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Abstract. Max-stable processes are the natural analogues of the generalized extreme-value
distribution when modelling extreme events in space and time. Under suitable conditions, these
processes are asymptotically justified models for maxima of independent replications of ran-
dom fields, and they are also suitable for the modelling of extreme measurements over high
thresholds. This paper shows how a pairwise censored likelihood can be used for consistent
estimation of the extremes of space-time data under mild mixing conditions, and illustrates this
by fitting an extension of a model of Schlather (2002) to hourly rainfall data. A block bootstrap
procedure is used for uncertainty assessment. Estimator efficiency is considered and the choice
of pairs to be included in the pairwise likelihood is discussed. The proposed model fits the data
better than some natural competitors.
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1. Introduction

Under suitable conditions, max-stable processes are asymptotically justified models for max-
ima of independent replications of random fields. Since they extend the generalized extreme-
value distribution of univariate extreme value theory to the spatial setting, they are natural
models for spatial extremes. de Haan’s (1984) spectral representation of such processes im-
plies that there are infinitely many max-stable processes, and the practical challenge is to
build flexible but parsimonious models that can capture a wide range of extremal depen-
dencies. Parsimony is important since extremal data are often scarce, but flexibility is also
crucial since a poor fit might lead to mis-estimation of risk. Several models for max-stable
processes have been suggested; for example, Smith (1990) proposes a max-stable model with
deterministic storm shapes, and Schlather (2002) proposes one based on a truncated Gaussian
process. Other models include the Brown—Resnick processes (see Kabluchko and Schlather,
2010), and a Brownian motion model proposed by Buishand et al. (2008), which has the
drawback of not being invariant with respect to coordinate axes. Wadsworth and Tawn
(2012) generalize these models to hybrids able to capture both asymptotic dependence and
asymptotic independence. Reich and Shaby (2012) propose a finite-dimensional construction
of max-stable processes that can be fitted in the Bayesian framework through Markov chain
Monte Carlo simulation. Other modelling approaches for spatial extremes, based on copulas
or on latent processes, are presented by Davison et al. (2012).

The full likelihood cannot be obtained analytically for most max-stable processes (but
see Genton et al., 2011; Huser and Davison, 2013). However, since the bivariate marginal
densities can usually be derived, inference can be based on a pairwise composite likelihood.
Much has been written on pseudo-, quasi- or composite-likelihood; see Varin (2008) and
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Varin et al. (2011) for general overviews, and Padoan et al. (2010), Blanchet and Davison
(2011), Davison et al. (2012) and Davison and Gholamrezaee (2012) for applications to
spatial extremes. Such likelihoods are robust to misspecification of higher-order marginal
distributions and have nice theoretical properties, but so far have been applied only to
componentwise maxima. An important extension, which improves inference by incorporating
more information, is to perform pairwise threshold-based inference for max-stable processes,
analogous to the use of the generalized Pareto distribution for univariate peaks over threshold
modelling. This will be addressed below.

In Section 2, we tie together geostatistics and statistics of extremes to construct asymp-
totically valid space-time models for extremes. The spatio-temporal aspect of this modelling
is novel, though related work includes Davis and Mikosch (2008), Davis et al. (2013a) and
Davis et al. (2013b). Section 3 is focused on inference and describes the methods based on
pairwise likelihood, while Section 4 addresses the loss in efficiency of the estimation proce-
dure and gives some suggestions about the choice of pairs to be included in the pairwise
likelihood, based on a simulation study. Section 5 describes its application to space-time
modelling of rainfall. Brief concluding discussion is given in Section 6.

2. Threshold modelling for extremes

2.1.  Marginal modelling
The classical theory of extreme values addresses the large-sample fluctuations of the maxi-
mum M, of a sequence of independent and identically distributed random variables X1, ..., X,
whose distribution F has upper terminal xp = sup{z : F(z) < 1}, possibly infinite. If se-
quences {a,} > 0 and {b,} C R exist such that the limiting distribution G of (M,, — b,)/an
is non-degenerate, then it must necessarily be the generalized extreme-value (GEV) distri-
bution, G(z) = exp[—{1+&(z —n)/7} V€], defined on the set {y : 1+ &(xz —n)/7 > 0}, with
ne€R, 7 >0, €R and with the value for £ = 0 interpreted as the limit when £ — 0.

A complementary result describes the stochastic behaviour of peaks over a high threshold
u: if the limit distribution G holds for maxima, then as © — z the conditional distribution
of X — u, suitably rescaled and conditional on X > w, converges to the generalized Pareto
distribution, GPD(c, &) (Davison and Smith, 1990). Its distribution function is

¢ —-1/¢
aw=1-(1+5) . o

where the scale parameter is linked to that of the GEV distribution by ¢ = 7 + &(u — 7),
and the shape parameter £ is the same as for G. A closely related characterization relies on
point processes. If the limiting result holds for maxima, then as n — oo the two-dimensional
point process {i/(n + 1), (X; — by)/an}_, converges to a non-homogeneous Poisson process
on regions of the form [t1, 2] X [u, 00), with 0 < ¢; < t3 < 1 (Leadbetter, 1991; Smith, 1989).
In practice, the data often exhibit temporal dependence, and the aforementioned asymptotic
results can be extended to stationary sequences with short-range dependence (Leadbetter
et al., 1983). For more details about extreme-value statistics, see Coles (2001), Beirlant
et al. (2004), Embrechts et al. (1997) or de Haan and Ferreira (2006).

As the upper tail may be well approximated by a GPD, the distribution F' of X can be
consistently estimated by

~ F(z), x < u;
F(z) = . . R
1—§u{1+§(x—u)/a} , x>,
where F' (z) is the empirical distribution function of the sample Xi,..., X,, éu is the esti-

mated probability of exceeding the threshold u and é and & are estimates of £ and o. The
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transformation t(z) = —1/log F(x) therefore approximately standardizes the observations
to have the unit Fréchet distribution exp(—1/x), for x > 0. The choice of threshold u is
typically made informally using diagnostic plots, sometimes aided by theoretical arguments,
though it can be vexing for nonstationary data; see Scarrott and MacDonald (2012) and
Northrop and Jonathan (2011) and its discussion.

Joint modelling of extremes is crucial for a realistic assessment of risk, and the next
section describes models for spatial or spatio-temporal extremes, with margins previously
transformed to the unit Fréchet scale.

2.2. Max-stable processes
Suppose that {Y;(z) : # € X C R?}, i = 1,2,..., are independent replicates of a random
process, and that there exist sequences of continuous functions {a,(z)} > 0 and {b,(x)}
such that as n — oo, the rescaled process of maxima, a, ' {max(Yy,...,Y,) — b,}, converges
in distribution to a random process Z whose univariate margins are all non-degenerate.
Then it can be shown that the class of possible limiting processes coincides with the class of
max-stable processes with non-degenerate margins, i.e., those for which the maximum of n
independent replicates of Z can be rescaled to have the same distribution as Z (de Haan and
Ferreira, 2006, §9.2). The marginal distributions of Z are GEV and can be transformed to a
standard form. Below we take Pr{Z(x) < z} = exp(—1/2), z > 0, so that these margins are
unit Fréchet; such a process is called simple max-stable. Under mild technical conditions, one
may represent a simple max-stable process Z as (de Haan, 1984; Schlather, 2002; de Haan
and Ferreira, 2006, §9.4)
Z(x) = sup Wi(z)/ P; (1)
i>1

where the P;’s are the points of a unit rate Poisson process on R} and the W;’s are inde-
pendent replicates of a non-negative random process W(x) with unit mean at each z. A
common interpretation of Z is as a pointwise maximum of random storms W; with corre-
sponding intensities Pi_l. Due to the characterization (1), no finite parametrization exists
for such processes.

It follows from (1) that the joint distribution of the process Z at N distinct locations is

Pr{Z(z1) < 21,..., Z(zx) < 2n} = exp (—E L_rﬁ%%N {Wf)}]) — exp{—Vn(21,---,23)}s
(2)

where the exponent measure Vy(-), which summarises the extremal dependence structure,
is homogeneous of order —1 and satisfies Vi (o0, ..., z,...,00) = 1/z for any permutation of
the N arguments. When z; = z for all i = 1,..., N, we obtain Pr{Z(x;) < z,...,Z(zn) <
2z} = exp{—Vn(1,...,1)/2} = {exp(—1/2)}?~. The so-called extremal coefficient 6y =
Vn(1,...,1) can be seen as a summary of extremal dependence, and has two bounding
cases: complete dependence, 6 = 1, and independence, Oy = N.

Different choices for W (x) yield more or less flexible models for spatial maxima. For
the space-time modelling of extreme rainfall (see §5), a model originally due to Schlather
(2002) seems suitable. It comprises a truncated Gaussian random process for W(x), so that
storm shapes are stochastic, and includes a compact random set, which allows independent
extremes. In the present context the points € X have coordinates in space S C R? and
time 7 C R, that is, z = (s,t) € X =8 x 7, where S and 7 are compact, and the model is
defined by taking

Wi(s,t) x max{0,¢e;(s,t) 14, {(s,t) — X}, (s,t) eSxT. (3)

Here the ¢;(s,t) are independent replicates of a Gaussian random field with space-time cor-
relation function p, I4 is the indicator function of a compact random set A C S x 7, the
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A; are independent replicates of A, and the X; are points of a unit rate Poisson process
on § x T, independent of the ;. The proportionality constant in (3) is chosen to satisfy
E{Wl(s,t)} =1.

A common feature of the max-stable models thus far proposed is that the exponent
measure Vi is known for N = 2. Genton et al. (2011) provide a closed-form expression of
the likelihood function for the Smith max-stable model indexed by R? when N < d + 1,
and Huser and Davison (2013) have generalized this to the Brown—Resnick process, but only
the bivariate margins are known for other models. Moreover, the number of terms in the
likelihood explodes as IN increases, and this has led to the use of pairwise likelihood; see
Section 3 below. The bivariate exponent measure for the model (3) can be expressed in the
stationary case as (Schlather, 2002)

o= (3 5) {12052 1 s ] ) o

where hy = 1 — so is the spatial lag, hy = t; — to is the temporal lag, a(hs, ht) = E[|AN
{(hs, ht) + A}]/E(JA]) and | - | is used to denote the volume of a set. Hence the pairwise
spatio-temporal extremal coefficients are

ez<hs,ht>—vz<1,1>—2a(hs,ht){l 1”(2’””} (5)
Usually in practice, p(hs,ht) — 0 as hy — oo or hy — oo. Therefore, for the Schlather
model without a random set, which corresponds to setting A = S x 7 and «a(hg, hy) = 1,
02 (hs, ht) would be bounded above by 1.707 as h; — oo or hy — oo: complete independence
could not be captured by this model, even at very large distances. Since A is chosen to be
compact, we can choose A so that a(hg,h;) — 0 and thus g(hs, hy) — 2 as hy — oo or
ht — oo for any spatio-temporal correlation function p(hs, hy). The process (3) is built from
random sets each with a truncated Gaussian process inside, so the short-range dependence is
largely determined by the correlation function p(hs, ht), while the longer-range dependence
is regulated by the geometry of the random set .A. We describe several other models in §5.5,
but (3) gives the best fit to our data.

In the geostatistics literature, stationary isotropic correlation functions have been used
extensively. But in our general framework, the correlation function need be neither isotropic
nor stationary, and could therefore depend on the space-time locations z1 = (s1,¢1) and
xo = (S2,12) rather than on their spatio-temporal distances ||hs]|, |h:| and lag vectors hs, hy.
We would then have non-stationary extremal coefficients.

In the next section, we show how to make the link from an asymptotic distribution for
maxima to a model for multivariate threshold exceedances.

2.3. Censored threshold-based likelihood

The convergence of block maxima to a max-stable process implies that all finite-dimensional
distributions converge to a max-stable distribution, i.e., to a multivariate extreme value dis-
tribution. As explained in Section 2.2, the joint distribution of properly scaled block maxima
at N sites in X is well approximated by exp{—Vx(z1,...,2n)}, where the exponent measure
Vi stems from the underlying spatial structure of the max-stable process. As shown by
Beirlant et al. (2004, page 276), the joint tail of individual observations Y (z1),...,Y (zn)

at the sites z1,...,zy is asymptotically equivalent to that of maxima, so when all of the
z1,...,2Nn are large the joint distribution of Y(z1),...,Y(xx) can be approximated by
exp{—Vn (#1,...,2n)}. Hence, the model for maxima in equation (2) also provides a model

for extremes of individual observations. This argument has led several authors (see, e.g.,
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Smith et al., 1997; Wadsworth and Tawn, 2012; Ledford and Tawn, 1996; Bortot et al., 2000;
Coles, 2001, p.155) to consider censored modelling for bivariate extremes. Let u be a suffi-
ciently high threshold, chosen so that exp {—V2 (21, 22)} is a valid model for {Y'(z1),Y (z2)}
when 21, 20 > u. The likelihood contribution p,(z1, 22) of a pair (21, z2) is then taken to be

2 .
5% exp{—Va(z1, 22)}, min(z1,22) > u;

a .
pu(Zh 2;2) = ?51 eXp{*V2(Zlvu)}a z1 > u, 22 < u; (6)
Bz eXp{*VQ(uv ZQ)}a 71 Su, 29 >
exp{—Va(u,u)}, max(z1,22) < u,

where V5 is the function appearing in (4), for which the density exists. Different marginal
thresholds can be used (Bortot et al., 2000) and the approach generalizes to higher dimen-
sions, though the probability that an observed N-uplet falls into the “upper right quadrant”
decays geometrically with N, leading to potential inference problems in practice.

Alternative approaches recently proposed are based on generalized Pareto processes (Fer-
reira and de Haan, 2012; Aulbach and Falk, 2012) and multivariate generalized Pareto dis-
tributions (Rootzén and Tajvidi, 2006; Buishand et al., 2008; Beirlant et al., 2004, p.277).
So far as we are aware, the former have not yet been used for inference, and unpublished
simulations suggest that the approach to inference suggested for the latter may yield badly
biased estimators; our approach has a larger variance but a smaller mean squared error.

In the next section, we will show that censored threshold-based pairwise likelihoods pro-
vide consistent inference.

3. Inference

3.1. Pairwise likelihood approach

As the full likelihood is not generally known for max-stable models, classical frequentist or
Bayesian inference appears impossible, and we adopt an alternative approach based on com-
posite likelihood. An analogous approach in the Bayesian framework using a pseudo-posterior
distribution based on a pairwise likelihood has been developed by Ribatet et al. (2012), and
Wadsworth and Tawn (2013) describe an approach to inference based on exceedances of a
particular class of max-stable processes. Maximum composite likelihood estimators typically
have similar asymptotic properties to the usual maximum likelihood estimator; often they
are asymptotically normal and strongly consistent.

Assume that the spatio-temporal process Z(s,t), (s,t) € X = S x 7, is observed at S
monitoring stations and at times 1,...,7T, that is at N = ST locations in X. For simplicity
of notation we let Z,; denote the value recorded at the sth station at time ¢, and consider
the censored threshold-based pairwise log likelihood

5 s
k(@) = Z Z Z Z (1 —1I{s1 > so and hy = 0})logpy (Zs, 1) Zsy,t4ne3 %), (7)

t=1 h;eK; s1=1s2=1

with corresponding maximum pairwise likelihood estimator
b = arg max/! , 8
Upk g e K(w) ( )

where Ky = {hy € K : by < T —t} and K € NU {0} is a finite collection of time lags,
with p,, given by equation (6), the exponent measure V being given for example by (4) and
where I{-} is the indicator function. If £ = {0,1,...,K} for K < oo, this pairwise log
likelihood corresponds to summing all space-time pairwise contributions up to a maximum
time lag K. If K =T — 1, it reduces to the full pairwise likelihood. However, the associated
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computational burden could be reduced and statistical efficiency gained by taking a different
subset K. For example, we could take {|a*~!| : kK =1,..., K} U {0}, a > 1. In particular,
when a = 2, we include the pairs at lag 0,1,2,4,8,.... Another choice could be based on the
Fibonacci sequence: 0,1,2,3,5,8,13,.... In Section 4, we will see that the choice of pairs is
closely linked to the efficiency of 1[Jch, so careful selection of them is essential. Bevilacqua
et al. (2012) discuss related issues in the context of Gaussian random fields.

3.2. Asymptotics

Davison and Gholamrezaee (2012) and Padoan et al. (2010) use pairwise likelihood for infer-
ence on max-stable processes, assuming independence between distinct annual maxima. In
the case of spatio-temporal extremes, the asymptotic normality of 1&1), i stems from a central
limit theorem for stationary time series applied to the score U(y) = VI(v) = 23:1 Ui (),
where Ui(1) is the derivative of the rightmost triple sums in equation (7) with respect to .
However, as the elements U;(¢) are generally correlated over time ¢, we need an additional
mixing condition in order for classical asymptotics to hold. A mild sufficient condition is
that the process Z(s,t) be temporally a-mixing, along with a condition on the rate at which
the mixing coefficients a(n) must decay, ensuring that the correlation vanishes sufficiently
fast at infinity. With this condition, two events become more and more independent as their
time lag increases. In particular, all m-dependent processes are a-mixing.

We call a space-time process Z(s,t), (s,t) € X = S x 7, temporally a-mixing with
coefficients a(n) if for all s € S, for all sequences ¢, C T, the time series {Z(s,t,) : n € N}
is a-mixing with coefficients o (n) and where sup,cs as(n) < a(n) — 0 as n — oo. For the
definition of an a-mixing time series, see Bradley (2007, Definition 1.6). We can then obtain
the following theorem, whose proof, which relies on the theory of estimating equations, is
given in Appendix A.

THEOREM 1. Let Z(s,t) be a stationary spatio-temporal maz-stable process that is tempo-
rally c-mizing with coefficients a(n). Moreover, suppose that for allvp € ¥, E[{U;(¢)}?] < 00
and that for some § > 0, one has E(|U1(1)[**?) < 0o and 3, 5, |a(n)[®/ 9 < oo, If 4 is
identifiable from the bivariate densities, then

TYV2R ()" 201 (0) (bpic — ) — N (0, I,)

in distribution as T — oo, where
Ji(y) = E{=Vyuli(¥)}, (9)

T
K@) = Tlvar{ZUt(w}
T-1
= BOWHWT+ Y (1- 1) EO@UA0)} + Ea@neT)] 0
t=1
— B{UL@)U()"}+ D [B{() Ui ()"} + E{Ua () T()"}] <00, T — oo

This result shows that the standard asymptotic normality result for composite likelihoods
(Hjort and Varin, 2008; Lindsay, 1988; Godambe and Heyde, 1987; Varin, 2008; Varin and
Vidoni, 2005; Cox and Reid, 2004; Padoan et al., 2010) still holds under mild conditions for
moderately temporally dependent processes. The asymptotic variance is of sandwich form,
as is standard for misspecified models.
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If the process Z(s,t) were instead assumed to be Gaussian, and hence not max-stable,
and if the pairwise likelihood were defined in terms of the marginal bivariate normal den-
sities, then the moment conditions of the theorem, that E[{U;(¢)}?], E[|U1(¥)[*T°] < oo,
would be automatically satisfied for all 6 > 0, and thus the mixing condition would reduce
to Y., 51 Ja(n)|! 7€ < oo, for some € > 0. Similar results were obtained by Davis and Yau
(2011), who establish the asymptotic normality and the strong consistency of the maxi-
mum consecutive pairwise likelihood estimator for ARMA models, under a condition on the
autocorrelation function, and treat certain long-memory models.

3.3.  Variance estimation

Variance estimation for 1/}177;@ is difficult owing to the complicated form of the sandwich
matrices in equations (9) and (10). The pairwise log likelihood is formed by summing the
pairwise contributions for the time lags in the set I and across all S stations, so a single
evaluation of the pairwise log likelihood requires O(T'|K|S?) operations, and the computation
of (10) is yet more intensive.

The temporal dependence of the data suggests that block bootstrap or jackknife methods
can be used. In our application we apply a block bootstrap, treating rainfall data from
different summers as independent. We resample the summers with replacement and use
replicates of z/;p’;g to estimate its variability. Fortunately, the replicates can be computed in
parallel. The bootstrap was originally developed for independent data, and its consistency
is discussed in Davison and Hinkley (1997, §2.6), for example. Dependence may be expected
between observations within the same block, but when the blocks (in our case the summers)
may be treated as independent, the bootstrap may be applied to the blocks.

4. Efficiency considerations

In Section 3, we introduced our maximum pairwise likelihood estimator for spatio-temporal
extremes. Although it inherits its asymptotic properties from the usual maximum likelihood
estimator, the natural question of statistical efficiency remains to be addressed. It turns
out that the loss in efficiency is closely related to the pairs that are included in the pairwise
likelihood, i.e., to the choice of K. Adding pairs might simultaneously increase the variability
K (1) of the score and the amount of information J(v), so it is unclear how the selection of
pairs acts on the variance T~1J (1)) 1K ()J(¢))~1; the amount of information contained in
a single pair might be insufficient to counteract the increase of variability due to including it,
so the choice of the optimal subset of pairs is not obvious. However, one might suspect that
for short-range dependent processes, pairs that are far apart in S x 7 are not as relevant
for the estimation of a dependence parameter as are nearby ones. Varin et al. (2011), Varin
and Vidoni (2005) and Varin and Czado (2010) have suggested the elimination of non-
neighbouring pairs.

In the online supplementary material, we give the asymptotic relative efficiency of the
maximum pairwise likelihood estimator for AR(1) and MA(1) models, for which maximum
likelihood estimators can be computed, in order to gain a qualitative understanding of how
composite likelihoods behave in more complex settings. As mentioned by Davis and Yau
(2011), the efficiency for these simple models is maximized when pairs at lag 1 only are
included. However, in practice, more lags must often be included in order that the model be
identifiable, and our results shed some light on how to choose them. Complementary results
on the efficiency of pairwise likelihood may be found in Cox and Reid (2004), Varin and
Vidoni (2009), Hjort and Varin (2008) and Joe and Lee (2009).

Since these theoretical results do not apply directly to max-stable processes, we conducted
a simulation study in a one-dimensional framework, using the statistical software R, (R Core
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Table 1. Mean squared errors (MSE) (x 1000) for estimation of log A, the log-
arithm of the correlation range parameter, based on 1000 replications of the
Schlather model, for different sets of pairs included in the pairwise likelihood,
and i known. There are three estimation procedures: margins known (MK);
margins unknown, two-step approach (MU-2); margins unknown, one-step
approach (MU-1).

Number of time lags K
1 3 6 9
Set K | KX, | KE, KEK | Kk & k¥ |k xf k¥
MK 19 21 21 | 26 24 22 | 29 24 23
MU-2 42 45 46 | 54 50 48 | 59 50 49
MU-1 37 41 42 | 48 45 44 | 52 46 44

Team, 2012). We simulated the Schlather model (3) on the time axis, taking X = [0, 10000],
with random sets of the form A = [0, D], where D = 24§ and ¢ ~ beta(10,240/u — 10). The
parameter u corresponds to the mean length of the random set, which lies in the range (0, 24),
and we set u = E(D) = 40/3 ~ 13.3. We chose an exponential correlation for the underlying
Gaussian random field e, with range parameter A = 4; the effective range is 12. We then
transformed the simulated processes to the Student ¢5 scale, so that the exceedances above
some high threshold u are approximately GPD(c, §) with shape parameter £ = 0.2 (Beirlant
et al., 2004, p. 59). The parameters were chosen to mimic rainfall data. The threshold u
was set to the empirical 95% quantile, so that we have 500 exceedances contributing to the
pairwise likelihood; in our application in Section 5, about 3000 exceedances were available
at each station. A realization from this model is shown in the supplementary material. To
assess the influence of the marginal estimation on the overall fit, we consider three estimation
procedures: (i) estimation of the dependence parameters, treating the margins as known; (ii)
a two-step approach, first estimating the marginal parameters by fitting the approximate
GPD model, and then using the data thereby transformed to the unit Fréchet scale to
estimate the dependence parameters; and (iii) a one-step approach, estimating marginal and
dependence parameters simultaneously.

We first fixed the random set parameter p to its true value, and estimated the logarithm of
the range parameter, log A, with the threshold-based pairwise likelihood estimator (8), using
the empirical 95% quantile threshold. We tested estimators corresponding to three sets of
time lags: (a) KK = {1,...,K}, for which all time lags are used up to some maximum
time lag K; (b) K = {by : k = 1,..., K}, where by is based on the Fibonacci sequence;
and (c) KK = {2¥=1 .k =1,..., K}, where the lags increase geometrically. We considered
K =1,3,6,9. Table 4 reports the mean squared errors (MSE) of these estimates based on
1000 realizations of the Schlather model.

With the random set parameter p known, the MSE is minimized for K = {1}, whatever
the estimation procedure, corroborating the findings of Davis and Yau (2011) for AR(1) or
MA(1) processes. Moreover, the MSE is systematically lower when K is used instead of K8
or when K is used instead of K, even though the observations separated by more than 24
time units were independent. The same is true for X. Thus, the inclusion of some distant,
less dependent, pairs can improve inference significantly for fixed K, and marginal estimation
does not influence the conclusions about the pairs that should be included in the pairwise
likelihood.

A plot in the supplementary material shows how the bias and variance of the dependence
parameter estimator decrease as the number of observations T' increases, confirming the
theoretical results of Section 3.

We then estimated the correlation range parameter A > 0 and the mean duration p €
(0,24) of the random set simultaneously, using the maximum composite likelihood estimator



Space-time modelling of extreme events 9

Table 2. Mean squared errors (MSE) for the joint estimation of the mean duration . of the random
set and the logarithm of the range parameter, log A, when different sets of pairs are included in
the pairwise likelihood. The percentages of time when [ reaches its upper bound is also reported.
We considered three estimation procedures: margins known (MK); margins unknown, two-step ap-
proach (MU-2); and margins unknown, one-step approach (MU-1). This simulation is based on 1000
replications of the Schlather model.

Number of time lags K
1 3 6 9

Set K | KX, | KE, KF |k xf k¥ |kl xF k¥

MK 1000x MSE for log A 28 28 24 24 23 22 24 23 22
MSE for fi 22.5 16.0 109 1| 69 21 28 | 33 22 29

Bound reached (%) 21 10 6 1 0 0 0 0 0

MU-2 1000xMSE for log A 67 70 66 62 48 47 52 49 48
MSE for /i 27.3 209 175 | 94 21 27 | 35 23 27

Bound reached (%) 33 22 10 2 0 0 0 0 0

MU-1 1000xMSE for log A 58 60 56 53 45 45 48 47 46
MSE for fi 24.7 184 152 | 85 21 26 | 33 23 27

Bound reached (%) 30 19 8 1 0 0 0 0 0

(8) and the threshold used above. The estimation of x is more difficult, especially when only
pairs at lag 1 are included, and in some cases its estimate reached the upper bound used in
the optimisation. Table 4 shows that with JC = {1} this happens on 21%, 33% and 30% of
occasions for known margins, the two-step estimator and the one-step estimator, respectively.
This could be anticipated since the pairs at lag 1 are uninformative for the estimation of p.
When further lags are added, the difference between use of the set KX and the other sets
becomes striking, especially for K = 6. The upper bound for x is not attained for K¢ and
K8, and the MSEs are two or three times lower than those for KS; X is also better estimated.
The estimators including distant pairs in the composite likelihood outperform those that do
not or that use only the most dependent pairs. The same phenomenon is observed when
K =9, but the difference is less striking than for K = 6. In fact, the pairs at lags less than 6
are probably ineffective for estimation of the duration of sets that in this case last on average
13.3 time units, and so K or KX are better choices than KX. To sum up, if K is fixed and
not too large compared to the “true” independence range, then both estimators that include
pairs at higher lags, IC? or KK, behave appreciably better than that based on KX, which
does not.

As might be expected, the one-step estimation procedure outperforms the two-step pro-
cedure overall, though by an amount that depends on the choice of pairs; the differences are
rather small for le and KX. The one-step approach performs relatively better for smaller
samples or higher thresholds, but the procedures are essentially equivalent for samples of
3000 exceedances as used in our application.

5. Data analysis

5.1. Description of the dataset

The dataset used for our application is composed of hourly rainfall measurements (mm)
recorded from 1981 to 2007 at ten monitoring stations in western Switzerland. Figure 1
illustrates the location and topography of the area of study. All stations are located between
the Alps and the Jura mountains, and their altitudes are similar. Only the periods from
midnight on June 21st to 11 pm on September 20th were considered, these summers being
treated as mutually independent. The entire dataset comprises 503988 measurements, with
up to 59616 data points per station. The rainfall time series, shown in Figure 2, were
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Figure 1. Topographic map of Switzerland, showing the location and altitude of the monitoring stations
used. Their elevations are all close to 500 m above mean sea level (amsl), except for three stations
(FRE, NAP, PLF) at about 1000 m amsl. The = and y axes use the Swiss coordinate system. The
closest stations (FRE, MAH) are 10 km apart and the most distant ones (CHZ, MAH) are 151 km apart.

independently transformed to the unit Fréchet scale, following Section 2.1, with quantile-
quantile plots showing satisfactory agreement between the empirical and fitted quantiles.
The thresholds were the empirical 95% quantiles of each series. Due to the size of the
dataset at each station, the margins were fitted with negligible variability. Below we focus
on the modelling of extremal dependence, rather than on the marginal behaviour.

Figure 3 shows empirical space-time pairwise extremal coefficients for a subset of 5 sta-
tions at different time lags, based on a censored version of the naive Schlather—Tawn (2003)
estimator. There is evidence of significant spatial and temporal dependence between the
different series. Panel (1,1) shows the temporal extremal coefficients at Bern-Zollikofen; it
starts with the value 1 (complete dependence at lag 0), and tends smoothly to the value 2
(independence) as the time lag increases. This pattern repeats itself for the other stations.
The off-diagonal panels represent extremal coefficients for the different pairs of stations, and
hence display space-time interactions. For example, Panel (1,4), in the 1st row and 4th col-
umn, displays the extremal coefficients between the rainfall time series at Luzern at time ¢
and the rainfall time series at Bern-Zollikofen at time t + h, for h = 0,1,...,24. Panel (4,1)
reverses the roles of the stations. The extremal coefficient functions differ for the panels,
showing that the orientation of the stations matters. The extremal coefficient decreases at
lags 1 or 2 when the stations are west-east oriented: during the summer months, western
Switzerland is governed by dominant winds from the west or north-west, so that the clouds
tend to discharge their rain first in the west. The same rainfall event could therefore be
recorded by two distant monitoring stations at a lag of 1 or 2 hours, depending on their
location and on the wind velocity. Consequently, extremal dependence might be higher at
lag 1 or 2 than at lag 0. A model for the data should be able to capture such features.
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Figure 2. Summer hourly rainfall data (mm) at ten monitoring stations. The light grey lines show
0,5,10,15 mm. 75% of the measurements equal zero. The univariate thresholds used for transfor-
mation to the unit Fréchet scale are the 0.95-quantiles, ranging from 0.7 — 1.9 mm depending on the
station. The gaps indicate that summers were treated as independent from one year to the next.

5.2.  Model construction

We now discuss the construction of a model based on (3) for the rainfall data described
in Section 5.1. This space-time model comprises a standard Gaussian random field (s, t)
with correlation function p(hs, ht) and a random set element A, both defined on a space
X =8 x T, where S = R? denotes space and 7 = R, denotes time.

The Gaussian random field is supposed to model the short-range behaviour of the pro-
cess within single storms, so it is important to have a correlation function that can flexibly
capture space-time interactions. For a good review of space-time correlation functions and
a discussion of properties such as stationarity, separability and full symmetry, see Gneit-
ing et al. (2007) and the references therein. Cressie and Huang (1999) propose classes of
nonseparable spatio-temporal stationary covariance functions based on Bochner’s theorem,
and Gneiting (2002) extends their work by providing other very general flexible space-time
covariance models. Davis et al. (2013a) show that this class of covariance functions satisfies
a natural smoothness property at the origin, directly linked to the smoothness of the random
field, and is therefore suitable for the modelling of physical processes such as rainfall. As a
simple but fairly flexible possibility we used the isotropic nonseparable space-time correlation
function (Gneiting, 2002)

1 ()" -

plhs; he) = 5, T+dy2 P |~ 3, Bsv/2 |’
{(Z) +1} {(h) +1}
t [£77

where hg and h; are lags in space and time, ag, a; > 0 determine spatial and temporal scale
parameters, O, 3; € (0,2] are spatial and temporal shape parameters, d = 2 is the spatial
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Figure 3. Empirical and model-based pairwise extremal coefficients 6, for five stations. The black
lines join the empirical extremal coefficients found using the censored Schlather—Tawn estimator at
the 0.95-quantile threshold, the vertical red segments being 95% confidence intervals. The blue lines
correspond to the extremal coefficient curves derived from the fitted model in (3). The panel at the
rth row and cth column shows the extremal coefficients between Z; and Z;,,,, for h = 0,1,2,...,24.
“Dist” stands for the distance between stations, and “Indep” is the time needed to reach independence
(the first lag for which the value 6, = 2 lies within the confidence interval).
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22052024 6 g

Figure 4. lllustration of the random set element A in space S (horizontal plane) and time 7 (vertical
axis). The storms are conceptualized as random disks with a random radius moving at a random
velocity for a random duration. The red tilted cylinder represents a realization .A of such a storm in
S x 7T, and the blue one is A+ (hs, h:), for a given spatio-temporal lag vector (hs, h:). The coefficient
a(hs, ht) needed for the fitting is the expected volume of intersection between the two cylinders.

dimension, and v € [0, 1] is a separability parameter quantifying the space-time interactions.
When v = 0, the space-time correlation function (11) is separable, i.e., it reduces to the
product of a purely temporal correlation and a purely spatial correlation, whereas as ~
approaches 1, the spatial and temporal components become increasingly entwined.

The random set A is interpreted as a random storm having a finite extent, which en-
ables the model to capture complete independence. Conceptualizing storms as disks of
random radius R moving at a random velocity V for a random duration D starting from
a random position, the storm extent A in space and time becomes a tilted cylinder in
S x T, with a truncated Gaussian process inside; see Figure 4. For tractability we as-
sume that R ~ Gamma(mpg/kg, kg) (with mean mg km), V ~ Ny(my,Q) (km/hour) and
D ~ Gamma(mp/kp,kp) (with mean mp hours). Furthermore, we parametrize the mean
velocity as the vector my = {||V] cos(v), ||V sin(v)}T, where v is the angle of the main
winds with respect to West-East direction, and the covariance of V as Q = ||V||?w? I3, where
15 is the identity matrix. The factor w is a dispersion parameter.

Other models were also considered, but were outperformed by the model described above;
see Section 5.5.

5.3. Model fitting
The fitting of our model requires the computation of the coefficient a(hs,h:) = E[JAN
{(hs, ht) + A}]/E(|A]) for (hs,hy) € X, ie., the normalized expected volume of overlap
between the random set A and itself shifted by the space-time lag (hs, ht). Several mild
approximations, some analytical calculations and a single one-dimensional finite integration
yield a good approximation to a(hs, ht), which is then used in computing the pairwise like-
lihood; see Appendix B.

After some exploratory analysis, we fixed kp = 9 and kr = 0.4, since these parameters are
difficult to estimate; the model then has five parameters for the correlation function, and five
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Table 3. Parameter estimates and 95%-confidence intervals from fitting our random set model to
the rainfall data.

Estimate Conf. interval
Correlation  Scale Space as (km) 379 (31.7,43.1)
Time oy (hr) 2.2 (1.6,24)
Shape Space Bs 0.93 (0.89,1.09)
Time B, 145  (1.33,1.65)
Separability vy 1.00 (0.43,1.00)
Random Set Duration Mean mp (hr) 111 (99,120)
Shape kp 9 (— )
Radius Mean mpg (km) 68 (61,80)
Shape kr 04 (—)
Velocity Absolute speed ||V (km/hr) 39.6 (37.2,46.3)
Angle v (rad) 0.24  (0.09,0.29)
Dispersion w (km/hr) 0.12 (0.08,0.12)

for the random set. Due to the complexity of the problem, we split the estimation procedure
into two steps: we first estimate oy, as,y, mg, ||V||, mp, with the other parameters held fixed,
and then all ten parameters together, with the former estimates as starting values. We always
use the pairwise likelihood estimator (8). Confidence intervals are calculated by the block
bootstrap described in Section 3.3 using yearly blocks. Based on the results in Section 4,
we include the pairs at lags in £ = {0,1,2,3,5,8,13,21} in the pairwise log likelihood, a
single evaluation of which involves contributions for about T|K|S? = 50000 x 8 x 10? = 40
million pairs—the full pairwise likelihood would have 7 billion pairs, completely impractical
for inference purposes! We coded the pairwise likelihood in C, parallelized the work on 8
CPUs, and fitted the model using the Nelder-Mead optimization routine in R. Even though
there is a large amount of data and our model is very complex, a full fit took only about
10 minutes. Uncertainty assessment was based on 300 bootstrap replicates. The results are
presented in Table 5.3.

The estimated mean speed of the dominant winds is 39.6 km/hr and the estimated angle
is about 14° in the Argand diagram, which seem reasonable when compared to radar images
of precipitation for the same region and time of year. This means that the clouds are likely
to move in a rough east-northeasterly direction, in agreement with the summer climate in
Western Switzerland. However, as the estimated angle coincides more or less with the main
orientation of our monitoring stations and as the information along the perpendicular axis
is likely to be small, one should interpret it with care.

The mean duration and mean radius of a storm are estimated as 111 hr and 68 km. Given
the shape parameters, one half of the clouds have durations of over 107 hr and a radius of
over 25 km. These estimates seem rather large. However, as shown in the supplementary
material, the pairwise likelihood for the duration parameter is almost flat in its right tail, and
that for the radius parameter is somewhat asymmetric. With a speed of about 40 km /hr on
average, a cloud moves across the region of study in less than 4 hr, so it is hard to estimate
these parameters based on the available observations. Data collected at a larger number of
monitoring stations in a wider region of study would give more reliable conclusions. Hence
the bootstrap confidence intervals for mp, (99,120), and for mpg, (61,80), seem optimistic.

The correlation parameters appear to be better estimated. In particular, the separability
parameter 7 reaches its upper bound and its 95% confidence interval does not include zero,
suggesting that the data are highly nonseparable and that ~ tries to capture this.
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Figure 5. Comparison of empirical estimates of pairwise (left) and trivariate (right) extremal coeffi-
cients at the fitted lags for the rainfall data with their model-based counterparts. The light-grey vertical
lines are 95% confidence intervals. A perfect agreement would place all points on the grey diagonal
line.

5.4. Model checking

Figure 3 compares empirical estimates of the pairwise extremal coefficients with their model-
based counterparts for a subset of 5 representative stations. There is a good agreement
overall, but the fitted model often provides less extremal dependence at lag 1 than is present
in the data. This lack of fit at short time lags might be explained either by a lack of flexibility
due to the (conceptually) simplistic model that we used or by optimisation difficulties. The
diagonal plots, showing the marginal temporal dependence of the extremes, show a good fit.
The small differences at Cham (CHZ) or Mathod (MAH) may be due to nonstationarity or
because data at those monitoring stations seem unreliable; see Figure 2. The left panel of
Figure 5 shows pairwise extremal coefficients 05 in (5) for all pairs of stations.

As the model was fitted using pairs of observations, one might wonder whether it can
capture higher-order interactions. We therefore computed the trivariate extremal coefficients
(see Appendix C) and found good agreement between nonparametric estimates of trivariate
extremal coefficients and their model-based counterparts; see the right panel of Figure 5.
It seems that the trivariate interactions are fairly well modelled, though there is strong
dependence among their estimates. The biggest discrepancies are from stations CHZ (Cham)
and MAH (Mathod), but without these stations the points lie very close to the diagonal.

In order to assess the sensitivity of the results to initial conditions, we re-fitted the model
with different starting values. The results were sometimes fairly different, but with similar
bivariate properties and with almost the same pairwise likelihood. Consequently, we believe
that some parameters are likely to play a similar role, giving rise to identifiability issues.

5.5. Alternative spatio-temporal models

We also fitted models based on the Brown-Resnick process (Brown and Resnick, 1977;
Kabluchko et al., 2009), which, unlike the Schlather process, can capture full indepen-
dence without a random set component. This is a stationary max-stable process that may
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be represented in the space-time framework as Z(s,t) = sup;~; Wi(s,t)/F;, as in equa-
tion (1), where the W;(s,t) are independent replicates of the random process W (s, t) =
exp{e(s,t) — v(s,t)} and e(s,t) is an intrinsically stationary Gaussian random field with
space-time semi-variogram 7(hsg, hy), with £(0) = 0 almost surely. The bivariate exponent
measure for this model can be expressed as

1 1 1 1
Va(z1,22) = —@ S Clog ()b et g (2t
21 2 a 2o 29 2 a 21

where a = {2y(hs, hi)}'/?, hy = sy — 51 is the spatial lag, h; = ty — t; is the temporal lag,
and where ®(x) is the standard normal cumulative distribution function. Inference can be
made similarly to the model (3), using the threshold-based censored pairwise likelihood (7).

Four different space-time semi-variograms were considered: (i) Model 1: ~v(hs, hy) =1 —
p(hs, ht), where the correlation function p(hs, k) is defined in (11); (ii) Model 2: ~y(hg, hy) =
(|lhs — RtV ||/)?8, where V' = (V1,V5)T is the wind velocity, & > 0 is the range param-
eter and B € (0,1] is the smoothness parameter; (iii) Model 3: ~(hs, hi) = (RTS71h)P,
where h = hy, — h;V, and ¥ is a 2 x 2 covariance matrix; (iv) Model 4: ~(hs, hy) =
{llhs — BV ||?/a2 + |he|?/a3}P, where a1, a0 > 0 are range parameters capturing spatial
and temporal dependence decays.

Model selection was performed by minimizing the composite likelihood information crite-
rion, CLIC = —2Ixc (¢ x) + tr{J1 (¥px) K (¥px)}, an analogue of the Akaike information
criterion (AIC) in a composite likelihood framework (see Varin and Vidoni, 2005). We con-
sidered a variant, CLIC*, which is scaled to be comparable with AIC for independent data
(Davison and Gholamrezaee, 2012). The matrix K (QZJch) has a complicated form, so we
estimated the product Jl(ﬂp’;c)_lK (z/zp’;g) by right-multiplication of the covariance matrix
V o~ Ji($pxc) VK (Y ) J1 (Y i) /T found using the block bootstrap by the Hessian ma-
trix Jy (1) "' /T estimated by finite differences. The estimated CLIC*s were 515370 for
(3), 516170 (Model 1), 515956 (Model 2), 516191 (Model 3) and 515969 (Model 4). Based
on this criterion, model (3) is greatly preferable to the others even though it has more pa-
rameters. More informal model-checking, using the pairwise extremal coefficients, confirmed
that model (3) is the best of those considered here. Radar images of summer rain fields
show areas where there is heavy rain and others where there is none. The random set model
captures this, but the space-time Brown—Resnick processes do not.

6. Discussion

The work described above proposes inference for space-time extremes using a censored pair-
wise likelihood, and illustrates this by fitting a model for extreme rainfall; there are clear
possibilities for extension to other phenomena. ‘Dynamic’ space-time modelling of extremes
thus seems to be feasible; complex models can be consistently fitted using composite cen-
sored likelihood based on threshold exceedances. However, the large amount of data involved
and the consequent usefulness of parallel computation underline the advantages of access to
substantial computing resources when tackling such problems.

Although highly idealized, our extreme rainfall model is fairly complex, and estimation
and simulation are demanding. Moreover, the assessment of fit is tricky, due to the compu-
tational burden that it requires. After a major effort we were able to check the trivariate
interactions by means of the third-order extremal coefficients, and although it would be
feasible to use simulation to investigate higher order interactions, it would be awkward.

An important modelling issue is that asympototic independence cannot be captured by
our model, which is based solely on max-stable processes. However, it is common in practice
to observe two distinct events becoming less and less dependent as their rarity increases, in
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particular when rainfall data are considered (Davison et al., 2013). Wadsworth and Tawn
(2012) have proposed models that can handle both asymptotic independence and asymptotic
dependence, and it seems entirely feasible to extend our approach to them.
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ative efficiencies of our pairwise threshold-based estimator for AR(1) and MA(1) models,
discussion of the choice of time lags to be included in the pairwise likelihood in these cases,
and additional plots for the simulation study of §4 and for the data analysis of §5.

Appendix
A. Proof of Theorem 1

PROOF. For notational simplicity, we give the proof in the case where the parameter 1) is scalar,
but the argument can be extended to the vector case.

By definition of the pairwise likelihood in equation (7), and as the observations Z, ¢ are realiza-
tions of a censored max-stable process, we have

S S
B = 3 30 30 B{ b top (Zus Zuasens) b1~ sy 2 52 and e = 0}) =

ht€EKt so=1s1=1

=0

Therefore, we also have that E{U(¢)} = E{Zf:1 Us(¥)} = 0.
The variance of U (1) renormalised by T is (Shumway and Stoffer, 2011, p.510)

T 'var{U()} = BE{U:i(y)*}+2 i (1 - %) E{U1(¥)Ut+1(¥)}

- B{Uhi(¥)*}+2) B{U:()Uit1(¥)}, T — oo,

t=1

if the sum converges absolutely. Now, as ﬁp, ik is the maximum pairwise likelihood estimator, second-
order Taylor expansion of U; (1), ) around the true parameter ¢ gives

T ) T d R
0= 3" Ukl = 3°{Uw) + S50 — )}
t=1 t=1
which gives, up to a term of the order O{(¢p x — 1)}, that
T -1
Up i =+ {ZHM)} D _Ui(w) =+ H(w) 'U), (12)
t=1 t=1

where Hy(¢) = —dU(v))/dyp and H () = S°1_, Hi(%) is the observed information. Moreover, since
the process Z (s, t) is assumed to be temporally a-mixing with coefficients a(n), the time series Uy (1))
is also a-mixing with coeflicients a’(n) = a(n — max K). Hence,

o (n) — 0, D la’ () < oo,
n>1
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with the same § > 0. These results, along with the assumptions E(U?) < oo and E(|U1|**?) < oo,
ensure that the Central Limit Theorem 10.7 of Bradley (2007) applies, and thus

72U (y) 25 N{0,K(¢)}, T — oo,

where K (¢) = E{U1(¢)*} + 232, E{U1(¥)Us41 (1)} < oo and L denotes convergence in dis-
tribution. Therefore, returning to equation (12), and by definition of Ji(¢), by the law of large
numbers, and by Slutsky’s theorem, we get

Ty —v) = TYPH@Y)TU®)

(T H(y)} T 2U ()}

L) TIN{0, K@)} asT — oo
2 N, L) K@) L),

[CH

where 2 denotes equality in distribution. But K(v) is the asymptotic variance of the score,
renormalized by T. Hence, the result is proved.

B. Computation of the volume of overlap «(hs, h)

The coefficient a(hs, h:) is defined as E[| AN {(hs, ht) + A}|]/E(JA|), where A is a tilted cylinder in
X =8 xT =R?x Ry (see Figure 4), and (hs, h) € X. If the cylinder were vertical (zero wind
velocity), the volume of overlap would simply be the product of the area of overlap between two
discs distant by ||hs|| and the corresponding height, the storm duration minus hs.

Let R be the storm radius, V = (V1,V2) € R? be its velocity and D be its lifetime. A good linear
approximation to the area of overlap of two discs of radius R distant by d is 7R* max{0,1—d/(2R)}
(Davison and Gholamrezaee, 2012). Therefore, for a vertical cylinder A, |[AN{(hs, ht) + .A}| can be

approximated by
hs
TR? (1 — %)Jr (D — ht)+,

where ay = max{0,a}. When the cloud is moving, giving a tilted cylinder, a geometric argument
shows that in the general case, the volume of overlap is transformed to

AN (k) AY =78 (1= 0 (Do
+

where d* = [||hs|*> + hZ (Vi + V&) — 2||hs||he{ V1 cos(v) + Vasin(v)}] 1/2, v = arctan(hs;1/hs;2) being
the angle between the stations with respect to a reference axis in the West-East direction. Careful
checking suggests that this provides adequate approximations for the values of hs and h: and the
parameter values used in the pairwise likelihood in our application.

In order to compute the coefficient «a(hs, ht), which depends upon the spatial distance ||hs||, the
temporal lag h: and the orientation of the stations v, we need to obtain the expected volume of
overlap E[|AN{(hs, h:) +A}|]/E(]A|), by putting tractable distributions on R, D, and V = (V1, Va).
We choose to set

e R~ Gamma(mpg/kr,kr) (with mean mpg km);

2
o V ~ Na(mv,Q) (km/hour), with my = (m1,mz)” and Q = ( 1 01022p12>;
0102012 g2

e D ~ Gamma(mp/kp,kp) (with mean mp hours);

and we assume that R, D and V' are mutually independent. To compute this expectation, note first
that (D — t)+ can be integrated out analytically. Second, by conditioning on V, it is possible to
integrate over R as well. We can then reduce the full computation to this single expectation with
respect to V = (Vi, Va):

- d*k
Oé(hs,ht) = EV {Pr(GmR/kRQkR+2 > d /2) — D) R

mPT(GmR/kR;k3+1 > d*/2)} , (13)
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where Go,;, is a gamma random variable with scale parameter 6 and shape parameter k; its mean
equals m = 6k. Expression (13) does not have a closed form, but it can be remarkably well approx-
imated by a function of the form exp [—a {(Vl — ,u1)2 + (Vo — ,ug)z}}, where a is real number that
does not depend upon V = (Vi,V2) and can be estimated with a few points by least squares, and
where 1 = ||hs|| cos(v)/h: and p2 = ||hs|| sin(v)/he. Therefore, we have

a(hs,he) =~ By {exp [-a{(Vi — m)*+ (Vo — p2)*}]}

-/ e_a{m_“1)2+(”2_”2)2}”2We—%m—mmz—mzxrl<v1-m1w2-m2>Tdmdw
R2 wde
N ﬁ / e_a{(vl_#1)2+(U2_#2)2}1/2_m{(vl_ml)Z"%_Q(Ul—ml)(vz—m2)d102912+(v2—m2)2<
2mwdet(Q2
= ;/ZW dé re_‘”—ﬁ(m{rza(é)ﬁ-rb(g)ﬂ(g)}dr
1/2
2mdet(Q)Y/ -
c(§) 2 o 5
- & L st (30 ge [ L ~3(582),
1/2 3
@m2 Jy  V/a(€) . Varo©

_L 1 s (88 -ue?) b —o (MO
- 2 \/@e oz (@ {0(5)6 ()2 +\/ﬂu(§){1 <I>< - )}]df,

where ®(-) is the normal cumulative distribution function and

a(€) = cos’(€)os +sin®(€)ot — 2cos(€) sin(€)oro2prz,
b(€) = 2cos(§)(ur —m1)os + 2sin(€)(u2 — m2)ot — 2cos(€)(uz — m2)or02p12
—2sin(&)(u1 — m1)oi1o2p12,
&) = (m—m1)’03 + (u2 — m2)?07 — 2(p1 — ma1) (U2 — m2)o102p12,
We) = gk -, o(6) = Vai@)/a(E)], aet(@) = olod(1— pra)
Expression (14) was computed with a straightforward change of variables vi = rcos(§) + p1,

vy = rsin(€) + p2, and expression (15) stems from the properties of the normal cumulative dis-
tribution function. Since the integral (15) is impossible to handle analytically, we can use a finite
approximation to estimate «(h), based on 100 points equi-spaced in the interval [0,27]. The ap-
proximation seems to be adequate when 07,02 > 5, which we impose in the R optimization routine.

C. Trivariate extremal coefficients for model (3)

From equation (2), we know that the multivariate extremal coefficient in dimension N is

Oy =Vn(l,...,1)=E Lj}laxN{W(:ci)}} .

=1,...,

This takes values between 1 and N, ranging from complete dependence to asymptotic independence.
Therefore, the extremal coefficient of order N = 3 is

0s = E [max{W(z1), W(x2), W(xs)}],

where, for model (3), W(z) « max{0,e(z)}la(x — X), x € X, ¢(z) being an isotropic Gaussian
random field with zero mean, unit variance and correlation function p(-) and I4 being the indicator
that the point z — X belongs to a random set A (where X is a Poisson process of unit rate in X’).
The proportionality constant is such that W(x) has mean 1, so it must be

1 _ 1 Vo2r o \/2r|X)|
E{max(0,e)I4} E{max(0,¢)}E(l4) Pr(m €A E(A))°
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Below we write W1 = W (x1), e1 = e(x1), [1 = La(z1), [1;2,— = I[{z1 € Aand 22 € A and z3 ¢ A}
and so forth. Then the required extremal coefficient is
93 = E {max(Wl, Wz, W3)}
V2T
= ——————F 0,e11 I 1.
Pr(:m c A) {max( y€141,E212,€3 3)}

= WQTEFA) E {max (0,e1,€2,€3) [1,2;3} + E{max (0,e1,&2) I1;2,— }

+E {max (0,e1,e3) I1,—3} + E {max (0, e2,€3) I—.2.3}
+E {max (0,£1) I;—;— } + E{max (0,22) -2, } + E {max (0,e3) I, 3}

= Pr(zz € A,zs € A| 21 € A)V27E {max (0,e1,€2,€3)}

+Pr(z: € Ayzzs ¢ Al 1 € A)V2rE {max (0,e1,2)}

+Pr(zs ¢ Ajzz € Al 1 € A)V2rE {max (0,21,¢3)}

+Pr(z1 ¢ A,z € A z2 € A)V27E {max (0,e2,¢3)}

+Pr(ze ¢ Ajzs ¢ Alx1 € A)+Pr(z1 ¢ Ajzs ¢ A|x2 € A)

+Pr(z1 ¢ A,za ¢ Al zs € A).
The expression v27E {max (0, £1,€2,£3)} above is the trivariate extremal coefficient for the Schlather
model without random sets, and can be evaluated quickly and accurately by simulation, whereas
V27E {max (0,e;,£;)} is the bivariate extremal coefficient between station ¢ and station j, and can
be computed analytically with the exponent measure V;;;(1,1).

The probabilities above correspond to the normalized expected volumes of overlap of three sets
A centered at x1, z2 and x3. For example,

Pr(z; € A,zz € Al z1 € A) = E{JAN{A+ (z2 — 21)} N {A+ (23 — z1)}|}/E(|A]),
Pr(zs € Ajzs ¢ Az € A) = E[JAN{A+ (22 — 21)} N {A + (23 — 21)}°[)/E(A]).

For given radius R, duration D and velocity V, the random set is fixed and the volume of
overlap can be calculated analytically. Simulation can then be used to compute the expectation of
such random quantities.

The same approach could be used to compute extremal coefficients at a higher order N, though
it would be painful to compute all the areas of overlap between N discs.
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