A fast and reproducible method to quantify magnetic nanoparticle biodistribution

The quantification of nanoparticles, particularly superparamagnetic iron oxide nanoparticles (SPIONs), both in vitro and in vivo has become highly important in recent years. Some methods, such as induced coupled plasma (ICP) spectroscopy and UV-visible chemical titration using Prussian Blue (PB), already exist however they consist of the titration of the whole iron content. These standard methods need sample preparations leading to their destruction and long measurement time. In this study, we used magnetic susceptibility measurements (MSM) to titrate the concentration and biodistribution of magnetic particles in the organs of rats. The advantages of the MSM SPION quantification technique are presented and compared to widely used methods of iron oxide titration such as ICP and PB UV-visible titration. We have demonstrated that MSM is a simpler, faster (1 second per measurement), more reproducible and highly sensitive technique for SPION detection with minimal detection around 2 mu g(Fe) mL(-1) without being influenced by neither the SPION coating nor their surrounding environment. Moreover, MSM is a more robust method as it is not affected by endogenous iron facilitating the distinction of SPIONs (iron present as nanoparticles) from background iron in tissues. This advantage allows the decrease of control samples needed in biological studies. In conclusion, we have demonstrated that MSM is a standard method that can be easily setup to determine the biodistribution of SPIONs regardless of their environment.

Published in:
Analyst, 139, 5, 1184-1191
Cambridge, Royal Society of Chemistry

 Record created 2014-04-02, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)