000198158 001__ 198158
000198158 005__ 20190316235906.0
000198158 0247_ $$2doi$$a10.1090/conm/641/12859
000198158 037__ $$aARTICLE
000198158 245__ $$aLeft-induced model structures and diagram categories
000198158 269__ $$a2015
000198158 260__ $$c2015
000198158 336__ $$aJournal Articles
000198158 520__ $$aWe prove existence results à la Jeff Smith for left-induced model category structures, of which the injective model structure on a diagram category is an important example. We further develop the notions of fibrant generation and Postnikov presentation from work of the second author, which are dual to a weak form of cofibrant generation and cellular presentation. As examples, for k a field and H a differential graded Hopf algebra over k, we produce a left-induced model structure on augmented H-comodule algebras and show that the category of bounded below chain complexes of finite-dimensional k-vector spaces has a Postnikov presentation. To conclude, we investigate the fibrant generation of (generalized) Reedy categories. In passing, we also consider cofibrant generation, cellular presentation, and the small object argument for Reedy diagrams.
000198158 6531_ $$aModel category
000198158 6531_ $$aweak factorization system
000198158 6531_ $$afibrant generation
000198158 6531_ $$aPostnikov presentation
000198158 6531_ $$ainjective model structure
000198158 700__ $$aBayeh, Marzieh
000198158 700__ $$0240499$$aHess, Kathryn$$g105396
000198158 700__ $$0243127$$aKarpova, Varvara$$g166493
000198158 700__ $$aKedziorek, Magdalena
000198158 700__ $$aRiehl, Emily
000198158 700__ $$aShipley, Brooke
000198158 773__ $$j641$$q49-81$$tContemporary Mathematics
000198158 8564_ $$s3608042$$uhttps://infoscience.epfl.ch/record/198158/files/BHKKRS_published.pdf$$yPublisher's version$$zPublisher's version
000198158 8564_ $$s461866$$uhttps://infoscience.epfl.ch/record/198158/files/ModelCatTeam.cm.pdf$$yPreprint$$zPreprint
000198158 909C0 $$0252139$$pUPHESS$$xU10968
000198158 909CO $$ooai:infoscience.tind.io:198158$$pSV$$particle$$qGLOBAL_SET
000198158 917Z8 $$x105396
000198158 917Z8 $$x105396
000198158 917Z8 $$x182396
000198158 937__ $$aEPFL-ARTICLE-198158
000198158 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000198158 980__ $$aARTICLE