
EPFL-REPORT-197953

Resolve: Enabling Accurate Parallel Monitoring under Relaxed Memory Models
Evangelos Vlachos1,3, Sotiria Fytraki3, Phillip B. Gibbons2, Michael A. Kozuch2 and Babak Falsafi3

1Carnegie Mellon University 2Intel 3École Polytechnique Fédérale de Lausanne

Abstract
Hardware-assisted instruction-grain monitoring frame-

works provide high-coverage, low overhead debugging sup-
port for parallel programs. Unfortunately, existing frame-
works are ill-suited for the relaxed memory models employed
by nearly all modern processor architectures—e.g., TSO (x86,
SPARC), RMO (SPARC), and Weak Consistency (ARMv7). For
TSO, prior proposals hint at a solution, but provide no imple-
mentation or evaluation, and fail to correctly handle important
corner cases such as byte-level dependences. For more relaxed
memory models such as RMO and Weak Consistency, prior
frameworks deadlock, rendering them unable to detect any
bugs past the first deadlock!

This paper presents Resolve, the first hardware-assisted
instruction-grain monitoring framework that is complete, cor-
rect and deadlock-free under relaxed memory models. Resolve
is based on the observation that while relaxed memory mod-
els can produce cycles of dependences that deadlock prior
approaches, these cycles can be overcome by consulting the
dataflow graph of the application threads being monitored,
instead of their program order. Resolve handles all possible
cycles arising in relaxed memory models, through a careful
approach that uses both dataflow-based processing and ver-
sioning of monitoring state, as appropriate. Moreover, we
provide the first quantitative characterization of the cycles
arising under RMO, demonstrating that such cycles are preva-
lent and persistent, and hence deadlock is a real problem that
must be addressed. Yet they are not so frequent or complex, so
that Resolve’s overheads are negligible. Finally, we present
a simple and novel hardware mechanism for properly syn-
chronizing updates to monitoring state under relaxed memory
models, improving performance by up to 35% over the judi-
cious use of memory fences.

1. Introduction
Writing correct shared-memory parallel programs is a notori-
ously difficult task. Implicit data sharing and synchronization
among concurrently running threads lead to non-deterministic
behaviors, making reasoning about what a parallel program
does at any given point in time extremely hard. As a result,
not only do parallel programs tend to have many bugs, but it is
much harder to locate and correct each one of them. Further,
the relaxed memory models [1] delivered by modern proces-
sors, including x86 total store order (TSO) [16], SPARC v9
relaxed memory order (RMO) [30], and ARM v7 weak consis-
tency (WC) [3], provide additional opportunities for unwary
programmers to introduce subtle concurrency bugs.

As an example, Dekker’s algorithm, shown in Figure 1, be-
haves properly under the sequentially consistent (SC) model
that many programmers expect—but not on a machine that

Initially: flag[i]=flag[j]=FREE
flag[i]=BUSY Ì flag[j]=BUSY Í

while(flag[j]==BUSY){ Ê while(flag[i]==BUSY){ Ë

// if not i’s turn, release // if not j’s turn, release
// flag and busy wait // flag and busy wait

} }
// critical section // critical section
flag[i]=FREE flag[j]=FREE

Figure 1: Dekker’s algorithm executing on two threads seeking to
enter a critical section. The numbers indicate a possible effective
ordering of memory operations under a non-SC model (e.g., TSO),
resulting in both threads entering the critical section.

provides TSO (or weaker) consistency, such as the x86 archi-
tecture. The programmer may expect that the load operation
in Ê of flag[i] will execute after the store operation in Ì (and
Ë after Í), but if the stores are delayed in a store buffer, the
load operations may bypass the stores. This is permitted in re-
laxed memory models, and implies that both loads may return
the value “FREE”, thereby enabling both threads to enter the
critical section concurrently.

Instruction-grain monitoring is a class of powerful debug-
ging tools capable of helping programmers with many types
of bugs, including concurrency bugs that would arise under
sequential consistency as well as the even subtler bugs that
arise with relaxed memory models. In such tools, a monitoring
entity, “monitor,” (e.g. a software thread or co-processor) is
associated with each application thread and checks the validity
of every relevant instruction executed by that thread. Different
monitoring tools check for different notions of validity (e.g.,
memory safety), by maintaining suitable metadata (e.g., which
memory has been allocated) as the application executes. While
software-only instruction-grain monitoring [29, 20, 11, 7] suf-
fers from high runtime overheads (often 30–100x), hardware-
assisted instruction-grain monitoring [18, 36] achieves negli-
gible overhead by running the application and the monitor on
different resources (e.g., using a core for the application thread
and a dedicated co-processor for its monitor) and providing
hardware-assisted inter-thread data dependence tracking.
Existing Frameworks Deadlock and Are Incorrect. While
prior hardware-assisted instruction-grain monitoring frame-
works [18, 36] provide high-coverage, low overhead debug-
ging support for parallel programs, they are limited to support-
ing only sequential consistency. The relaxed memory models
provided by nearly all modern processors render these prior
frameworks ineffective due to deadlock problems, and incor-
rect in their handling of metadata:
Problem 1: Dependence-cycle deadlock. Instruction-grain
monitoring frameworks typically process monitored events in
“dependence” order, which is a combination of inter-thread
data dependences and program-order dependences. In contrast

to what is possible under SC, however, this dependence order
may include cycles under relaxed memory models [40] (see
also Figure 2). Prior work has briefly considered this problem
for TSO, and introduced metadata versioning (i.e., copies of
metadata) as a way to overcome the generated dependences
and allow concurrent processing of the involved application
events [18, 36]. However, these prior studies present no imple-
mentation or evaluation for TSO. Perhaps as a result, important
corner cases are overlooked: [18] can suffer from deadlock
when its versioning tables reach their capacity and [36] fails
to correctly handle byte-level inter-thread dependences (see
Section 3). For more relaxed memory models (i.e., RMO,
WC), the problem of cyclical dependences becomes even more
complex, and as a result, prior hardware-assisted monitoring
frameworks will deadlock!

Problem 2: Improperly synchronized metadata access. Akin to
Figure 1, if a monitor processing an event e issues a metadata
update (corresponding to e) followed by a flag update (indi-
cating done processing e) and the two writes update memory
out of order under a relaxed memory model, then a different
monitor waiting on the flag may read the un-updated metadata
when processing an event e′. Because prior hardware-assisted
monitoring frameworks ignore this issue, they may incorrectly
judge the validity of application instructions (e.g., if e followed
by e′ is a bug that is missed due to reading the un-updated
metadata). Moreover, fixing this problem by using locks or
memory fences is too heavyweight.

Resolve: Deadlock-free, Accurate Monitoring under Re-
laxed Memory Models. This paper presents Resolve, the first
hardware-assisted parallel monitoring framework that sup-
ports relaxed memory models, by solving both of the above
problems. We only assume that the memory model supports
cache-coherence; even arbitrary bypassing between loads and
stores to different cache blocks (such as in RMO) is handled
properly.

Resolve uses a novel and effective algorithm for detect-
ing and resolving dependence-cycles, handling various sub-
tle corner cases. Resolve overcomes the dependence-cycle
deadlock problem based on the observation that such cycles
can be overcome by consulting the dataflow graph of the ap-
plication threads being monitored, instead of their program
order. Resolve handles all possible cycles arising in relaxed
memory models, through a careful approach that uses both
dataflow-based processing and metadata versioning, as appro-
priate. While considerable complexities arise in developing an
efficient parallel algorithm leveraging the above observation,
monitoring tools are able to process most application events
based on the strict program order, and Resolve imposes no
additional overhead. For the remaining events where a poten-
tial non-SC behavior is encountered, the monitoring process
is allowed to relax the event processing order to that dictated
by the data-flow graph. Because this case is infrequent over
the course of the application, there is no need for hardware
support—the algorithm is incorporated into the monitoring
framework runtime.

In addition, Resolve overcomes the metadata access syn-

Desirata [14, 13] [18] [36] Resolve
Fast (speed) N Y Y Y
Supports many tools Y Y Y Y
Limited changes to core Y Y Y Y
For SC: accurate? FP Y Y Y

deadlock-free? Y Y Y Y
For TSO: accurate? FP Y B Y

deadlock-free? Y N Y Y
For RMO/WC: accurate? FP N N Y

deadlock-free? Y N N Y

Table 1: Comparison of flexible instruction-grain parallel monitoring
frameworks. FP: Suffers from false positives (can flag events that are
not errors), but not false negatives (unreported errors). B: Inaccurate
in the presence of byte-level inter-thread dependences.

chronization problem, via a simple and novel hardware mecha-
nism that provides low-overhead ordering for updates to shared
metadata under relaxed memory models. Our study shows that
the mechanism improves Resolve’s performance (as measured
by IPC) over the prior state-of-the-art approach (i.e., enforcing
ordering by judicious use of memory fences) by up to 23%
and 35% for the MEMLEAK and ATOMCHECK monitoring
tools, respectively.

Finally, an important aspect of this work is in understanding
the characteristics of the cycles arising under relaxed mem-
ory models. While prior work has qualitatively described the
cycles arising under various memory models [1], we are inter-
ested in how frequently they actually occur in applications and
how complicated they are to resolve. This paper provides a
quantitative characterization of the cycles arising under RMO,
such as their frequency and length, as a result of the monitored
application exhibiting a potential non-SC behavior. Our study
demonstrates that cycles are indeed prevalent and persistent
and hence deadlock is a real problem that must be addressed.
Yet they are not so frequent or complex, so that Resolve’s
overheads are in fact negligible.

Resolve’s approach can be compared against the only other
framework that handles relaxed memory models without suf-
fering from deadlock: Butterfly/Chrysalis Analysis [14, 13].
Resolve (like [18, 36]) leverages hardware-assisted inter-
thread data dependence tracking to avoid the false positives of
Butterfly/Chrysalis Analysis, and to reduce overheads by up
to two orders of magnitude.

Table 1 summarizes the advantages of Resolve over prior
frameworks. Note that frameworks that deadlock are unable
to detect any bugs past the first deadlock!

Resolve’s design can not only be used to extend [18, 36] to
handle TSO, RMO, and WC, but also the work by Nagarajan
et al. [25, 24] that similarly exposes coherence events to a
checker process. Deterministic record and replay [39, 40]
can also benefit, as our study shows: (i) there is no need to
generate versions or to identify non-SC behavior in hardware–
during replay, the system has all the required state to generate
versions, and recorded non-SC behavior will appear as a cycle
of dependences; (ii) how to resolve a cycle during replay
(Section 4.2); and (iii) how to reason about cycles under a
wider set of relaxed memory models.

2

Program'
Order'

Core'i' Core'j'

W(A)'

(a)'

ti'='37'

tj'='86'
R(A)'

Core'i' Core'j'

W(A)'
ti'='37'

tj'='86'
R(A)'

tj'='56'

ti'='93'
R(B)'

W(B)'

(b)'

TSO'Indicates'dependence'
Indicates'program'order'

!'

"'

#'

$'

Core%i% Core%j%

W(A)%

(c)%

ti%=%37%

tj%=%86%
W(A)%

Core%i% Core%j%

R(A)%
ti%=%37%

tj%=%86%
W(A)%

tj%=%56%

ti%=%93%
W(B)%

R(B)%

(d)%

RMO%

W(B)%

W(B)%
ti%=%93%

tj%=%56%

Figure 2: Ordering of concurrent instructions by observing cache coherence activity. (a) Identifying an inter-thread Read-after-Write depen-
dence. (b, c) A cycle of inter-thread dependences under TSO and RMO. Read instructions in (b) and write instructions in (c) bypass the com-
mitted stores that reside in the store buffer, reaching the memory hierarchy first. (d) A cycle of inter-thread true (i.e., reads-from) dependences
under RMO. Similar to (b), but in this case store instructions bypass earlier load instructions. Ê - Í indicate memory order.

2. Parallel Monitoring Background
Hardware-assisted monitoring tools for multi-threaded appli-
cations organize monitoring as a distributed process. The
monitoring task is assigned to multiple monitors, one for each
application thread [8, 33, 34, 32, 18, 9, 36]. The monitoring
infrastructure captures application events and delivers them to
the monitors for further processing. Events are examined by
the monitors in program order. They can represent instructions
executed by the application or higher-level functionalities,
such as function calls (e.g., malloc()). A monitor invokes an
event handler for each event observed, which will typically
check and/or update the shared metadata maintained by the
monitors based on the contents of the event record. Monitoring
frameworks have two requirements.

Requirement 1: Inter-Thread Event Ordering. To properly
maintain the shared metadata, the order in which monitors
process application events must “match” the order in which
the same events occurred during application execution. That is,
if the relative order of two application events has an impact on
the monitors’ metadata, then the monitors must process the two
events in that order. For most monitoring tools, two application
events from different threads have such impact only when there
is a data dependence between them (e.g., two writes to the
same virtual address). Thus, hardware-assisted monitoring
tools have adopted the use of application cache coherence
activity as a means of collectively directing the monitoring
process [18, 36]. This approach was initially introduced by
earlier work on deterministic record and replay [39, 40].

We outline the approach taken by [36] ([18] is similar).
For concreteness, we will assume a multicore architecture in
which each core has private L1 instruction and data caches
and a slice of the unified last level cache (L2), although the
approach generalizes to other processor architectures. Associ-
ated with each L1 cache block is a timestamp that records the
last time an instruction accessed it. (A single timestamp for
multiple cache blocks could also be used [36].) The notion of
“time” is local to the core and represented by a monotonically
increasing number (e.g., number of instructions committed
so far). The combination of the core id i and its local “time”
ti is called a dynamic instruction identifier Ii

ti , with older in-
structions having a lower-value identifier than younger ones.

By associating dynamic instruction identifiers with the cache
blocks those instructions access, inter-thread communication
(and event ordering) at cache-block granularity can be inferred.
L1 caches notify the L2 every time they evict a block. To avoid
losing the sharing pattern of a cache block when evicted by an
L1, the L2 caches eviction timestamps from different L1s.

Figure 2(a) presents an example of how cache coherence ac-
tivity can be used to infer ordering of concurrent instructions.
At local time ti = 37, core i updates cache block A, setting
the assigned timestamp to Ii

37. Later, core j requests shared
access to block A, misses in its local L1 and sends a coherence
request to core i, which replies by providing the requested
cache block and its assigned timestamp. Upon receiving the
coherence reply, core j sets the assigned timestamp for block
A to I j

86, where t j = 86 is its local time for the read, and iden-
tifies a (happens-before) dependence between instructions Ii

37
and I j

86, denoted Ii
37→ I j

86 in the figure. Such a dependence
arc is delivered to the monitor that handles the events of ap-
plication thread j. The monitor interprets the dependence as
“wait until the monitor for application thread i completes the
processing of Ii

37 before processing I j
86 or any later events.”

In this way, the monitors process these events in the order they
occurred during application execution.

Requirement 2: Metadata Access Synchronization. When
monitors are not waiting on dependences, they are free to
process events as quickly as possible. However, parallel moni-
toring, being a parallel application itself, must properly syn-
chronize the monitors’ accesses to the shared metadata, given
the processor’s memory model.

Figure 3 describes the steps a monitor takes when process-
ing an event in existing frameworks [18, 36], as well as an
example of two application threads accessing an address A.
Monitor j will initiate processing of application instruction
I j

86, by first checking if there are any inter-thread depen-
dences that have to be satisfied. Assuming event Ii

37 has been
processed, it will then proceed with performing the actual pro-
cessing of I j

86, potentially updating metadata. Monitor j will
then update its progress by incrementing some shared variable
(not shown), allowing monitor i to process event Ii

56.
For metadata access synchronization, prior work makes

the observation that for a wide range of monitoring tools,

3

foralleventsdo{$$$$
$$$if($event.hasDependences()$)$
$$$$$$wait_for(event.source,$event.:me);$
$
$$$//$enter_cri:cal_sec:on$$
$$$process_event();$//$update$metadata$
$$$//$exit_cri:cal_sec:on$
$$$$
$$$update_progress();$
}$

Corei Corej

W(A)$

W(A)$

R(A)$

ti$=$37$

tj$=$86$

ti$=$56$

Figure 3: (left) An example execution of two application threads ac-
cessing address A. (right) The set of steps taken on every event pro-
cessed. Updating progress must appear to happen after the effects
of processing the event are globally visible.

metadata have a 1-to-1 mapping to application data, and are
updated only as a result of processing an application store
instruction [36]. Because such store instructions are always
ordered implicitly or explicitly with regard to other depen-
dent application instructions due to cache coherence, ordering
events (dependence arcs) are always present when attempting
to update metadata. Thus, because monitors wait on such
dependence arcs, at any time only one monitor for a contended
address will be allowed to proceed (multiple contending mon-
itors can proceed if all are only reading). Consequently, un-
der sequential consistency, no additional synchronization is
required [36, 18, 25], because SC ensures that the store in
update_progress() in Figure 3 happens only after the loads and
stores in process_event() are globally visible.1

3. Problems under Relaxed Memory Models
Prior hardware-assisted parallel monitoring frameworks fol-
low the design described in Section 2, which works correctly
under SC, using the commit time of the instruction accessing a
block as the block’s timestamp. Unfortunately, under relaxed
memory models, such frameworks are ineffective due to dead-
lock problems and incorrect due to racing metadata accesses,
as discussed in this section.
Problem 1: Deadlock due to Dependence Cycles. Under
any relaxed memory model, the time when a memory instruc-
tion commits can be different from the time its effects are
globally visible (i.e., ordered in memory). For example, a
store instruction may commit and reside in the store buffer
for some time (not yet visible to other cores) before updat-
ing a block in L1. In contrast, a typical load instruction is
considered to be globally visible at commit time. Thus, load
and store instructions often update cache block timestamps at
different times; loads at commit time and stores at the time
they leave the store buffer [40].

The lack of a global order of events among concurrent
threads, reflected on the different times cache block times-
tamps are updated for different instructions, results in observ-
ing cycles of happens-before relationships. Figures 2(b)–(d)

1Note: Atypical monitors that update metadata while processing load
instructions must recognize that (a) the relative ordering of loads is not well-
defined, even under SC, and (b) because the concurrent loads in this case do
induce (read-after-read) dependence arcs, proper metadata serialization does
require additional synchronization [36].

show three scenarios of execution under relaxed memory mod-
els, where the observed coherence activity together with the
program order generates a cycle of dependences. Under TSO,
load instructions are allowed to commit and bypass earlier
committed store instructions that reside in the store buffer. In
Figure 2(b), core i first accesses block B, updating its times-
tamp to Ii

93. Similar to that, core j accesses block A updating
its timestamp to I j

86. Store instructions to blocks A and B are
then released from the store buffers of core i and j respectively,
and both experience a coherence miss. The replies to their
request are carrying the timestamps of the corresponding load
instructions that are logically later in time. Two inter-thread
dependences are generated, Ii

93→ I j
56 and I j

86→ Ii
37, which

combined with the program order at each thread form a cycle
of dependences. Figures 2(c) and 2(d) show two similar cy-
cles of dependences, caused by stores bypassing earlier stores
and loads, respectively, under RMO. In addition, RMO (and
Release Consistency [1]) allows load instructions to bypass
earlier loads, which can also lead to a cycle of dependences
with stores from other cores (not shown).

The examples in Figures 2(b)-(d) show cycles of depen-
dences, formed in the cache-block level. These cycles repre-
sent potential non-SC behaviors, depending on whether the
instructions involved access the same parts of the cache blocks
or not. In either case, these cycles of dependences cause prior
hardware-assisted parallel monitoring frameworks to deadlock,
because the monitors for the threads in the cycle are each stuck
waiting on the progress of another monitor in the cycle.
State-of-the-art Solutions to Dependence Cycles. Prior
work has identified and briefly studied the problem of depen-
dence cycles under a TSO memory model [18, 36]. Following
a similar approach as the one described in RTR [40], they in-
troduce “versioning” of metadata in order to overcome a cycle
of dependences. Under this approach, the two instructions
at the ends of an inter-thread dependence that is part of the
cycle can be processed in any order, as long as two distinct
copies of the shared metadata location are provided to the
corresponding monitors. In Figure 2(b) a copy of the metadata
for application address B (we focus on B for now) takes place
before processing the W(B) and is used when processing R(A).
Processing of W(B) can proceed out of order, as the versioning
already reflects the inter-thread dependence, producing a new
version for the metadata of address B. After processing both
events, versioning control ensures the latest version of the
metadata location propagates to global state (the one produced
when processing W(B)).

Although the intuition behind metadata versioning for TSO
is correct, neither prior works present a correct, deadlock-free
solution. First, [36] fails to perform correct metadata version-
ing in the presence of byte-level inter-thread dependences,
as illustrated in Figure 4. Under this scenario, a cycle of
dependences is generated between two threads sharing mem-
ory locations A and B, however one of the dependence arcs
connects instructions that access the same cache block but
different bytes (R(B)→ W(B+8)). Because only the receiving
core observes the dependence (i.e., core j for Ii

93 → I j
56),

it cannot identify the mismatch between the two addresses.

4

Core%i% Core%j%

W(A)%

R(A)%
R(B)%

W(B+8)%

W(B)%

ti%=%37%

tj%=%86%

tj%=%56%

ti%=%93%

tj%=%73%

Program%
Order%

!%

"%

#%

$%

%%

Dependence%
Program%order%

Memory%Order%
!%!%%%

Figure 4: [36] fails on byte-level dependences.

(Tracking and passing along with dependence arcs the set of
bytes touched in each cache line would be prohibitively ex-
pensive.) Thus, not only a version for the wrong location of
metadata will be produced, but also the inter-thread depen-
dence will be ignored (as the versioning is assumed to already
reflect it), introducing a race between the processing of R(B)
and W(B).

Second, [18] too ignores the issue of byte-level depen-
dences, but because its approach already tracks application
data addresses, it may be possible to modify it to handle such
dependences without additional overheads. However, it can
suffer from deadlock, as follows. It uses two hardware ta-
bles for storing information associated with coherence events
performed by the application but not yet "processed" by the
monitors. These tables must be kept a small, bounded size
because of the requirement for supporting associative lookups.
If a monitoring thread falls behind, the number of unprocessed
events grows and can quickly reach the capacity of the tables.
(This was not a problem in the performance study in [18] be-
cause only SC was studied, but TSO has larger windows of
reordered events [12].) This in turn can mean that a memory
event needed to unblock a cycle cannot be inserted into its
table, resulting in deadlock!

Moreover, neither prior approach considers the types of
cycles arising in more relaxed memory models such as RMO
and WC, as noted earlier in Table 1.
Problem 2: Racing Metadata Accesses. Recall from
Section 2 that because SC ensures that the store in up-
date_progress() happens only after the loads and stores in
process_event() are globally visible, there are no data races
in accessing metadata. Under memory models that relax the
order of stores to different addresses (e.g., WC, RMO), how-
ever, the progress update store may bypass the metadata loads
and stores, allowing monitor i in Figure 3, for example, to
proceed with processing Ii

56, causing a metadata race. Be-
cause prior hardware-assisted monitoring frameworks ignore
this issue, they may miss a bug due to reading stale metadata,
for example. A naive solution for preventing such races is
through the use of high-level synchronization primitives such
as locks, but acquiring and releasing a lock for processing
every event is too costly. An alternative solution would be
to interleave a memory fence between processing the actual
event and updating progress; however, this approach is overly
expensive, as we will show in Section 7.3.

In Sections 4 and 5 we show how Resolve solves the dead-
lock due to dependence cycles problem and the racing meta-

data accesses problem (without the high overheads of locks or
fences), respectively.

4. Resolving Cycles of Dependences
The examples presented in Figure 2 highlight the two compo-
nents of the cause of cyclical dependences: i) dependences that
appear to causally relate future instructions from one thread
with current instructions from the dependent thread due to
re-ordering of application instructions, and ii) the in-program-
order view of the execution of all the threads by the monitors.
Being able to resolve a cycle requires negating one of the two
components. Because the inter-thread events may be true (i.e.,
reads-from/RAW) dependences, which may be impossible to
ignore, our solution enables monitoring tools to process events
out of program-order.

In this section we present a complete framework that is able
to resolve all cycles discussed earlier, while requiring no ad-
ditional hardware support beyond that described in Section 2
(also adopted by earlier work [36, 18]). The solution accom-
modates relaxed memory models that provide cache-coherence
(i.e., a partial order on all accesses to a single cache block,
where all such pairs of accesses involving at least one write
are totally ordered), regardless of the type of bypassing (loads
bypassing loads/stores and stores bypassing loads/stores) al-
lowed by the model. For the remainder of the paper we focus
on RMO, because it is the most challenging as it allows for all
four possible instruction re-orderings. Any solution for such
a model also applies to any less relaxed memory model (e.g.,
TSO).

4.1. Cycles of True Dependences

The cycle presented in Figure 2(d) represents the most chal-
lenging case that prior work cannot accommodate and involves
two true inter-thread dependences. Because the inter-thread
dependences are true, causality ensures that at most one of the
dependences inferred from program order involves an actual
dataflow dependence. We observe that the load instruction of
such a dependence (e.g., I j

56) is not able to complete its exe-
cution until the value from the producing store arrives. Along
with that load, any data-dependent instruction in program or-
der is also blocked. If the later store I j

86 on the same core that
participates in the cycle is data-dependent on the load, then we
can deduce that the two stores are indirectly ordered as well
(Ii

93 → I j
56 → I j

86). Following the same reasoning, because
the load instruction Ii

37 is data dependent on the store I j
86

from core j, it is also indirectly ordered with the later store
from the same core (Ii

93 → Ii
37). From this, we can safely

conclude that the store instruction Ii
93 is data-independent

of the earlier load; otherwise, the core would not be able to
re-order it with respect to Ii

37.
More formally, we observe that: the dataflow graphs of the

threads executing on cores i and j remain acyclic after connect-
ing the nodes that are related by true inter-thread dependences.
Figure 5(a) depicts this property (which holds for any number
of cores participating in a cycle of true inter-thread depen-
dences) for the cycle in Figure 2(d). Note the lack of an arc
from Ii

37 to Ii
93. This property of acyclic dataflow graphs

5

I93:%W(B)%

I37:%R(A)% I56:%R(B)%

I86:%W(A)%

Core%i" Core%j"

(a)%

Ci Mi

Cj

Ck

Mj

Mk

Program Order

Ik
64

Ii
37 Ii

93

Ij
56

Ij
62

Ij
86

Ij
73

Ik
89

Dependence Table @ T1

Monitor Waits for Currently

Mi { j, Ij
86 } Ii

37

Mj { i, Ii
93 }, { k, Ik

89 } Ij
56

Mk { j, Ij
73 } Ik

64

Dependence Table @ T2

Monitor Waits for Currently

Mi { j, Ij
86 } Ii

37

Mj { i, Ii
93 } Ij

56

Mk - -

Cores Monitors

(b)

Event
Detaflow

Dependencies
Inter-Thread

Dependencies
Done Value

Src 1 Src 2 < Set of Deps. > Yes / No

Per application event additional information

R[0] R[1]  R[31] M[A] M[B]  M[Z]

Last Event ID to update a specific
architecturally visible state

(c)

LastEventToUpdate:

Figure 5: (a) Dataflow representation of the example in Figure 2(d). (b) The monitoring threads, M{i, j,k}, consume application events produced
by cores, C{i, j,k}, in program order. At (wall-clock) time T1, Mi and M j deadlock, and at time T2, a separate deadlock occurs between M j and
Mk. During step 1, monitors update the Dependence Table to indicate on which dependence(s) they are waiting. (c) Additional information
collected per application event throughout the execution of the algorithm (top), and keeping track of the latest event that updates a specific
architectural visible state during Step 3 (bottom).

enables the monitoring system to decide which events can be
processed out of program order in the presence of a cycle of
true inter-thread dependences, without losing a precise view
of the application execution.

4.2. The Algorithm

Overview. In the common case, monitors process events seri-
ally until a deadlock is experienced as a result of potentially
non-SC behavior. When a deadlock is encountered, cycle res-
olution is initiated. The algorithm is organized as a 5-step
process. During Step 1, the monitors experiencing a deadlock,
identify the ranges of execution that collectively constitute the
cycle. Because cycles may occur due to arcs being induced
by cache line false-sharing, during Step 2, the monitors sub-
stitute each recorded (cache-block-level) dependence with the
equivalent set of byte-level dependences. If the cycle persists,
monitors independently build the data-flow graph for each
range of execution involved in the cycle (Step 3). Observing
the data-flow order ensures that there are no cycles of true
dependences, as shown is Section 4.1. During Step 4, the
monitors break the cycle by processing the application events
involved based on the data-flow, rather than program, order.
Furthermore, use of metadata versioning and metadata address
renaming allows us to ignore any inter-thread dependences
due to WAW and WAR, ensuring the absence of cycles with
any type of inter-thread dependences. After all events are
processed, the monitors’ global state is updated (Step 5).
Step 1: Identify the cycle. A Dependence Table is main-
tained in a shared space and tracks for which event comple-
tions each monitor is waiting; this table is organized as a
single-writer/multiple-readers space, to avoid synchronization
costs. After a monitor has spent a predefined amount of time
waiting for a dependence, it updates its entry with the de-
pendence it is waiting for and its current progress. It then
checks if the monitor that is responsible for satisfying its de-
pendence is waiting on some other monitor. By walking the
dependence path, each monitor independently can identify if
there is a cycle of dependences. (Our study indicates that a
timeout period of 10K cycles ensures a minimal number of
table accesses without imposing significant stall overhead.)
Figure 5(b) shows such an example, where at time T1 moni-

tors Mi and M j have experienced a cycle, while monitor Mk
continues uninterrupted.

Upon a deadlock, the monitor with the lowest id, of those
involved, assumes the role of master to coordinate actions
throughout the steps of the algorithm. The master consults the
Dependence Table to identify the regions of execution from
every core that participates in the cycle. For the example in
Figure 5(b), the master will initially identify regions {Ii

37 -
Ii

93} and {I j
56 - I j

86} for monitors Mi and M j respectively.
The slave monitors will scan their corresponding regions

to identify: i) if there is an event dependent on the progress
of a monitor other than the ones involved in the cycle (e.g.,
I j

62), or ii) if there is an event dependent on the progress of a
monitor past the identified regions (not shown in the figure).
If the first scenario is true, cycle resolution has to wait for the
non-involved monitor either to satisfy the dependence or to
eventually be part of the cycle. Figure 5(b) shows the latter
case, where at time T2 monitor Mk forms a cycle with monitor
M j. Under this scenario, the resolution process expands its
search in space to include monitor Mk. If on the other hand, the
second scenario is true, the identified regions are just expanded
to involve the additional events that need to be processed. We
refer to this as expansion in time.

Conceptually, at the end of step 1, the monitors involved
in the cycle will have created a graph data-structure, with no
incoming edges, for the cycle.

Step 2: Expanding to byte-level dependences. The
recorded dependences indicate how the application threads
share data on a cache block granularity, which may result in
cycles caused by false-sharing (and other problems—recall
Figure 4). However, arcs due to false-sharing may not be
naively eliminated because they may subsume true depen-
dences. In Figure 6(a) cores i and j access different addresses
from block B. The recorded dependence between Ii

87 and I j
56

explicitly orders these two events, but also implicitly orders
any event that preceded Ii

87 with any event that followed I j
56.

In the following steps of the algorithm we will process
events from different dataflow paths out of program order.
This introduces the danger of losing the implicit ordering be-
tween Ii

87 and I j
77, if, for example, I j

77 is part of a different

6

(a)$

Corei Corej

W(B)$

W(B)$

W(B+8)$

R(B+8)$R(B)$

α$

β$

γ$

{α,$β,$γ}$byte7level$dependences$

ti$=$37$

ti$=$54$

ti$=$93$

tj$=$56$

tj$=$77$

(b)$

Corei Corej

W(B)$

W(B)$

W(B+8)$

R(B+8)$R(B)$

α$

β$

γ$

ti$=$37$

ti$=$54$

ti$=$93$

tj$=$56$

tj$=$77$

Figure 6: (a) In step 2, the block-level dependence (the only arc, ini-
tially) is eventually replaced by the three byte-level ones. (b) During
Step 4, WAW and WAR inter-thread dependences (α , β) are ignored
due to metadata versioning.

dataflow subgraph than I j
56. To avoid losing such information,

we replace block-level dependences with byte-level ones, in
order to relate all the application events that accessed the same
addresses from all the participant threads. A byte-level de-
pendence is one that connects two instructions from different
threads that access the same bytes of memory. Figure 6(a)
shows how the block-level dependence Ii

87 → I j
56 will be

replaced by the three byte-level ones α , β and γ .
To identify all the byte-level dependences, all participat-

ing monitors calculate, for every block-level dependence Ii
x

→ I j
y on a cache block B, the transitive closure between all

instructions within the region of the cycle Ii
x′ that precede

Ii
x in program order (x′ ≤ x) and all instructions within the

region of the cycle I j
y′ that follow I j

y in program order (y′
≥ y), which access block B. From the set of dependences
generated, only those that connect instructions accessing at
least one common byte are kept. The set of byte-level depen-
dences generated accurately represents all the happens-before
relationships existing at byte-level granularity.

At the end of step 2, the cycle exposed and captured during
step 1 will include only byte-level dependences. If the cycle
still persists, the algorithm will move to the next step. Other-
wise, the algorithm terminates and the monitors process the
events in the region of the cycle while considering the new
byte-level arcs rather than the block-level ones.

Step 3: Building the dataflow graph. Each monitor thread
independently builds the dataflow graph of the execution it is
assigned. For every event in that execution region, it main-
tains the additional information shown in Figure 5(c top). The
monitor scans the events assigned to it in program-order, and
for every event, it performs two tasks. First, it checks if the
source operands of the current event are produced by a previ-
ously examined event by maintaining and consulting a table
of architectural visible state (LastEventToUpdate in Figure 5(c
bottom)). If the source operands are found in that table, it
copies the Event IDs to the Dataflow Dependences field, mark-
ing the dataflow dependence with the events providing the
source operands to the current event. Second, it marks the
entry of the destination operand to the LastEventToUpdate
with the current Event ID. By performing these two tasks for
all the events in the range examined, each monitor has a view
of the execution it is assigned similar to the one in Figure 5(a).

Step 4: Out of program-order processing of events. Based
on the dataflow dependences marked during step 3, each mon-
itor thread has the ability to identify independent events from
different dataflow paths. To do so, the monitor iterates over
all events multiple times, and on every iteration processes the
ones that are independent. In this way the notion of program
order is preserved within each dataflow path.

For every event, the monitor checks if there are any dataflow
or inter-thread dependences. If all source operands are ready
(the events noted in the Dataflow Dependences field are
marked Done and have produced a value) and there are no
inter-thread dependences then the event can be processed in-
dependently of the state of any preceding event. The value
produced after processing the event is kept in private space
(Value entry in Figure 5(c top)) to avoid modifying the precise
global view the monitoring system had up to the point when
the algorithm was initiated. We refer to that Value as a version
of the specific metadata location. In Step 5 we discuss what
version of a metadata location should propagate to global state,
if more than one is available.

If one or more inter-thread dependence arcs are incident
upon the current event, the type of the dependence is consid-
ered. Any output (WAW) or anti-dependence (WAR) (dashed
dependences in Figure 6(b)) over memory locations between
different threads can be safely ignored for synchronization
purposes because (i) the latter event does not consume a value
generated by the former event and (ii) resulting values from
processing events (versions) are saved in thread-private space
(Value entry in Figure 5(c top)). This is analogous to register
renaming, but for memory locations. However, if there is a
true (RAW) dependence, the monitor must check if the source
event has been processed, and if so, it can read the requested
value from the Value entry of the source monitor. Otherwise,
the event cannot be processed, and the monitor tries to find
the next event that is ready to be processed. Because only true
dependences are considered during this step, freedom from
cycles is guaranteed as described in Section 4.1.

Step 5: Update global state. Output values produced by
processing a cycle’s events are kept in the per-monitor private
space. During the last step, the global metadata state needs
to be updated with these results. To do so, the master iterates
over all regions to identify the last updates to any location,
and updates the global state accordingly. The last updates
to registers are easy to locate as they correspond to the end
state of the LastEventToUpdate table used during step 3. Last
updates to private memory (e.g., stack) or shared memory
accessed only by only one core (e.g., one sharer heap space)
are also easy to locate, because these addresses are found in
the LastEventToUpdate table of a single monitor. For updates
to shared locations by more than one thread, the master thread
identifies the last event to update a location by leveraging
the inter-thread dependence arcs for a particular address to
identify the last update (similar a topological sort). After step
5 is completed, the monitor system returns to its initial mode
of processing the multiple event streams in program order.

7

ROB$

SB$

CurrentHID

HID$Mappings$

$Counter$$Last$Instr.$Commi9ed$

!!!$!!
!$

2$
1$

true$
false$

OldestHID

To$L1$

HID$Table$

Start$Processing$i" Processingofi$Completes$

Handler$i"
All$metadata$$
updates$$
have$completed$

(a)$

(b)$
Figure 7: (a) A timeline of the events identified by our mechanism. An
event is advertised as processed when all the metadata updates are
globally visible. (b) The mechanism to identify when the effects of a
handler are globally visible. Store instructions belonging to different
handlers are monitored, and the corresponding store buffer entries
they occupy are being tracked.

5. Fast Metadata Access Synchronization for
Relaxed Memory Models

In Section 3 we introduced the problem of racing metadata
accesses under relaxed memory models. To solve this problem,
we observe that for a given monitor, most of the time, no other
monitor is actively waiting on its current progress. Specifically,
the times a monitor will require knowledge of the progress
of some other monitor are at least as infrequent as the L1
misses of the monitored application. This property enables
us to delay the advertisement of event-handler completion
until the system can provide some guarantees about whether
or not metadata updates have completed. Hence, we propose
a simple hardware mechanism that keeps track of the store
instructions that reside in the store buffer in order to identify
when all the updates of a handler are globally visible. As soon
as this happens, the mechanism marks the corresponding event
as completed and advertises progress accordingly.

Figure 7(a) shows a timeline of the relevant events as well as
a block diagram of the mechanism. The last instruction of ev-
ery handler is marked to assist identifying handler boundaries.
The Current Handler ID (HID) register uses this mark to keep
track of the handler that is currently committing instructions.
The size of the register depends on the maximum number of
handlers that may have committed (or they are in the process
of doing so), but their corresponding store instructions still
reside in the store buffer. Fortunately, handlers spend most
of their instructions on metadata address calculation or value
comparisons, putting low pressure on the L1 and the store
buffer, and thus allowing the store buffer to naturally drain by
itself. Based on our evaluation, 4 bits are more than sufficient.
Every entry of the store buffer is extended with a set of HIDs,
one for every handler that has a store instruction residing in
the corresponding entry. More than one HID may be assigned
to a store buffer entry if coalescing of stores is allowed by
the memory model (e.g., RMO). Fortunately, a store buffer
entry remains active for a very short period of time, during
which no more than three handlers are executed. Based on
our evaluation, no more than 4 HIDs per store buffer entry are

Table 2: Experimental Setup
Simulator description

Core
Ultra Sparc III ISA
3-wide dispatch / retirement
96-entry ROB, 64-entry SB, RMO model

L1 Caches
64KB, 4-way, 64B block
2-cycle load-to-use, 2-ports, 32 MSHRs

L2 NUCA Cache
Unified 1MB per core, 16-way
64B block, 10 cycles hit latency

Main Memory 90 cycles access latency
Interconnect 4x4 2D mesh

Benchmarks Input
PARSEC simlarge
FMM 64K particles
Ocean 1026 x 1026 matrix
Water 2197 mols

required. The HID Table tracks the number of store buffer
entries associated with a specific handler, as well as if the last
instruction of the handler has committed. It is organized as a
circular buffer and indexed by the handler ID. For HID regis-
ters of 4 bits in size, a store buffer of 64 entries and counters
of 6 bits in size we introduce approximately 140 bytes per
monitoring core.

Every time a store instruction commits, it occupies an entry
in the store buffer, which is tagged by the HID. If no other store
of the current committing handler resides in that entry, then
the HID Table is indexed based on the value of the Current
HID register, and the corresponding counter is incremented.
In Figure 7, stores of the current handler (noted by the white
box) occupy one store buffer entry, while the previous handler
(noted by the black boxes) occupies two. When an entry leaves
the store buffer, the counters corresponding to the HIDs occu-
pying the specific entry will be decremented. Finally, when
the last instruction of a handler commits, its entry in the HID
Table is also updated. We can safely conclude that the effects
of a handler are globally visible when the counter value is 0
and its last instruction has committed. A handler is considered
completed when its effects are globally visible and it is the
oldest in the HID Table. After this happens, a corresponding
progress update can take place, resulting in properly synchro-
nized metadata under relaxed memory models. We assume
the update is initiated by hardware as described in [36]. In the
form of a generated store, it can be then inserted into the store
buffer and allowed to drain as any other store.

6. Experimental Setup

Simulation Setup. We use cycle-accurate full system sim-
ulation of a 16-core shared-memory CMP system using
Flexus [37]. Flexus extends Simics [35] with cycle-accurate
models of out-of-order cores, memory hierarchy and on-chip
interconnect. Flexus models the SPARC v9 instruction set
architecture, and can simulate the RMO memory model. To
evaluate our metadata access synchronization mechanism, we
extend Flexus to model a parallel monitoring architecture sim-
ilar to ParaLog [36], which includes a hardware-supported
dependence tracking mechanism based on RTR [40] (as de-

8

scribed in Section 2). Detailed parameters of the simulated
system are shown in Table 2(top). We dedicate half of the
simulated cores to the 8 application threads and half to the
8 monitoring threads. The events of each application thread
are communicated to the paired monitoring thread through a
memory-mapped event stream buffer [6].

We follow the SMARTS sampling methodology [37], and
the execution samples are selected to cover a representative
part of the application’s parallel section. In all benchmarks
studied, the parallel section dominates the application’s execu-
tion time. For parallel sections organized as multiple iterations,
we cover at least one iteration, and for some benchmarks two
iterations. For the rest of the benchmarks that are not orga-
nized in this fashion, we cover at least 1 billion instructions.
For each measurement, we start simulation from a warm state
(warm caches, branch predictors, etc.), run 2 million cycles
of detailed cycle-accurate simulation to warm up queues and
interconnect states, and ensure that all metadata are properly
allocated and initialized. Then, we collect measurements for
the subsequent 1 million cycles.

Benchmarks. We include benchmarks from the SPLASH-
2 [38] and PARSEC [4] benchmark suites, as listed in Ta-
ble 2(bottom). PARSEC benchmarks are used unmodified.
For SPLASH-2 benchmarks, we use efficient spin-based syn-
chronization primitives, appropriate for the high performance
computing domain, which do not cause an application thread
to be scheduled off. All benchmarks use correct synchroniza-
tion primitives for the RMO memory model.

Monitoring Tools. For performance evaluation we used
two instruction-grain monitoring tools. A parallel version
of ATOMCHECK [19], an atomicity violation detection tool,
and a parallel version of MEMLEAK, a memory leak detection
tool [21]. ATOMCHECK is looking for accesses from multiple
threads to a single address, the interleaving of which may
cause atomicity violation. MEMLEAK tracks the use of point-
ers throughout the execution of a program, and uses reference
counting to identify objects that are leaked.

ATOMCHECK threads share a global table of metadata (1
byte per application word) to save the previous thread id that
accessed a specific address. In addition, every thread has a
private table of metadata (1 byte per application word) to save
the type of its last access (read/write) to a specific address.
ATOMCHECK has the property of possibly producing metadata
updates when processing application loads, which requires the
corresponding handlers to be organized in two paths; a fast
one (synchronization-free) and a slow one, which requires
synchronization [36]. MEMLEAK requires 1 metadata word
per application word (32-bit), to mark the addresses that keep
a pointer, as well as the object ID they are pointing to.

7. Evaluation
Our experimental study seeks to provide support for two key
aspects of our mechanisms:
1) Necessity and efficacy: We provide a quantitative charac-
terization of the cycles arising under RMO, as a result of the
application exhibiting potential non-SC behavior. This will

Table 3: Statistical characteristics of cycles. All cycles involved 2
participant cores, except that 12.5% of the FMM cycles involved 3
participants.

Benchmarks Average Frequency Persistence
Length (per MI) (of 200 runs)

Canneal 86 0.041 52
Fluidanimate 157 0.0003 54

FMM 144 0.008 200
Ocean 75 0.02 178

Streamcluster 230 0.0003 2
Swaptions 43 0.017 62

demonstrate that cycles are indeed prevalent and persistent
and hence deadlock is a real problem that must be addressed.
Yet their relative infrequency (< once every 10M instructions)
implies that cycle-resolver (Section 4) is invoked only rarely.
2) Performance: We provide two sets of performance results.
First, we evaluate the overhead of the cycle-resolver mech-
anism, showing that it is negligible. Second, we provide an
IPC-based evaluation demonstrating the performance gains of
our proposed synchronization mechanism.

7.1. Quantitative Characterization of Cycles under RMO

Just because cycles might occur in RMO runs does not indicate
how frequently they actually occur in applications, if at all. In
this section, we study the cycles that arise under RMO. To this
end, we run our benchmarks uninterrupted on the system (with
no monitoring taking place) under the RMO memory model,
and observe cycles of inter-thread dependences being formed
as a result of the application exhibiting potential non-SC be-
havior. For every benchmark we report the following metrics:
number of participant cores, average length, frequency and
persistence. We observed potential non-SC behavior in 6 out
of 8 benchmarks in this study. For the remaining two, we were
not able to locate potential non-SC behavior in the parts of the
applications sampled (and running the entire parallel region in
cycle-accurate mode is infeasible). The statistics collected are
shown in Table 3.

Number of Participants, Average Length and Frequency.
For all benchmarks, we observe that, apart from FMM, cycles
are formed by only two participants. FMM largely follows this
trend, with 87.5% of the cycles formed by two participants
and 12.5% formed by 3. The second column of Table 3 reports
the average number of application events included in the cycle.
We observe that cycles tend to be short, averaging no more
than 230 application events in total, when considering all the
participants of the cycle. We also did not observe any cycle
larger than 244 events. The third column of Table 3 reports
the frequency of cycles we observed in our experiments, as
the number of cycle occurrences per one million instructions
collectively executed by all application threads. We observe
that the frequency of cycles is low across all benchmarks.

Persistence. We also studied the persistence of potential non-
SC behaviors by altering dynamic executions and observing
if the behaviors recur. For each benchmark, we randomly
select an execution sample that exhibits one or more cycles
and re-run it 200 times, perturbing the execution in a different

9

way every time. Specifically, a perturbation corresponds to a
wasted cycle of execution, where a core is not allowed to com-
mit any instructions, with that happening every N processor
cycles. We force each core to waste different distinct cycles of
execution, and repeat this experiment for different values of
N [2]. The fourth column of Table 3 presents the number of
runs (out of the 200 total) exhibiting one or more cycles, per
benchmark.

We observe that all six benchmarks exhibit potential non-SC
behavior in at least one additional run out of the 200 experi-
ments, and often in a significant fraction of the 200 runs. FMM
and Ocean exhibit a high probability of recurring potential
non-SC behavior, while Canneal, Fluidanimate and Swaptions
also exhibit a reasonably high probability. Streamcluster is the
exception, as only 2 of the 200 perturbations caused cycles.
Implications. Based on the frequency and persistence metrics,
we can conclude that cycles are prevalent and persistent in
most of the benchmarks, and hence prior monitoring frame-
works that deadlock when cycles arise are ineffective for these
benchmarks (no debugging past the first deadlock). Based on
the participants and average length metrics, we can conclude
that the cycles are transient events that involve few participants
racing over some shared data within a very short window of
time. This has positive implications on the performance of our
solution, as discussed in Section 7.3.

7.2. Sources of Cycles
We further investigated the conditions allowing cycles to be
formed, by examining the code paths of the participating ap-
plication threads involved in the race, along with the data
structures accessed at that point. Out of all benchmarks that ex-
perienced cycles of dependences, Swaptions had occurrences
from application code as well as library code (frequent use of
malloc/free). The rest of the benchmarks had cycles generated
exclusively by application code.

Five out of six benchmarks have cycles generated due to
false sharing of cache blocks. In Canneal, Fluidanimate and
Swaptions thread-private structures were allocated so as the
parts of different structures fall in the same cache block. For
example, in Canneal different instances of the random number
generator class share the same cache blocks. Similarly, in
Fluidanimate the beginning and ending of different dynami-
cally allocated tables (e.g., “cnumPars” and “cells2”) fall in
the same cache block. These behaviors arise either because
the programmer did not consider these structures to be perfor-
mance critical or because he did not realize the probability of
this behavior taking place (lack of feedback). Ocean appears
to have a similar behavior when each thread is processing
boundary elements (in copy_border()), only in this case it
is probably expected by the programmer. Streamcluster im-
plements its own synchronization primitives (barrier), which
makes threads access different barrier variables falling in the
same cache block close in time. Note that there is no prior
solution for efficiently handling even false sharing cycles—
always-on byte-level coherence tracking is prohibitively ex-
pensive [39] (Resolve does byte-level analysis only in the
presence of cycles.) Finally, the remaining benchmark, FMM,

has reported data races, which under relaxed memory models
introduce SC violations [23].

7.3. Performance Results

Cycle Resolution Cost. To estimate the cost of deadlock res-
olution, we implemented the algorithm presented in Section 4
as a stand-alone application and time it on real hardware while
resolving several cycles of 100 application events each. The
implementation of the algorithm is single-threaded although
several steps would benefit from parallelism (e.g., Steps 2–4).
On a 3.0GHz Core i5 processor, resolution of deadlocks caused
by false sharing (i.e., the algorithm completes after Step 2)
requires no more than 30K cycles. Deadlocks for which the
entire algorithm executes require no more than 110K cycles.

We then evaluated the effect of resolving a cycle to the
performance of the monitoring system. We run each applica-
tion monitored by a dummy monitoring tool (e.g., NullGrind),
while limiting the buffering space between an application
thread and a monitor thread to 256 events. This organization
exercises the worst case scenario as it exposes immediately to
the rest of the system the stalling of the monitoring threads
that participate in the cycle (i.e., other threads might end up
waiting for the participating ones in the absence of useful work
to do). Upon experiencing a cycle, the participating monitor-
ing threads stall for a number of cycles. The buffering spaces
are quickly exhausted putting back-pressure to the application,
which also stalls. Figure 8 shows the effect of resolving cycles
on application performance for three different costs ranging
from 10K to 1M cycles. Performance is normalized over the
ideal case of resolving the cycle instantaneously.

As expected, even for the unrealistic scenario of spending
one million cycles to resolve a cycle, the average slowdown is
no more than 3%, which can be considered negligible. This is
expected because cycles are infrequent, and because only very
few monitoring threads have to do extra work, while others
are allowed to proceed uninterrupted.
Fast Metadata Synchronization. We evaluated the perfor-
mance of the proposed mechanism by monitoring our bench-
marks with ATOMCHECK and MEMLEAK, under 2 different
configurations. The first configuration shows the performance
impact of having a memory fence at the end of every handler
that updates shared metadata (Fences). For MEMLEAK only a
subset of event handlers update potentially shared metadata,
namely handlers that process store instructions or function
returns. For the rest of the instructions monitored (e.g., ALU),
the metadata of the destination registers are private among
different monitoring threads and require no further action.
The second configuration shows the performance of our hard-
ware mechanism from Section 5. For both configurations,
we report the Instructions-per-Cycle metric (IPC) for each
tool-benchmark combination (under RMO). We calculate IPC
using the number of busy user-level instructions (i.e., instruc-
tions executed by the tool while processing application events)
throughout the experiment.

Figure 8(b left) shows the performance of MEMLEAK for
the two configurations. For Blackscholes and Water we ob-
serve the highest potential as our mechanism achieves 23.2%

10

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 10K 100K 1M

Fences
This Paper

0

1

2

3

IP
C

MemLeak AtomCheck

(a) (b)
Figure 8: (a) Normalized application performance for different cycle resolution costs over ideal case (zero penalty). (b) Performance of MEM-
LEAK (left) and ATOMCHECK (right) expressed as Busy Instructions-per-Cycle for two configurations: Fences execute a memory fence at the
end of every handler that updates shared metadata, and This Paper is our solution presented in Section 5.

and 14.7% higher IPC. For these two benchmarks, we ob-
serve a high percentage (close to 33%) of the total application
events monitored to be store instructions, which translates to
frequent stalls. On the other extreme, benchmarks that are
highly compute intensive, such as FMM, Ocean and Stream-
cluster, experience no performance degradation, due to few
updates to memory metadata. On average (rightmost bar), our
mechanism achieves 6.9% higher IPC compared to Fences.

Figure 8(b right) shows the performance of ATOMCHECK
for the two configurations. ATOMCHECK differs from MEM-
LEAK in two ways: it monitors only memory operations and it
may update metadata state when processing a load instruction.
We first observe that ATOMCHECK achieves a very low IPC
compared to MEMLEAK. There are two fundamental reasons
for that. First, updating metadata for application load events
requires the monitoring threads to acquire exclusive access
to metadata cache blocks that maintain state for application
data that are potentially read-only. For several benchmarks
we observed a large fraction of application load instructions
to access global data, which caused metadata cache blocks to
ping-pong among monitoring cores. Second, application load
events that cause metadata state update follow the slow path,
penalizing monitoring performance due to the synchronization
overhead. These two overheads account for 50% and 40% of
the total monitoring time for Fences and Resolve, respectively.

As far as the relative performance of the two configurations
is concerned, we observe that over all benchmarks but Swap-
tions, our mechanism improves performance by 10% (FMM)
to 35% (Ocean), and on average by 19%. For Swaptions
specifically, the stall component due to frequent inter-thread
dependences is high enough to hide any performance gains.

8. Related Work
This paper builds on top of prior work on hardware-based
deterministic record and replay systems [39, 40, 27, 22, 15,
28, 31], which propose observing coherence activity to infer
ordering between conflicting instructions. The Resolve tech-
niques may also be incorporated back into much of this prior
work to support relaxed memory models.

Prior work on software-only tools for monitoring parallel

programs [17, 26, 11, 10, 29, 20] resorts to either time-slicing
application execution on a single core or using high-level syn-
chronization primitives, which incur high runtime overhead
and also alter the behavior of the application, potentially mask-
ing bugs. Chung, et al. [7] overcome these limitations by cou-
pling a binary instrumentation tool with software transactional
memory, and enclosing in a transaction both the monitored and
the monitoring code. Bobba, et al. [5] overcome the need for
transaction-based execution by surrounding each monitored
instruction with a load-store pair that access metadata, taking
advantage of the limited set of instruction re-orderings allowed
by a TSO memory model. However, this approach can not be
extended to support any model weaker than TSO.

There have been several proposals of hardware-assisted
tools for monitoring parallel applications, either targeting a
specific checker [41, 33, 34], or targeting flexible instruction-
grain monitoring supporting a variety of checkers [36, 18, 25].
All of them were designed for SC, and only a few [34, 36, 18]
discuss the challenges of enabling parallel monitoring under
relaxed memory models. None solve the monitoring-order
and metadata-synchronization problems for relaxed memory
models weaker than TSO.

9. Conclusion

The memory model of the system is one of the most important
design parameters when building flexible hardware-assisted
monitoring frameworks, having both correctness and perfor-
mance implications. In this paper, we highlighted limitations
of prior frameworks that caused them to deadlock and produce
incorrect results under relaxed memory models, and presented
Resolve, the first monitoring framework that overcomes these
limitations. Resolve uses novel, low-overhead techniques for
reasoning about ordering of application events in the presence
of cyclical dependences and for ensuring access to shared
metadata is properly synchronized. Finally, we present a quan-
titative characterization of cyclical dependences for parallel
benchmarks running under RMO, demonstrating that cycles
are prevalent and persistent, yet not too frequent or complex,
so that Resolve’s overheads are negligible.

11

References
[1] Sarita V. Adve and Kourosh Gharachorloo, “Shared memory consis-

tency models: A tutorial,” IEEE Computer, vol. 29, no. 12, 1996.
[2] Alaa R. Alameldeen and David A. Wood, “Variability in architectural

simulations of multi-threaded workloads,” in HPCA, 2003.
[3] “ARMv7-M Architecture Reference Manual,” ARM.
[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li,

“The PARSEC benchmark suite: Characterization and architectural
implications,” in PACT, 2008.

[5] Jayaram Bobba, Marc Lupon, Mark D. Hill, and David A. Wood, “Safe
and efficient supervised memory systems,” in HPCA, 2011.

[6] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi,
Phillip B. Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji
Ruwase, Michael Ryan, and Evangelos Vlachos, “Flexible hardware
acceleration for instruction-grain program monitoring,” in ISCA, 2008.

[7] Jaewoong Chung, Michael Dalton, Hari Kannan, and Christos
Kozyrakis, “Thread-safe dynamic binary translation using transactional
memory,” in HPCA, 2008.

[8] Michael Dalton, Hari Kannan, and Christos Kozyrakis, “Raksha: a
flexible information flow architecture for software security,” in ISCA,
2007.

[9] Daniel Y. Deng, Daniel Lo, Greg Malysa, Skyler Schneider, and G. Ed-
ward Suh, “Flexible and efficient instruction-grained run-time monitor-
ing using on-chip reconfigurable fabric,” in MICRO, 2010.

[10] Cormac Flanagan and Stephen N. Freund, “FastTrack: efficient and
precise dynamic race detection,” in PLDI, 2009.

[11] ——, “The RoadRunner dynamic analysis framework for concurrent
programs,” in PASTE, 2010.

[12] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar, “Is SC + ILP =
RC?” in ISCA, 1999.

[13] Michelle L. Goodstein, Shimin Chen, Phillip B. Gibbons, Michael A.
Kozuch, and Todd C. Mowry, “Chrysalis analysis: Incorporating syn-
chronization arcs in dataflow-analysis-based parallel monitoring,” in
PACT, 2012.

[14] Michelle L. Goodstein, Evangelos Vlachos, Shimin Chen, Phillip B.
Gibbons, Michael A. Kozuch, and Todd C. Mowry, “Butterfly analysis:
adapting dataflow analysis to dynamic parallel monitoring,” in ASPLOS,
2010.

[15] Derek R. Hower and Mark D. Hill, “Rerun: Exploiting episodes for
lightweight memory race recording,” in ISCA, 2008.

[16] “Intel-64 and IA-32 Architectures Software Developer Manuals,” Intel.
[17] Changhee Jung and Nathan Clark, “DDT: design and evaluation of

a dynamic program analysis for optimizing data structure usage,” in
MICRO, 2009.

[18] Hari Kannan, “Ordering decoupled metadata accesses in multiproces-
sors,” in MICRO, 2009.

[19] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou, “AVIO: detect-
ing atomicity violations via access interleaving invariants,” in ASPLOS,
2006.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood, “Pin: Building customized program analysis tools
with dynamic instrumentation,” in PLDI, 2005.

[21] Jonas Maebe and Michiel Ronsse, “Precise detection of memory leaks,”
in International Workshop on Dynamic Analysis, 2004.

[22] Pablo Montesinos, Luis Ceze, and Josep Torrellas, “DeLorean: Record-
ing and deterministically replaying shared-memory multiprocessor
execution efficiently,” in ISCA, 2008.

[23] Abdullah Muzahid, Shanxiang Qi, and Josep Torrellas, “Vulcan: Hard-
ware support for detecting sequential consistency violations dynami-
cally,” in MICRO’12.

[24] Vijay Nagarajan and Rajiv Gupta, “Architectural support for shadow
memory in multiprocessors,” in VEE, 2009.

[25] ——, “ECMon: exposing cache events for monitoring,” in ISCA, 2009.
[26] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic, “SoftBound: Highly compatible and complete spatial mem-
ory safety for C,” in PLDI, 2009.

[27] Satish Narayanasamy, Cristiano Pereira, and Brad Calder, “Recording
shared memory dependencies using strata,” in ASPLOS, 2006.

[28] Satish Narayanasamy, Gilles Pokam, and Brad Calder, “BugNet: Con-
tinuously recording program execution for deterministic replay debug-
ging,” in ISCA, 2005.

[29] Nicholas Nethercote and Julian Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in PLDI, 2007.

[30] “The SPARC Architecture Manual,” Oracle, 2000.

[31] Gilles Pokam, Cristiano Pereira, Klaus Danne, Rolf Kassa, and
Ali-Reza Adl-Tabatabai, “Architecting a chunk-based memory race
recorder in modern CMPs,” in MICRO, 2009.

[32] F. Qin, C.Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu, “LIFT: A low-
overhead practical information flow tracking system for detecting secu-
rity attacks,” in MICRO, 2006.

[33] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos
Prvulovic, “FlexiTaint: A programmable accelerator for dynamic taint
propagation,” in HPCA, 2008.

[34] ——, “Memtracker: An accelerator for memory debugging and moni-
toring,” ACM TACO, 2009.

[35] Virtutech Simics, http://www.virtutech.com/.
[36] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch,

Shimin Chen, Babak Falsafi, Phillip B. Gibbons, and Todd C. Mowry,
“Paralog: enabling and accelerating online parallel monitoring of multi-
threaded applications,” in ASPLOS, 2010.

[37] T.F. Wenisch, R.E. Wunderlich, M. Ferdman, A. Ailamaki, B. Fal-
safi, and J.C. Hoe, “Simflex: Statistical sampling of computer system
simulation,” IEEE Micro, 2006.

[38] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta, “The SPLASH-2 programs: Characterization
and methodological considerations,” in ISCA, 1995.

[39] Min Xu, Rastislav Bodik, and Mark D. Hill, “A ’Flight Data Recorder’
for enabling full-system multiprocessor deterministic replay,” in ISCA,
2003.

[40] ——, “A Regulated Transitive Reduction (RTR) for longer memory
race recording,” in ASPLOS, 2006.

[41] P. Zhou, R. Teodorescu, and Y. Zhou, “HARD: Hardware-assisted
lockset-based race detection,” in HPCA, 2007.

12

	Introduction
	Parallel Monitoring Background
	Problems under Relaxed Memory Models
	Resolving Cycles of Dependences
	Cycles of True Dependences
	The Algorithm

	Fast Metadata Access Synchronization for Relaxed Memory Models
	Experimental Setup
	Evaluation
	Quantitative Characterization of Cycles under RMO
	Sources of Cycles
	Performance Results

	Related Work
	Conclusion

