically bound to telo-

meres. To test this, we performed chromatin immunoprecipita-

tion (ChIP) experiments with an antibody against endogenous

LSD1 followed by dot blot analysis. We found telomeric DNA

but not centromeric DNA in association with LSD1 (Figures 3A

and 3B). The telomeric signal diminished upon shRNA-mediated

depletion of LSD1, confirming the specificity of the antibody (Fig-

ures 3A and 3B). Interestingly, the telomeric signal in the LSD1-

ChIP significantly increased upon telomere uncapping by TRF2
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Figure 2. LSD1 Preferentially Binds UUAGGG-TERRA Repeats

(A) Scheme of LSD1 deletion mutants.

(B) Ponceau staining was used to evaluate the expression of LSD1 deletion mutants.

(C) Western blotting was used to evaluate the binding of GST-LSD1 deletion mutants to NeutrAvidin bead-bound biotinylated (UUAGGG)3 oligonucleotide.

(D) Agarose EMSAwas used to measure LSD1 RNA binding activity in vitro. GST-LSD1 fragment D4 (aa 1–382) was assayed for binding to 32P-(UUAGGG)10 RNA

oligonucleotide.

(E) KD measurement of GST-LSD1 fragment D4 (aa 1–382) binding to 32P-(UUAGGG)10 RNA oligonucleotide. Exp1, experiment 1; Exp2, experiment 2; Exp3,

experiment 3.

(F) EMSA competition experiment with GST-LSD1 fragment D4 (aa 1–382) binding to 32P-(UUAGGG)10. The fold molar excess of added unlabeled (UUAGGG)10,

TelBam3.4-60-mer, and TelSau2.0-60-mer competitors is indicated at the top.

(G) EMSA competition experiment of GST-LSD1 fragment D4 (aa 1–382) binding to 32P-(UUAGGG)7 using (UUAGGG)7, (AAAGGG)7, (UUUCGG)7, and (UUAGCC)7
as competitors. Numbers indicate fold excess of competitor over 32P-labeled probe.

See also Figure S2.
depletion (Figures 3A and 3B), suggesting that higher levels of

TERRA may enrich LSD1 at damaged chromosome ends. Since

RNAi-mediated TERRA downregulation cannot be employed in

our study because RNA oligonucleotides of telomeric sequence

may perturb telomere integrity by soaking up telomere-associ-

ated proteins, we sought to corroborate the link between TERRA

levels and LSD1 binding to chromosome ends in human colo-

rectal carcinoma HCT116 cells double knocked out (DKO) for
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the DNA methyltransferases DNMT1 and DNMT3b (Rhee et al.,

2002), in which TERRA is highly expressed and remains associ-

ated with telomeric chromatin (Farnung et al., 2012). We infected

the parental (par) and the DKO cells with retroviruses expressing

a dominant-negative mutant of TRF2, TRF2DBDM, that strips

TRF2 and its interacting factors off the telomeres (van Steensel

et al., 1998; Zhu et al., 2000) and causes DDR activation, loss

of telomeric G overhangs, chromosome fusions, and genome



Figure 3. LSD1 Is Recruited to Uncapped Telomeres and Is Required for 30 G Overhang Removal

(A) ChIP of telomeric and centromeric DNA with LSD1 and gH2AX antibodies was performed in HeLa cells transfected with control vector (shEV) or depleted for

LSD1 (shLSD1), TRF2 (shTRF2), or both (shTRF2+shLSD1).

(B) Quantification of three different ChIP experiments represented by (A) (mean ± SD, n = 3). Statistical analysis was done using a two-tailed Student’s t test

(*p < 0.05).

(C) ChIP of telomeric and centromeric DNA with LSD1 and gH2AX antibodies was performed in HCT116 par and DNMT1 and DNMT3b DKO cells infected with

retroviruses expressing dominant-negative TRF2DBDM or empty vector.

(D) Quantification of three different ChIP experiments represented by (C) (mean ± SD, n = 3). Statistical analysis was done using a two-tailed Student’s t test

(**p < 0.01).

(E) Western blot analysis of HeLa cell extracts expressing shRNA constructs and shRNA-resistant forms of LSD1 WT and LSD1 K661A.

(F) TRF analysis was used to detect the telomeric 30 G overhang from HeLa cells transfected with the indicated plasmids. A radiolabeled telomeric probe was

annealed to native DNA detecting the single-strand (ss) telomeric signal (upper panel). ExoI (+ExoI) treatment removes the terminal telomeric 30 G overhang. The

total telomeric DNA is detected upon denaturation of the DNA (lower panel).

See also Figures S3 and S4.
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instability (de Lange, 2004; Karlseder et al., 1999, 2002; Smogor-

zewska et al., 2002; Stansel et al., 2001; van Steensel et al.,

1998). Compared to the par cells, which have longer telomeres

and low TERRA levels, DKO cells showed strongly enhanced

LSD1 recruitment upon expression of dominant-negative

TRF2DBDM (Figures 3C and 3D), thus supporting the notion that

TERRA may promote LSD1 binding to dysfunctional telomeres.

However, indirect effects due to the absence of the DNA meth-

yltransferases could not be excluded. For all these experiments,

the DNA-damage marker g-H2AX was monitored and served as

a control to evaluate the functional efficiency of TRF2 inactiva-

tion (Figures 3A–3D). Taken together, these data suggest that

LSD1 binds to chromosome termini and that TERRA upregula-

tion may enhance LSD1 recruitment in the context of dysfunc-

tional telomeres.

LSD1 Does Not Affect Telomeric Chromatin but Is
Required for the Processing of Uncapped Chromosome
Ends
LSD1 is known to demethylate the mono- and dimethyl forms

of lysine 4 (H3K4) (Shi et al., 2004) and 9 (H3K9) (Metzger

et al., 2005) of histone 3. Because LSD1 strongly associates

with dysfunctional telomeres, we investigated by ChIP a putative

role for LSD1 in controlling the histone methylation pattern upon

telomere uncapping (Figures S3A and S3B). The density of

mono- and dimethylated H3K4 across telomeres was not

affected following TRF2 depletion. On the contrary, dimethylated

H3K9 (H3K9me2) and, to amuch lesser extent, monomethylated

H3K9 (H3K9 me1) were decreased at chromosome ends upon

telomere uncapping, whereas they remained unaltered at

centromeric chromatin. However, the changes in the histone

methylation pattern at damaged telomeres appear not to rely

on LSD1 because the reduced density of mono- and dimethy-

lated H3K9 at dysfunctional telomeres was not rescued by

the concomitant depletion of TRF2 and LSD1 (Figures S3A

and S3B). Recently, it has been shown that LSD1 also controls

the methylation status of nonhistone proteins (Cho et al., 2011;

Huang et al., 2007; Kontaki and Talianidis, 2010; Wang et al.,

2009). To define a putative nonhistone LSD1 target at telomeres,

we examined whether telomeric phenotypes elicited upon

removal of TRF2 can be reversed by LSD1 depletion. Damaged

telomeres accumulate TIFs (Takai et al., 2003; Zhu et al., 2003).

TIF formation can be detected via the association of the

DNA-damage proteins gH2AX and 53BP1 with telomeres. In

immunofluorescence (IF)-fluorescence in situ hybridization

(FISH) experiments, we found that the DNA-damage marker

53BP1 accumulated with a similar frequency at telomeres of

TRF2-depleted and TRF2/LSD1 double-depleted cells (Figures

S3C and S3D). This indicates that TIF formation is not affected

by LSD1 in TRF2-deficient cells.

TRF2 removal leads to a rapid loss of the telomeric 30 G over-

hang signal and telomere fusions by NHEJ (Celli and de Lange,

2005; Zhu et al., 2003). Assessment of telomeric G overhang

by native in-gel hybridization revealed that the 30 G overhang

signal was reduced in TRF2-deficient cells as expected but

that it persisted upon concomitant depletion of TRF2 and

LSD1 (Figures 3E and 3F). Furthermore, expression of the

shRNA-resistant LSD1 WT, but not the demethylase-impaired
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mutant K661A (Lee et al., 2005) (Figure S4A), restored 30 G over-

hang processing in TRF2-depleted cells (Figures 3E and 3F).

Treatment with the 30 end-specific bacterial ExoI confirmed

that the detected single-stranded telomeric DNA was

terminal. These results were confirmed by analyzing the same

DNA samples in parallel (Figures S4B and S4C) by native

in-gel hybridization and an independent assay involving a

duplex-specific nuclease (DSN), which digests double-stranded

genomic DNA and leaves the single-stranded overhangs intact

(Zhao et al., 2011). The telomere single-strand G-rich overhang

was detected by Southern hybridization (Figure S4B). Also in

this assay, depletion of TRF2 reduced the G overhang signal,

whereas the signal was retained in TRF2 and LSD1 double-

depleted cells. Double depletion of TRF2 and MRE11 (Fig-

ure S4D) also did not lead to loss of the 30 Goverhang, consistent

with the fact that MRE11 is required for 30 G overhang removal

(Figure S4E). The LSD1 knockdown did not affect cell-cycle

progression (Figures S4F and S4G), ruling out the possibility

that the observed phenotype was due to alterations of the cell-

cycle profile. Despite the fact that removal of the 30 G overhang

is a prerequisite for NHEJ at chromosome ends (Zhu et al., 2003),

the frequency of telomere fusions observed in metaphase

spreads upon TRF2 depletion was not affected by LSD1 knock-

down (Figures S4H and S4I). This suggests that LSD1 depletion

may have slowed down but not prevented overhang removal.

Overall, these data indicate that LSD1, through its demethylase

activity, promotes G overhang resection at uncapped telomeres.

LSD1 Interacts with MRE11
We further reasoned that LSD1 may activate the MRE11 or

ERCC1/XPF nuclease to remove telomeric 30 G overhangs

from uncapped telomeres (Attwooll et al., 2009; Deng et al.,

2009a; Zhu et al., 2003). We tested for a physical interaction

between LSD1 andMRE11 by reciprocal coimmunoprecipitation

(Figures 4A and 4B). Proteins in HeLa cell nuclear extracts were

immunoprecipitated with antibodies against endogenous LSD1,

MRE11, or IgG, which served as negative control. We observed

that LSD1 specifically coimmunoprecipitated MRE11 and vice

versa, indicating that the two proteins can reside in the same

complex (Figure 4A). No interaction was found between endog-

enous LSD1 and XPF nor LSD1 and other proteins involved in 30

G overhang processing or in the activation of the telomeric DDR

(Figure S5). Notably, telomere uncapping by depletion of TRF2

increased the interaction between LSD1 andMRE11 (Figure 4A).

Furthermore, we found that also ectopically expressed HA-

tagged LSD1 and myc-tagged MRE11 associated in HEK293T

cells (Figure 4B). We next sought to identify the MRE11 domain

responsible for the interaction with LSD1.We generated different

GST-MRE11 deletionmutants (Figure 4C) and purified them from

recombinant E. coli. We then incubated glutathione agarose

beads-immobilized GST-MRE11 fragments with purified recom-

binant HA-tagged LSD1 in vitro. We found that HA-LSD1 inter-

acted with a C-terminal region of MRE11 encompassing the

GARmotif and amino acids adjacent to the DNA binding domain

(Figure 4D). On the other side, we performed an analogous

experiment to determine which domain of LSD1 is involved in

the interaction with MRE11. Purified GST-LSD1 fragments

were incubated with purified 33FLAG-MRE11. We observed



Figure 4. LSD1 Directly Interacts with MRE11

(A) Reciprocal coimmunoprecipitation assay was used to detect the interaction between endogenous LSD1 and MRE11 in HeLa transfected with control vector

(shEV) or depleted for TRF2 (shTRF2).

(B) Reciprocal coimmunoprecipitation assay was used to detect the interaction between ectopic HA-LSD1 and MRE11-myc in HEK293T cells.

(C) Scheme of MRE11 deletion mutants.

(D) Purified HA-LSD1 was incubated with the indicated glutathione bead-bound GST-MRE11 fragments. Western blotting was used to evaluate which GST-

MRE11fragment is able to retain HA-LSD1 in vitro.

See also Figure S5.
that the SWIRM/AOL-N-ter domain of LSD1, responsible for the

interaction with TERRA (Figures 2A–2C), is also required for the

binding to MRE11 (Figures 5A and 5B). Thus, TERRA and

MRE11 associate with the same domain of LSD1 (Figure 5C).

TERRA Reinforces the Interaction between LSD1 and
MRE11
Next, we explored whether TERRA regulates the strength of

LSD1-MRE11 interaction. We carried out biochemical experi-

ments in which bead-bound GST-LSD1 was incubated with 33

FLAG-MRE11 in the presence of increasing amounts of

(UUAGGG)10 RNA oligonucleotide. TERRA-mimicking oligonu-

cleotide increased the amount of 33FLAG-MRE11 captured by

GST-LSD1 up to 9-fold (Figure 5D), whereas control oligonucle-

otide did not influence the binding (Figure S6A). Similarly, asso-

ciation of LSD1 and MRE11 was enhanced in HEK293T cells

transfected with (UUAGGG)10 TERRA but not with control RNA

oligonucleotides (Figure S6B). However, only LSD1 but not

MRE11 (data not shown) binds TERRA in a detectable manner,

suggesting that TERRA does not bridge their interaction.

LSD1 Associates with Dysfunctional Telomeres in an
MRN-Dependent Manner
Because MRE11 plays a critical role in sensing dysfunctional

telomeres by promoting the activation of ATM-dependent

DNA-damage signaling pathways, we further examined whether

the LSD1 binding to deprotected telomeres can be affected by

the MRN complex. For this purpose, we performed ChIP exper-

iments in TRF2-deficient cells depleted for MRE11 or NBS1

(Figure S6C), and we found that LSD1 no longer accumulated
C

efficiently at damaged chromosome ends (Figures 5E and 5F).

Therefore, the MRN complex is critical for LSD1 retention at

dysfunctional telomeres. On the other hand, LSD1 did neither

affect the binding of MRE11 to telomeres (Figures S6D–S6F)

nor the formation of the MRN complex (Figure S6G).

LSD1 Stimulates MRE11 Nuclease Activities In Vitro
MRE11 exhibits exonuclease activity on DNA double-stranded

blunt end and 30-recessed substrates as well as endonuclease

activity on hairpin substrates (Paull and Gellert, 1998). In order

to test for effects of LSD1 on MRE11 nuclease activity, we

carried out in vitro assays (Lee et al., 2003). We purified WT

and the presumed nuclease-deficient MRE11H129N mutant

(Deng et al., 2009a) from human HEK293T cells (Figure 6A) and

measured exo- and endonuclease activities. MRE11 WT but

not the H129N mutant exhibited exo- and endonuclease activity

as expected (Figures 6B and 6C). In order to evaluate a contri-

bution of LSD1, we expressed 33FLAG-tagged MRE11 in

HEK293T cells alone or in combination with HA-LSD1 WT or

HA-LSD1 K661A demethylation-impaired mutant (Lee et al.,

2005) (Figure 6D). When 33FLAG-MRE11 was purified from

HA-LSD1 WT-expressing cells, MRE11 showed an enhanced

exonuclease activity if compared to the MRE11 purified from

WT cells or from cells expressing catalytically impaired HA-LSD1

K661A (Figure 6E). A similar result was obtained when 33FLAG-

MRE11 and HA-LSD1 were purified separately and coincubated

in the nuclease assays (Figure S7A). Incubation of 33FLAG-

MRE11 with HA-LSD1 but not with BSA stimulated the MRE11

exonuclease activity (Figure S7B). Addition of a specific LSD1

inhibitor (Inhibitor IV; Calbiochem) reduced the LSD1-mediated
ell Reports 6, 765–776, February 27, 2014 ª2014 The Authors 771



Figure 5. MRE11 Interacts with the SWIRM/AOL-N-ter Domain of LSD1, and TERRA Stabilizes the Interaction between the Two Proteins

(A) Scheme of LSD1 deletion mutants.

(B) Western blotting was used to evaluate the binding of GST-LSD1 deletion mutants to purified 33FLAG-MRE11.

(C) Scheme of the interaction domains required for the association of LSD1 with TERRA and MRE11.

(D) Binding of affinity-purified 33FLAG-MRE11 to glutathione bead-bound GST-LSD1 fragment D4 (aa 1–382) or GST in the presence of increasing amounts of

(UUAGGG)10.

(E) ChIP of telomeric and centromeric DNA with LSD1 and gH2AX antibodies was performed in HeLa cells transfected with control vector (shEV) or depleted for

TRF2 (shTRF2), TRF2, and MRE11 (shTRF2+shMRE11) and TRF2 and NBS1 (shTRF2+shNBS1).

(F) Quantification of three different ChIP experiments represented by (E) (mean ± SD, n = 3). Statistical analysis was done using a two-tailed Student’s t test

(*p < 0.05).

F, FLAG. See also Figure S6.
stimulation of MRE11 (Figure S7C). Furthermore, LSD1 WT

and, to a lesser extent, LSD1 K661A enhanced also the

MRE11 endonuclease activity (Figure 6F). Altogether, these

findings demonstrate that LSD1 stimulates the exo- and endonu-

clease activities of MRE11.

DISCUSSION

In this study, we identify TERRA and LSD1 as actors at de-

protected telomeres that follow TRF2 depletion, and we provide

evidence that TERRA and LSD1 collaborate with MRE11 in the

processing of the 30 G overhangs. Our results demonstrate that

MRE11 as part of the MRN complex is required for LSD1 stabi-

lization at uncapped telomeres. We demonstrate that LSD1
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directly interacts with MRE11 and that the SWIRM/AOL-N-ter

domain of LSD1 mediates the binding to the C-terminal region

of MRE11 encompassing the GAR motif. We also provide

evidence that TERRA promotes the interaction between LSD1

and MRE11. First, increased TERRA levels upon TRF2 depletion

correlate with enhanced LSD1 recruitment at dysfunctional

telomeres in HeLa cells. Second, enhanced TERRA levels in

HCT116 DKO versus HCT116 WT cells correlate with increased

LSD1 recruitment upon telomere uncapping. Third, and most

strikingly, TERRA strongly enhances the binding affinity between

MRE11 and LSD1 in vitro with purified proteins and in vivo upon

transfection of TERRA RNA oligonucleotides. We also find that

LSD1 but not MRE11 binds TERRA. Therefore, TERRA seems

not to bridge their interaction. However, when associated with



Figure 6. LSD1 Stimulates the MRE11 Exo- and Endonuclease

(A) Coomassie staining was used to detect 33FLAG-MRE11 WT and H129N

affinity purified from HEK293T cells.

(B) Exonuclease assays were performed with increasing concentrations (2, 4,

10, and 20 nM) of 33FLAG-MRE11 WT or H129N mutant, purified from

HEK293T.

(C) Endonuclease assays were performed with increasing concentrations

(12.5, 25, 50, and 100 nM) of 33FLAG-MRE11 WT or H129N mutant, purified

from HEK293T.

(D) Coomassie staining was used to detect 33FLAG-MRE11 WT co-

transfected with empty vector, HA-LSD1 WT, or HA-LSD1 K661A plasmids.

Immunoprecipitated material from HEK293T cells transfected with empty

vector only was used as negative control.

(E) Exonuclease assays were performed with increasing concentrations (2, 4,

10, and 20 nM) of 33FLAG-MRE11WT cotransfected or not with HA-LSD1WT

or HA-LSD1 K661A catalytically impaired mutant.

(F) Endonuclease assays were performed with increasing concentrations

(12.5, 25, 50, and 100 nM) of 33FLAG-MRE11 WT cotransfected or not with

HA-LSD1 WT or HA-LSD1 K661A catalytically impaired mutant.

See also Figure S7.

Figure 7. Proposed Model for the Function of TERRA and LSD1 at

Uncapped Telomeres

Depletion of TRF2 leads to increased TERRA levels and recruitment of LSD1 to

uncapped telomeres. LSD1 recruitment requires MRE11 and may be pro-

moted by TERRA, which enhances the affinity between LSD1 and MRE11.

LSD1 stimulates the exo- and endonuclease activities of MRE11. LSD1

recruitment to uncapped telomeres triggers removal of the telomeric 30 G
overhang through MRE11 and possibly other LSD1 substrates.

C

LSD1, the negatively charged phosphate-sugar backbone

of TERRA might attract the abundant arginine residues of

the GAR domain in MRE11 (Figure 7). Alternatively, TERRA

might have allosteric effects on LSD1 increasing its affinity for

MRE11.

TERRA directly interacts with the SWIRM/AOL-N-ter domain

of LSD1. The SWIRM domain is found in several chromatin-

modifying complexes (Nicholson and Chen, 2009) and has

been implicated in binding nucleosomal and free double-

stranded DNA. However, the SWIRM domain of LSD1 lacks

DNA binding activity (Yoneyama et al., 2007), and our results

indicate that it contributes to directly bind RNA. Our mutational

analyses reveal that perturbation of the AGGG sequence within

the UUAGGG repeats strongly reduces the association between

TERRA and LSD1, thus suggesting that LSD1 can bind unfolded

UUAGGG repeats. However, because the UUAGGG repeats of

TERRA can fold into parallel-stranded G quadruplex structures

(Martadinata et al., 2011; Martadinata and Phan, 2013; Xu

et al., 2010), it is possible that LSD1 instead recognizes

TERRA quadruplexes. LSD1 complexes were previously found

in association with the long noncoding RNA HOTAIR, but this

interaction appeared to be indirect because purified LSD1

lacked HOTAIR binding activity (Tsai et al., 2010). Thus, we

report here direct LSD1-RNA interaction.

What are the roles of LSD1 at uncapped telomeres? We find

that LSD1 is required for efficient resection of the 30 G overhang

at dysfunctional telomeres because its depletion leads to persis-

tence of the 30 G overhang in TRF2-depleted cells. Our results

also indicate that LSD1 exerts its effects on the 30 G overhang

through MRE11 (Figure 7). Strikingly, LSD1 stimulates the

endo- and exonuclease activities of MRE11 when coexpressed

with MRE11 in HEK293 cells prior to purification of MRE11 or

when added to the in vitro reaction. The lysine demethylation

activity of LSD1 appears involved in the stimulation of MRE11

because K661A mutant LSD1 had a reduced ability to activate

MRE11 in vitro and telomeric 30 G overhang removal in vivo.
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Similarly, addition of the LSD1 small molecule inhibitor reduced

the stimulatory effects of LSD1. This suggests that MRE11

may contain methylated lysine residues that inhibit its activity.

Unexpectedly, LSD1 depletion did not affect the frequency of

telomere fusions upon TRF2 depletion in our experiments. 30 G
overhang removal must precede telomere end-joining by the

NHEJ machinery (Zhu et al., 2003). We therefore suspect that

LSD1 depletion does slow down but not completely abolish

the resection of 30 G overhang at uncapped telomeres. In this

scenario, not 30 G overhang removal but other steps in the reac-

tion are rate limiting for the end-joining of uncapped telomeres

such as chromosome end apposition, which becomes rate

limiting upon loss of 53BP1 (Dimitrova et al., 2008). While this

paper was under review, LSD1 was reported to also associate

with internal sites of DNA damage, reducing H3K4 dimethylation

and slightly affecting the DDR (Mosammaparast et al., 2013).

However, DNA end processing was not assessed in this paper,

and at telomeres, contrary to chromosome internal damage

sites, LSD1 depletion has no notable effects in histone methyl-

ation and 53BP1 recruitment.

In summary, our study provides mechanistic clues into how

the MRN complex and TERRA synergize for stabilizing the bind-

ing of LSD1 at dysfunctional chromosome ends. LSD1 interacts

with and activates MRE11 nuclease activities. This step seems

crucial because LSD1 is required for the efficient removal of

the 30 telomeric G overhang though additional activities of

MRE11, or different substrates of LSD1 might also contribute

to end processing of uncapped telomeres (Figure 7). The here-

describedmechanismmodulates the response to local telomeric

DNA damage that occurs upon TRF2 loss, but the same mech-

anisms may apply during cellular senescence, aging, and acci-

dental or pathological telomere dysfunction events.

EXPERIMENTAL PROCEDURES

Plasmids

shRNA vectors were prepared by cloning double-stranded DNA oligonucleo-

tides into pSuper-Puro or pSuper-Blast. The target sequences were as

follows: TRF2, 50-GCGCATGACAATAAGCAGA-30; LSD1, 50-GCACCTTATAA

CAGTGATA-30; MRE11, 50-TGAGAACTCTTGGTTTAAC-30; and NBS1, 50-AG
GAAGATGTCAATGTTAG-30. FL human MRE11 and LSD1-coding sequences

were cloned from cDNAs into pCDNA6-based mammalian expression vectors

using PCR amplification and In-Fusion cloning (Clontech Laboratories). The FL

LSD1 cDNA fragment was subsequently transferred to bacterial expression

plasmids pET30a and pGEX6p-1 for His-tagged and GST-tagged LSD1 FL

production. pGEX6p1-LSD1 K661A and pCDNA6-HA-LSD1 K661A were

obtained using the QuikChange Site-Directed Mutagenesis Kit (Stratagene).

MRE11 and LSD1 fragments were cloned into pGEX6p1 bacterial expression

vector using PCR amplification and In-Fusion cloning.

Cell Culture and Transfection

HeLa cells were transfected using Lipofectamine 2000 according to the

manufacturer’s protocol (Invitrogen). Puromycin (2 mg/ml; InvivoGen) or blasti-

cidin (10 mg/ml; InvivoGen) was added to themedium 24 hr after transfection of

pSuper-Puro constructs. Puromycin and blasticidin selection was maintained

for 4 days.

RNA-IP

RNA-IP assays were performed as described previously by Deng et al.

(2009b). More detailed procedures are described in Supplemental Experi-

mental Procedures.
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Chromatin Immunoprecipitation

ChIP assays were performed as described previously by Abreu et al. (2010).

More detailed procedures are described in Supplemental Experimental

Procedures.

EMSA

EMSA for 33FLAG-MRE11 was performed as described before by Lee et al.

(2003). EMSA for GST-LSD1 (aa 1–382) was performed with the following

modifications. 13 EMSA reaction buffer for GST-LSD1 (aa 1–382) was

composed of 25 mM Tris-HCl (pH 8.0), 100 mM NaCl, 10% glycerol, 2 mM

MgCl2, 1 mM DTT, and 1 U/ml SUPERase-IN. A total of 1 nM of 32P-gATP 50

end-labeled RNA or DNA oligonucleotide probes wasmixed with the indicated

proteins and competitor oligonucleotides and incubated to equilibrium for

30 min at 37�C. The reaction was supplemented with EMSA loading buffer

to a final concentration of 13 (8% glycerol, 2 mM Tris-HCl [pH 7.5], 0.02%

bromophenol blue, and cyan cyanol) and separated on 2% 0.53 TBE agarose

gels at 60 mA for 30 min. Gels were dried, exposed to Phosphorimager

screens, and analyzed using a FLA-3000 Phosphorimager (Fujifilm) and

AIDA Image Analyzer software (Raytest).

TRF Analysis and G Overhang Analysis

Following phenol extraction and ethanol precipitation, genomic DNA was

digested with RsaI and HinfI and resolved by pulse-field gel electrophoresis

on 1% agarose in 0.53 TBE at 5 V cm�1 for 16 hr at 14�C with switch times

ramped from 0.5 to 6 s. For G overhang analysis, the gel was dried (50�C)
and hybridized under native conditions (50�C) for detection of ss telomeric

DNA, before denaturation and a second hybridization for total telomeric

DNA. For washes, gels were rinsed in 43 SSC and incubated for 30 min at

room temperature, followed by successive 30 min washes at 50�C in 43

SSC/0.5%SDSand 23SSC/0.5%SDS. The 32P-labeled telomeric DNA probe

was generated as follows: a templatemixture of 1- to 5-kb-long telomeric DNA

fragments was synthesized by ligating double-stranded telomeric DNA oligo-

nucleotides ((TTAGGG)5, (CCCTAA)5) that were amplified by PCR. The probe

was random labeled with a-32P-dCTP and cold dTTP and dATP (for detection

of the TTAGGG strand).

DSN Assay and G Overhang Analysis

Determination of the telomeric G overhang with the DSN method was done as

described previously by Zhao et al. (2011).

Protein Purification

HA-, 33FLAG-, GST-, or His-tagged constructs were purified using anti-HA,

M2, and GSH agarose (Sigma-Aldrich) or Ni-NTA agarose (QIAGEN). E. coli

strain Rosetta (DE3)pLysS (Novagen) was used for all protein expressions in

bacteria. Recombinant His-LSD1was purified using Ni-NTA agarose and imid-

azole competitor elution. GST-LSD1 FL and fragments as well as GST-MRE11

fragments were purified using GSH agarose and, if needed, eluted using

reduced glutathione. HA-LSD1 and 33FLAG-MRE11 were expressed in

HEK293T cells and purified using HA agarose (Sigma-Aldrich) or M2 agarose

followed by corresponding competitor peptide elution.

In Vitro MRE11 Nuclease Assays

MRE11 nuclease assays were performed as described by Lee et al. (2003) and

Park et al. (2011). Briefly, purified 33FLAG-MRE11 was preincubated with or

without purified HA-LSD1 or BSA and indicated inhibitors for 90 min at 37�C
in nuclease reaction buffer (25 mM MOPS [pH 7], 100 mM NaCl, 1 mM

MnCl2, and 1 mM DTT), followed by addition of 1 nM of 32P end-labeled

nuclease substrate and further incubation overnight at 37�C. Reaction prod-

ucts were analyzed on 15% denaturing polyacrylamide gels, fixed, exposed,

and signals revealed using the FLA-3000 Phosphorimager. The LSD1 inhibitor

was LSD1 inhibitor IV, RN-1,HCl from Calbiochem. The MRE11 inhibitor was

mirin from Sigma-Aldrich.

Antibodies

The following antibodies were used: 53BP1 (NB100-304; Novus Biologicals);

Co-REST (07-455; Millipore); Histone H3 (ab1791; Abcam); H3K4me1 (07-

436; Millipore); H3K4me2 (07-030; Millipore); H3K9me1 (ab9045; Abcam);



H3K9me2 (ab1220; Abcam); hnRNP A1 (4B10, sc-32301; Santa Cruz Biotech-

nology); hnRNP K (ab39975; Abcam); LSD1 (ab17721; Abcam); MRE11

(NB100-142; Novus Biologicals); NBS1 (NB100-143; Novus Biologicals);

phospho-H2AX (05-636; Millipore); and Rad50 (ab89; Abcam).

Microscopy

TIF analysis by IF-FISH staining was performed as described before (Celli and

de Lange 2005). FISH on metaphase spreads was performed as described

before (Azzalin et al. 2007).
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