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Abstract

In this paper we investigate external phone duration models
(PDMs) for improving the quality of synthetic speech in hidden
Markov model (HMM)-based speech synthesis. Support Vec-
tor Regression (SVR) and Multilayer Perceptron (MLP) were
used for this task. SVR and MLP PDMs were compared with
the explicit duration modelling of hidden semi-Markov models
(HSMMs). Experiments done on an American English database
showed the SVR outperforming the MLP and HSMM duration
modelling on objective and subjective evaluation. In the objec-
tive test, SVR managed to outperform MLP and HSMM mod-
els achieving 15.3% and 25.09% relative improvement in terms
of root mean square error (RMSE) respectively. Moreover, in
the subjective evaluation test, on synthesized speech, the SVR
model was preferred over the MLP and HSMM models, achiev-
ing a preference score of 35.93% and 56.30%, respectively.
Index Terms: phone duration modelling, Support Vector Re-
gression, Multilayer Perceptron, HSMM explicit duration mod-
elling, HMM-based speech synthesis

1. Introduction
Prosody plays a very important role in verbal communication.
Changing prosody can completely change the meaning of the
message which is conveyed through speech [1]. There are three
main aspects of prosody: duration, pitch and intensity [2]. Du-
ration is a prosodic factor controlling the speaking rate, the
rhythm of the speech [3]. Controlling this factor gives the abil-
ity to the speaker to emphasize more on some parts of a sentence
and less on others, helping the listener to perceive the proper
message. In the same way, duration and prosody in general, are
essential factors in the field of speech synthesis.

Statistical parametric speech synthesis techniques, and hid-
den Markov models (HMMs) in particular, provide a frame-
work for the task of speech synthesis, achieving on one hand
high quality synthetic speech and on the other hand giving a
high degree of flexibility in modelling and transforming vari-
ous aspects of the speech, such as speaker identity, age, gender,
emotions and prosody [4, 5, 6, 7]. Over the last years, many im-
provements have been introduced in HMM-based speech syn-
thesis, one of them being the use of hidden semi-Markov mod-
els (HSMMs) [8]. The advantage of HSMMs is the explicit
modelling of state duration using Gaussian distributions instead
of the implicit modelling of HMMs by the transition probabili-
ties of the states. In the training phase of HSMM-based speech
synthesis, a decision tree is built according to some phonetic
and linguistic features and a set of fixed binary (yes/no) ques-
tions controlling and even sometimes limiting [9, 10] the struc-
ture of the tree. The minimum description length (MDL) is used
as a splitting and stopping criterion [11]. In the synthesis phase,
the decision tree is traversed for each target unit until reaching
a leaf node. The mean value of this leaf node is used as the

predicted duration for the target unit. The drawback of this ap-
proach is that these trees cannot represent properly all the target
units in speech synthesis [12].

To improve synthetic speech and alleviate monotonous
prosody and specifically monotonous durations, a lot of re-
search has been done over the last years. Various approaches
and techniques, such as modelling duration combining models
of multiple levels, e.g. state and phone levels [13], state, phone
and syllable levels [14], using full covariance Gaussian distribu-
tion [15] or implementing Gamma distribution instead of Gaus-
sian [16], have been introduced for this task. Furthermore, a
lot of focus has been given on using external duration models,
forcing their predicted durations on HMM-based speech syn-
thesis [17, 18]. A variety of machine learning algorithms have
been used for state, phone or syllable duration modelling, such
as decision trees [19, 20], Bayesian Networks [21], Linear Re-
gression [22], Instance-based learning [22], Support Vector Re-
gression [23, 24], Multilayer Perceptron [25, 26], or even fusion
of these algorithms [27, 28], to improve the accuracy.

The motivation behind this work is to investigate how
Support Vector Regression (SVR) and Multilayer Perceptron
(MLP) algorithms, which have been used successfully in var-
ious tasks, could improve, as external phone duration models,
the prediction accuracy in order to improve the quality of syn-
thesized speech. To our best knowledge, these two algorithms
have never been compared in the same experimental conditions.
We believe that the limitations caused by the use of HSMMs
for the duration modelling, e.g. the use of a specific set of
questions for the decision tree, or the difficulty of the decision
trees to model complex context dependencies [9], could be over-
come with the use of the external duration models. Furthermore,
we consider that the ability of SVR in coping well with high-
dimensional space in respect to the training data will result in
a more robust duration model in comparison to a model build
using the MLP. An American English male database is used
(CMU-ARCTIC-RMS) for these experiments [29].

The rest of the paper is organized as follows. The HSMM
explicit duration model and the two external phone duration
modelling approaches, MLP, SVR are presented in Section 2
and 3 respectively. The experimental setup and results are pre-
sented in Section 4. In Section 5, the conclusions are given.

2. HSMM-based Duration Modelling
In HMM-based speech synthesis duration modelling is done at
the state level, through the state sequence modelling. Conse-
quently, the phone duration modelling is performed through the
state modelling. The reasoning behind this approach is the fact
that the state sequence modelling is not only responsible for the
duration of the phones, but also is the basic structural element
of the HMMs for spectrum and f0 modelling and generation.

In HMM-based speech synthesis duration modelling is
done implicitly through the transition probabilities of the HMM



states i.e. an exponential distribution, making this structure un-
suitable for modelling properly the timing in synthetic speech.
The advantage of HSMMs in respect to HMMs, is the explicit
modelling of state duration using Gaussian distributions instead
of the implicit modelling by the transition probabilities of the
states. Although the Gaussian distribution is clearly wrong (it
implies negative durations are possible), it is a suitable approx-
imation to the true distribution.

In the training phase, using the state durations and the pho-
netic and prosodic context-dependent features of the training
data, a decision tree is built. This decision tree is constructed
based on some predetermined binary questions concerning the
content of the features (e.g. is the current syllable accented, is
the previous phone fricative, etc.). For controlling the growth
of the tree and the splitting of the nodes, the minimum descrip-
tion length (MDL) criterion is used [11]. Finally, the leaf nodes
of the tree correspond to different clusters of the training data,
sharing the same distributions (i.e. mean and variances). In the
synthesis phase, according to the unseen data, the tree is tra-
versed from the root node until a leaf node is reached. In this
way, the Gaussian distributions of the leaf nodes are used to
determine the duration of the synthesized speech.

Using HMMs/HSMMs for modelling duration in speech
synthesis leads to some drawbacks. First, it is inefficient to
express complex context dependencies such as XOR, parity or
multiplex problems by decision trees [9]. In order to be able to
cope with such cases, decision trees must become very large.
Furthermore, the mean values of the Gaussian distributions of
the leaf nodes are inadequate, due to over-generalization, to deal
properly, in respect to duration modelling, with all the cases of
the unseen data during the synthesis phase.

For overcoming these problems and improving the duration
modelling accuracy, two external models are implemented and
evaluated in this work, using the SVR and MLP algorithms.

3. External Phone Duration Modelling
In this section the two external phone duration models, the
MLP and SVR, are described. When an external phone dura-
tion model is used in HMM-based speech synthesis, the pre-
dicted duration of the phone during the synthesis phase, has to
be forced upon the HMMs [30]. Consequently the HMMs for
each phone, having the predefined phone duration, are used only
to distribute the predicted phone duration to the states.

3.1. Multilayer Perceptron

The Multilayer Perceptron is a feed-forward neural network
having one or more hidden layers between the input and out-
put layers [31]. Having a feed-forward architecture means that
the connections between all the units and layers follow only one
direction, from input units to the output units. Apart from the
input units, each unit is modelled using a non-linear activation
function. Furthermore, each unit of a layer is connected with a
specific weight to every unit of the next layer. Consequently, the
input layer is connected to the output layer through a weighted
linear combination of non-linear functions. In this way the input
data are transformed into another space, where can be linearly
separable. In our experiments the MLP was implemented using
one hidden layer.

3.2. Support Vector Regression

A Support Vector Machine (SVM) constructs a hyperplane in
a high-dimensional space, which can be used for classification
(SVM) and regression (SVR) tasks [32]. The basic idea govern-

ing the SVR is the production of a model that can be expressed
through support vectors which define the hyperplane. A linear
regression function is used to approximate the training instances
by minimising the prediction error. A parameter ε defines a tube
around the regression function. In this tube the errors are ig-
nored. The parameter ε controls how closely the function will
fit the training data. The parameter C is the penalty for exceed-
ing the allowed deviation defined by ε. The larger the C, the
closer the linear regression function can fit the data [33].

For our experiments the support vector regression (SVR)
model [34], which employs the sequential minimal optimization
(SMO) algorithm for training a support vector classifier [32],
was used. Many kernel functions have been used in SVR such
as the polynomial, the radial basis function (RBF) and the Gaus-
sian functions [35], etc. In this paper, after some preliminary
experiments, the RBF kernel was selected [35].

4. Experiments
As mention earlier, there are two hypotheses we are interested in
verifying with the following experiments. Firstly, whether ex-
ternal models could build more robust phone duration models
than the explicit modelling of HSMMs. Secondly, whether the
SVR model, since SVMs cope in a better way with the high-
dimensionality of the feature space than MLP, would outper-
form the MLP external PDM.

4.1. Experimental Setup

In this section the database along with the feature set used in
the experiments are presented. Furthermore, the setup of the
HSMM explicit duration model and the external SVR and MLP
phone duration models are described. The same HSMM frame-
work, used for the explicit duration modelling, was also used for
the HMM-based speech synthesis models used for synthesizing
speech (using the predicted by each model durations) for the
subjective evaluation test. The implementation of the external
SVR and MLP PDMs was done with the WEKA software [36].

4.1.1. Database and Feature Set

For the experiments, the RMS voice of the CMU-ARCTIC
database was used [29] which is a database of standard size
for speaker-dependent HMM-based speech synthesis. The RMS
voice is an American English male containing 1320 sentences
of reading style speech. The data were divided into three sets, a
training set containing 900 sentences for training the three mod-
els, a development set of 100 sentences for fine tuning the ex-
ternal phone duration models and a test set of 132 sentences for
evaluating the three models with objective and subjective eval-
uation tests. Throughout the entire database, all starting and
ending silences in each sentence were removed. Only the inter-
nal silences (silences between words in each sentence - phone
“pau”) were kept and modelled as the rest of the phones. This
concluded to a phone set of 41 phones.

Concerning the features used for training the HSMM sys-
tem, a standard in HMM-based speech synthesis set of features
was used, composed of phonetic and prosodic features such as
phone identity, identity of the two previous and next phones,
number of syllables in a word, accented/stressed syllable, etc.,
concluding to a 53 feature set. For the external phone dura-
tion models, the same feature set was used expanded with some
additional articulatory features. These articulatory features cor-
respond to information such as the category of the phone (e.g.
vowel, approximant, nasal, etc.), vowel length (e.g. short, long,
etc.), height (e.g. high, middle, low), frontness (e.g. front, mid-



Figure 1: This figure shows the RMSE for the three PDMs (HSMM, MLP and SVR) per phone

dle, back), place of articulation (e.g. labial, alveolar, palatal,
etc.), etc. The Relief [37] feature selection algorithm was used
in some preliminary experiments for selecting among 37 binary
articulatory features and their temporal (one previous and one
following phones) information, the most appropriate ones. The
final feature set consisted of 100 features.

4.1.2. HSMM model

For the implementation of the HSMM model, the version 2.2
of the HTS toolkit [38] was used. The speech data which were
used had 16kHz sampling frequency. Five-state, left-to-right,
no-skip HSMMs were used. The speech parameters which were
used for training the HSMMs were 24th order mel-cepstral co-
efficients [39], log-f0 and 21-band aperiodicities [38], along
with their delta and delta-delta features, extracted every 5 mil-
liseconds (ms). The number of the used questions and the num-
ber of the leaf nodes of the decision tree were 304 and 547
respectively. STRAIGHT [40] was used for the analysis and
synthesis phase of the HSMM-based speech synthesis.

4.1.3. MLP model

For the MLP model, a backpropagation based approach was
used. The 100 input units (features) were converted to 570 units
since all the nominal (categorical) features were converted to
binary ones - an attribute with k nominal values is transformed
into k binary attributes. The MLP model consisted of the in-
put layer with 570 units, a hidden layer (H) with 10 units and
an output layer with one unit (phone duration). The learning
rate (L) of MLP, to ensure that the weights converge to a re-
sponse fast enough without producing oscillations [41], was set
equal to 0.05. The momentum term (M), which determines the
degree to which each weight change will depend on the pre-
vious weight change, was set equal to 0.05. The epoch of the
MLP (N), which determines the maximum number of iterations
in which the full training set is presented in the model, was set
equal to 500. These values were selected after a grid search
(H={5:1:90}, L={0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0},
M={0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0}, N={50, 500,
1000, 5000, 10000, 50000}) of the model on the development
set in respect to the RMSE of the model.

4.1.4. SVR model

For training the SVR model, as in the case of MLP, 570 features
binary features were used. In our experiments the RBF kernel
was used as mapping function for the SVR. The ε and C param-
eters, where ε ≥ 0 is the maximum deviation allowed during
training and C > 0 is the penalty parameter for exceeding the
allowed deviation, were set equal to 0.005 and 0.5 respectively.
The gamma (G) parameter of the RBF function, determining
the RBF width, was set equal to 0.05. These values were se-
lected after a grid search fine tuning (ε={0.001, 0.003, 0.005},
C={0.5, 1.0, 1.5, 10, 100}, G={0.01, 0.03, 0.05}) of the model
on the development set in respect to the RMSE of the model.

4.2. Experimental Results

For the evaluation of the models both objective and subjective
tests were done for evaluating the accuracy of the models and
the overall quality of the synthesized speech respectively.

4.2.1. Objective Evaluation

In the objective evaluation, the root mean square error (RMSE)
in terms of milliseconds (ms) between the predicted and the ref-
erence (the original phone boundaries of the database) phone
durations was used. To determine the phone duration predic-
tion in ms using the HSMM model, the sum of frames of each
of the five states on each phone was calculated and multiplied
by the frame shift of the model. In Table 1, the overall perfor-
mance accuracy of the three models (HSMM, MLP, SVR) on
the development and test sets is presented. The MLP and the
SVR models managed to outperform the HSMM one with a rel-
ative improvement in terms of RMSE of 11.56% and 25.09%

Table 1: This table reports the accuracy in terms of RMSE (ms)
for the three PDMs for the developement and test sets.

Set Phones HSMM MLP SVR
Dev All 43.89 37.11 33.07
Test All 43.97 38.89 32.94
Test Vowels 48.96 42.13 33.95
Test Cons 39.91 36.31 31.87



Table 2: This table shows the subjective evaluation (ABX test) for the three pairs (HSMM vs MLP, HSMM vs SVR and MLP vs SVR).

ABX test HSMM vs MLP HSMM vs SVR MLP vs SVR
Set HSMM Eq. MLP HSMM Eq. SVR MLP Eq. SVR
Set1 26.43% 28.57% 45.00% 15.00% 26.43% 58.57% 16.43% 51.43% 32.14%
Set2 24.62% 32.31% 43.08% 11.54% 34.62% 53.85% 18.46% 41.54% 40.00%
Both 25.56% 30.37% 44.07% 13.33% 30.37% 56.30% 17.41% 46.67% 35.93%

respectively, verifying our first hypothesis, i.e. these external
models are able to build more robust models than the HSMM
explicit duration modelling. Furthermore, the SVR model in
comparison to the MLP model achieved a relative improvement
of 15.3%, showing the superiority of the SVR over the MLP
model, verifying our second hypothesis, i.e. the SVR could
model better the phone durations in comparison to MLP. As it
was expected, the SVR model managed to cope in a better way
with the high-dimensionality of the feature space in comparison
to the MLP model.

Moreover, as it was expected, since the development and
test sets are not involved in the training procedure of the HSMM
model, the RMSE for these sets are almost identical. In the case
of the MLP model on the test set, a 4.79% relative decrease in
terms of RMSE in respect to the development set (used for the
fine tuning of the model) is achieved, showing some degree of
overfitting of the model to the development set. On the other
hand, in the case of the SVR model, even though the model is
fine tuned using the development set, the RMSE for the devel-
opment and test sets are almost identical, showing an additional
advantage of the SVR over the MLP, i.e. the ability of SVR to
make robust model without overfitting to the development set.

In Table 1, the overall accuracy in terms of RMSE on the
test set separately for vowels and consonants is presented. It can
be seen that these results follow the overall results described
above. For all models, the RMSE calculated on the vowels is
higher than the one on the consonants, which can be attributed
to the fact that the mean of the standard deviation of the vowels
(on the reference-original durations of the phones) is signifi-
cantly higher than the respective one for the consonants.

In Figure 1, the RMSE in milliseconds for each phone
for the three models on the test set is presented. It is shown
that the SVR model managed to outperform the MLP and the
HSMM models for all phones apart from the silence (“pau”),
where MLP model achieved the best performance followed by
the SVR model. The biggest difference between the SVR and
the HSMM models is shown in phone “ey”, where SVR model
achieved a 37.74% relative improvement over the HSMM
model in terms of RMSE. On the other hand the smallest differ-
ence for the respective models is shown in phone “hh”, where
SVR model achieved a 10.9% relative improvement over the
HSMM model in terms of RMSE. In the comparison between
SVR and MLP models, the biggest difference is shown in phone
“ay”, where SVR model achieved a 28.36% relative improve-
ment over the MLP model in terms of RMSE. The smallest dif-
ference is shown in phone “aa”, where SVR model achieved a
1.64% relative improvement over the MLP model in terms of
RMSE. Comparing the MLP and HSMM models, it can be no-
ticed that in several cases (e.g. “f”, “th”, “uw” phones), the
MLP model was outperformed by the HSMM model. On the
other hand the biggest difference for the respective models is
shown in phone “g”, where MLP model achieved a 37.76% rel-
ative improvement over the HSMM model in terms of RMSE.

4.2.2. Subjective Evaluation

In order to investigate whether the objective performance
among the three models is reflected to the overall quality of
the synthesized speech, a subjective evaluation test was done.

Using the HSMM-based speech synthesis framework described
earlier, the phone durations predicted by the SVR and MLP
models were forced on the speech synthesis system, in order
to synthesize speech using the predicted durations and deter-
mining internally the state sequence of the model.

The subjective evaluation was composed by three ABX
tests, comparing each of the model to the other two. Two sets
of ten sentences where randomly chosen from the test set and
were evaluated by 14 and 13 subjects respectively. For every
sentence, the subjects were presented with three pairs of sam-
ples (HSMM vs MLP, HSMM vs SVR and MLP vs SVR) in
random order, without any knowledge about the three systems
and a reference sample. In each case the subjects had to choose
between the two samples of the pair in terms of sounding closer
to the reference one (synthesized with forced alignment using
the reference durations) or they could choose “equal” if they
had no preference over them.

In Table 2, the results of the ABX tests are presented.
As can be seen the SVR model was preferred over the MLP
and HSMM models with a score of 35.93% over 17.41% and
56.30% over 13.33% respectively. Furthermore, the MLP
model was preferred over the HSMM model with a score of
44.07% over 25.56%. These results follow the trend of the ob-
jective evaluation, showing that the SVR managed to build a ro-
bust model capable of outperforming the explicit HSMM model
and moreover the other external model using MLP, in the overall
quality of the synthesized speech.

5. Conclusions
In this paper we compared the HSMM-based explicit dura-
tion modelling with two external phone duration models using
Support Vector Regression (SVR) and Multilayer Perceptron
(MLP). The goal was to investigate whether and in which degree
the external duration models outperform the HSMM model and
if this is perceived in a subjective evaluation test on the qual-
ity of the synthesized speech. The experiments were done on
an American English male speaker database. In both objective
and subjective tests, it was shown clearly that the external dura-
tion models are more appropriate in the task of phone duration
modelling in comparison to the explicit duration modelling of
HSMMs, verifying our initial hypothesis.

Additionally, between the two external models, the SVR
one outperformed the MLP model verifying our second hypoth-
esis that the SVR would managed to tackle this task more ef-
ficiently. In the objective test, SVR model managed to outper-
form the MLP and HSMM ones showing a relative improve-
ment in terms of root mean square error of 15.3% and 25.09%
respectively. Finally, the subjective evaluation test showed that
the superiority of the SVR model over the MLP and HSMM
models is reflected also on the quality of synthetic speech,
achieving a preference score of 35.93% and 56.30% over them,
respectively. As future work it would be interesting to investi-
gate how these three models perform when larger databases.
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