
Improving Human-Compiler Interaction
Through Customizable Type Feedback

Hubert Plociniczak Heather Miller Martin Odersky
Ecole Polytechnique Fédérale de Lausanne

firstname.lastname@epfl.ch

Abstract
Type errors reported by compilers can sometimes be cryp-
tic, or difficult to understand. In this paper, we propose a
type debugging framework that exposes a high-level repre-
sentation of the typechecking decision-making process that
users normally do not have access to in state-of-the-art com-
pilers. This representation makes it easier for non-experts
to analyze complex type errors. Our system is implemented
by instrumenting the existing Scala typechecker, but with-
out modifying it. We also provide generic search algorithms
that can be used as basic building blocks to build a number
of systems, from visual type debugging tools to customized
error reporting for normal Scala users as well as to users of
domain-specific languages. Using our framework, it is possi-
ble to overcome well-known limitations of local type infer-
ence by providing precise type error messages to mainline
Scala users or Scala DSL users alike. In addition, the frame-
work provides better user feedback for non-trivial type errors
from existing Scala libraries and DSLs.

Keywords type system, type errors, type debugging

1 Introduction
Writing software using statically-typed languages inherently
involves fixing type errors. The subject of what constitutes a
good error message, and therefore properly directs the user,
has been well studied [14, 32]. Yet, in practice, it is hard to
achieve both generality (i.e., typechecking rules should ap-
ply to as many conflicts as possible) and precision (i.e., type
errors convey enough information for users to be able to eas-
ily navigate to and fix the error) without the full type deriva-
tion tree, and without affecting the performance of regular
compiler runs. Since language architects and compiler writ-
ers must provide enough information to assist both novice,

[Copyright notice will appear here once ’preprint’ option is removed.]

val xs: List[Int] = List(1, 2, 3)
xs.foldRight(Nil)((x, ys) => (x + 1) :: ys)
// type mismatch;
// found : List[Int]
// required: Nil
// (x + 1) :: ys)
// ^

Listing 1. Incrementing a list of integers gone wrong

as well as expert users (such as embedded DSL authors in
Scala), achieving this trade-off is even more difficult.

An example of an innocuous code snippet which leads to
a puzzling type error is shown in Listing 1. In this exam-
ple, we simply have a list of integers that we want to incre-
ment using the foldRight method from the Scala standard
library. The call to foldRight traverses the elements of a
List from right to left, starting with the first argument as the
first element, in this case Nil (an empty List), and applies
the second argument, a function, to each element, which in
this case appends the incremented elements.

In this example, the error comes from a limitation of
type inference for local type parameters – type inference
flows from left to right and only from parameter list to
parameter list. We argue that cases like these, or in DSLs, or
at intersections of advanced type system features, it should
be possible to adapt type error feedback rather than placing
the burden of adapting to cryptic error messages on the
programmer.

The idea of improving type errors, however, is not new.
One approach involves providing a separate, post-error, typ-
ing phase [1] which recreates a partial type derivation tree
representing the error in question. Improved type error feed-
back is usually achieved by constraint solving [12, 30] and
reporting conflicting source locations1, which may involve
standard techniques of program slicing [10] or providing er-
ror messages with more decision context. Unfortunately, this
leads to a partial duplication of the typing phase, which has
obvious software engineering implications – changes to the
original typechecker are not propagated to the duplicated
typechecker, leading to inconsistent error-reporting behav-
ior. Furthermore, the duplicated typechecker can often only

1 Source file, line and/or character position.

1 2014/3/26

support a subset of language features [13], and, as a result,
rarely end up being adopted in industrial languages. Such a
constraint-oriented approach additionally suffers from sce-
narios where so many constraints are generated, that solving
for them becomes intractable [20, 24].

An orthogonal approach to improving error reporting is
aimed at developing tools that attempt to automatically pro-
vide suggestions which resolve type errors. These automatic
techniques rely on the existence of heuristics defined by
language architects [16] to modify code according to well-
known coding errors. For example, such a technique might
encounter a type mismatch in the argument list of a func-
tion which it might attempt to resolve by simply permut-
ing the arguments until the type error is resolved. Such tools
typically do not take into account the decision process of
the typechecker [9] – they simply generate a large number
of potential solutions from the generated permutations, and
perform a ranking analysis that provides the most likely so-
lutions to the user. In that sense they perform in a similar
way to code completion tools. The disadvantage is that such
techniques can report false positives [15], are computation-
ally intensive, and are often ineffective for languages that
support some sort of polymorphism [8].

This paper takes a step towards more principled human-
compiler interaction by (a) introducing a novel approach
to type error customization and debugging based on type
derivation trees from the actual type checking process, that
(b) we show can be used as the foundation for many systems
to interact with and customize type error feedback, from
graphical type debugging tools, to domain-specific type er-
ror customizations. Crucially, our approach is based upon
the construction of a high-level representation of typing de-
cisions that is obtained directly from derivation trees built
from the result of the compiler’s type checking, all with-
out modifying the logic of the existing typechecker or re-
ducing its features. To achieve this representation, we map
low-level, context-free typechecking information, extracted
from instrumented compiler runs, into what essentially be-
comes instantiations of typing rules. Built on top of this
high-level representations of typing decisions, we provide
a set of generic routines for analyzing the type derivation
tree, and for adding custom type errors. This information is
accessible to users via an API for traversing, analyzing, and
building on the derivation tree with custom error feedback.

We achieve a sweet spot between generality and preci-
sion, such as in the case of the cryptic error message from
the type inference example above in Listing 1. In this case,
the framework is able to suggest the following helpful type
ascription:
// Inferred expected type using the following location(s):
// xs.foldRight(Nil)((x: Int, ys: List[Int]) => (x + 1) :: ys)
// ~~~
// You may try to annotate your code like: ’Nil:List[Int]’

Beyond such type ascriptions, helpful user feedback can
include program slicing, descriptions of the type derivation

tree, suggestions on how to better guide type inference, or
even graphical tools for exploring the type derivation tree.

Finally, our framework is not limited to users of the main-
line Scala distribution. Domain-specific library (DSL) au-
thors with shallow and deeply embedded DSLs are also able
to take advantage of customized type error analysis and re-
porting since the framework doesn’t require or include a du-
plicate typechecking pass, it uses the normal typechecker.

1.1 Selected Related Work
Chameleon [30] translates Haskell’s global type inference
into a constraint solving problem. During typechecking, the
Haskell compiler will generate a large number of constraints,
each of which carries source location information for de-
bugging purposes. Debugging essentially involves finding a
minimal set of constraints that can explain a typing error
using a fixed set of constraint reduction rules. Our frame-
work is focused on object-oriented languages, where it has
been shown [27] that local type inference is more suitable in
terms of providing better localized error messages and that
handling subtyping constraints is still tractable [24].

The work of El Boustani and Hage [1] is the only work,
to the best of our knowledge, which focuses on modern
object-oriented programming languages that support para-
metric and subtype polymorphism. They present a number of
heuristics that improve error messages for Java with Gener-
ics by implementing a typechecker which collects subtyp-
ing constraints for very localized problems, specifically only
method invocations that have local type parameters and vari-
ance. Our approach crosses the boundaries of function ap-
plication, and therefore performing a more global type error
analysis. In fact, our approach can also be used for explain-
ing typing decisions related to a much richer type inference
mechanism, and other type system features such as overload-
ing, higher-kinded types and implicit search. In our evalua-
tion, we show that heuristics used in [1] can be implemented
in our framework.

Tsushima et al. [33] attempt to build type derivation trees
by treating an existing typechecker as an oracle that recur-
sively typechecks subtrees of the original program. The re-
construction of this type derivation tree is performed by in-
teracting with users. While the main idea of our framework is
to reconstruct similar typing rules, we avoid any user interac-
tion which would be infeasible when attempting to visualize
and debug advanced type system features in an straightfor-
ward way [28].

1.2 Contributions
This paper makes the following contributions:

• (1) A novel approach to type error customization and de-
bugging framework that is based on type derivation trees
from the actual type checking process (achieved by in-
strumenting the Scala compiler in a lightweight way),
and (2) a programmer-accessible high-level representa-
tion of typechecking decisions. Thus, our high-level type-

2 2014/3/26

checking representation reflects the behavior of the real
world Scala typechecker, while still supporting the full
set of Scala language features.

• A set of programmer-facing generic routines that make
it possible to traverse and analyze the high-level type-
checking representation and to suggest and verify code
modification for type errors. Such routines can be used to
build a number of useful system for interacting with and
customizing type error feedback, from graphical type de-
bugging tools to type analysis plugins for IDEs.

• A plug-in architecture that can be used by the authors of
libraries and embedded DSLs. This makes it possible for
developers of such DSLs to provide additional domain-
specific error analysis and type errors to provide their
users with comprehensive and accurate domain-specific
feedback, rather than relying on the basic error-reporting
infrastructure of the host language.

• An extensive real world validation of these techniques;
we integrate our framework into the full-fledged Scala
compiler, and perform a detailed analysis of several ad-
vanced Scala libraries and frameworks which make ad-
vance use of the type system.

2 Type Derivation Trees: A Basis
Typechecking a program can be thought of as instantiating
inference rules, which simply means to substitute concrete
terms and types into the general inference rule, and then
constructing a type derivation tree based on those inference
rule instantiations. Such type derivation trees are central to
our framework.

Basing type debugging and customization on type deriva-
tion trees is an advantageous choice for numerous reasons.
Because such trees are based on the actual instrumented
Scala typechecker,

• all Scala language features are supported by default,
• changes to the typechecker will generally never result in

the type debugging and customization framework becom-
ing out-of-sync,

• the framework can deal with OO concepts such as sub-
typing, and

• the framework works even for embedded DSLs.

In this section, we’ll see how type derivation trees can
provide a high-level view into where errors appear in pro-
grams. We’ll achieve this by first constructing a type deriva-
tion tree for the innocuous code snippet shown in Listing 1,
and then by analyzing it, to locate the typing error.

Section 2.1 introduces an established formalism [25] that
we will use in section 2.2 to construct the type derivation
tree which we will use to illustrate how such trees can aid in
type debugging.

2.1 Formalization
Since the cryptic type error shown in Listing 1 is caused
by a known limitation of Scala’s local type inference, we

Definition 1. Core language syntax, from [25, pg 3].
Terms E,F = x |E.x

| fun[a](x : T)E | fun(x)E

| F [T](E) | F (E)
| E.x
| {x1 = E1, ..., xn = En}

Types T, S,R = a | > | ⊥
| T

a−→ S
| {x1 : T1, ..., xn : Tn}

Environments Γ = x : T | ε | a | Γ,Γ′

adopt the formalism and type system described in Odersky
et al.’s treatment of Scala’s colored local type inference [25]
to build our type derivation tree.

For the sake of brevity and clarity, we present a fragment
of the typing rules of local type inference, as defined in [25].

2.1.1 Grammar
Definition 1 shows our core language syntax, which itself is
based on F≤ extended with records, as per [25, 27].

The grammar gives terms, types and environments of the
language. A term can be a variable x, a record constructor
{x1 = E1, ..., xn = En} or record selection E.x. It also has
two versions of function application and abstraction: ones
with explicit type parameters and type arguments (F [T](E)
and fun[a](x : T)E) and those that elide them, if possi-
ble, by conveniently inferring them from the context (F (E)
and fun(x)E), respectively. The overbar in a signifies a fi-
nite sequence of local type parameters, and is equivalent to
a1, ..., an for some n. A type is a either a type variable a,
a top or bottom type in the type hierarchy (> and ⊥ re-
spectively), a potentially polymorphic function type T a−→ S
(with type variables written over the arrow), or a record type.

2.1.2 Typing Rules
A fragment of the local type inference type system is pre-
sented in Figure 1.

The inference judgment, P,Γ `w E : T consists of the
term to be typed, E, that eventually is assigned type T in
a type environment Γ, and a prototype P representing parts
of the type of E that are inherited from the context. P can
be treated as a normal type, potentially having some type
constants ? in place of the missing parts. For instance, given
a judgment of Int →?, ε `w fun(x)x : Int → Int we
know that the type of the only parameter x is Int and is
inherited, whereas the return type is synthesized from the
body of the function.

Since we are only interested in constructing a type deriva-
tion tree for the foldRight example shown in Listing 1,
we only discuss rule (app) for function application with
elided type arguments. The first premise of (app) expresses
typechecking of function F without any prototype, and it re-
quires the inferred type to be of a function type S a−→ T .
Hence, in the second premise, the argument can be typed
with an expected type coming from the just resolved func-
tion, with all the unknown type parameters substituted by
constant type ?.

Matching between the expected prototype and synthe-
sized type is expressed through operator↗. T ↗ P means

3 2014/3/26

(ABS)
P,Γ, a, x : T `w E : S

T
a−→ P,Γ `w fun(x)E : T

a−→ S
(ABStp,?)

?,Γ, a, x : T `w E : S

?,Γ `w fun [a] (x : T)E : T
a−→ S

(APP)

?,Γ,`w F : S
a−→ T [?/a]S,Γ `w E : S′

`a S′ <: S ⇒ C1 `a T <: > ↘ P ⇒ C2

P,Γ `w F (E) : σC1∪C2,TT ↗ P
(APPtp)

?,Γ,`w F : S
a−→ T

[
R/a

]
S,Γ `w E :

[
R/a

]
S

P,Γ `w F
[
R
]

(E) :
[
R/a

]
T ↗ P

(VAR) P,Γ `w x : Γ(x)↗ P

Figure 1. Fragment of P,Γ `w E : T judgment (as presented in [25, pg. 11])

that either T is structurally equal to P , with ? filled by some
arbitrary types, or we can find the smallest supertype of T
which is structurally equal to P . The operation T ↘ P is
the dual of T ↗ P , where the greatest subtype of T is struc-
turally equal to P .

2.2 Constructing the Type Derivation Tree
Consider the following definition of the foldRight function
mentioned earlier:
foldRight = fun[a](elems: List[a]) fun[b](acc: b)
fun(f: (a, b) -> b)
elems.match {
caseNil() = acc
caseCons(x, ys) = f(x, foldRight(ys)(acc)(f))

}

This definition uses a straight-forward encoding of lists
(summarized in Appendix B).

foldRight simply traverses the initial list of elements,
elems, until an end is reached, caseNil, where it returns
the initial accumulator. Then it will recursively backtrack,
and apply function f to the intermediate result of apply-
ing foldRight to the result of the suffix of the list. Using
the typing rules from [25, pg. 6], function foldRight has
type, List[a]

a−→ b
b−→ ((a, b) → b) → b, which allows

us to express the erroneous application from Listing 1 as:
foldRight(Cons(1, Nil())(Nil())((x, y)→ Cons(x+1, y))

By applying the typing rules from Figure 1 to this defini-
tion of foldRight, we can construct the type derivation tree
shown in Figure 2.

2.3 Using Type Derivation Trees to Debug foldRight

The typing error from Listing 1 is highlighted in the deriva-
tion tree in Figure 2 as (type-mismatch). It results from the
structural inequality between the inferred type, List [Int],
of the body of the function which actually performs the
list manipulation, and an inherited expected type, List [⊥].
List [Int] is inferred because lists are covariant in their type
parameter, and the least substitution of Int <: a and ⊥ <: a
for a is Int, which means that the conflicting type originates
in a different location in the type derivation tree.

In order to debug this, one has to figure out where the pro-
totype List [⊥] comes from. Type derivation trees allow us
to backtrack through the type inference process, and to see
how individual premises of the typing rules were arrived at.
For the sake of clarity, in the figure, we highlight the types
which led to the type mismatch in gray boxes, and use nu-
merical superscripts to illustrate the order of our explanation.

Function f is the argument of the application of
foldRight(xs)(Nil()), which inherits an expected type
(Int, List [⊥])→ List [⊥] due to the (abs) rule from Fig-
ure 1. This type comes from the inference of the type of the
function foldRight(xs)(Nil()) (superscript 4). There, we
can see that the type responsible for the type mismatch was
instantiated from the type parameter b (superscript 5), which
in turn resulted from the application of the partially applied
function foldRight(xs) to Nil(). In this case, the type of
the argument, Nil(), is simply List[a]. As previously al-
luded to, since variable a is in a covariant position, and car-
ries no other constraints, the most appropriate solution com-
ing from ↘ results in the substitution of a to ⊥. This, in
effect, imposes the only constraint on type variable b, which
is List [⊥] <: b. This constraint results in the highlighted
substitution (superscript 10) that eventually leads to a type
mismatch.

Given such a simple code snippet, one might be surprised
at the complexity of the fragment of the type derivation tree
shown in Figure 2. While presenting raw type derivation
trees to users is certainly impractical, we nonetheless argue
that type debugging via these type derivation trees is pow-
erful. Traversing and analyzing such trees can provide es-
sentially any information about the typechecking process,
from a detailed picture of how language features interact,
to the revelation of limitations of local type inference. Fur-
thermore, as one might be able to infer from the grayed-out
types in Figure 2, type derivation trees can be traversed and
pruned so as to simplify and speed up the localization of
types of interest, as we will show in section 4.1. We will
also show in later sections how this approach serves as a
foundation for a number of different systems to customize
or debug type errors, from interactive visualization tools for
type debugging [28], to custom domain-specific type errors
for embedded DSLs.

3 From Typechecker to Type Derivation Tree
A central novelty of our approach is that a high-level rep-
resentation of typing decisions is obtained directly from the
result of an existing compiler’s type checking process, all
without modifying the logic of the existing typechecker or
reducing its features. Throughout the remainder of the paper,
in the context of the type debugging framework, we refer to
typing rules as goals, which can have some premises that,
by definition, must be fulfilled for the rule (or goal) to be
applied.

4 2014/3/26

(var) ?, Γ w Cons :

(a, List[a])
a−→ List[a]

Γ1 = Γ, x : Int, y : List [⊥]

(app) [?/a] a, Γ1
w (x + 1) : Int a

(var) [?/a] List [a] , Γ1
w y : List [⊥] List [a]

Int <: a ⇒ C1

List [⊥] <: List [a] ⇒ C2

(app)
List [⊥]

2
, Γ, x : Int, y : List [⊥] w Cons(x + 1, y) :{a⇒Int} List [a] List [⊥]

1
(type-mismatch)

(abs)
(Int, List [⊥]) → List [⊥]

3
, Γ w fun(x, y) → Cons(x + 1, y) : Error

..., Γ w f

?, Γ w foldRight(xs) :

b
b−→ ((Int, b) → b

5
) → b

(var) ?, Γ w Nil : ()
a−→ List[a]

6
?

List[a] <:
7
? ⇒ C3

(app)
[?/b] b, Γ w Nil() :

{a=> ⊥ 8

}
List[a] b List[⊥] <: b

9
⇒ C4

((Int, b) → b) → b <: ? ⇒ C5
(app)

?, Γ w foldRight(xs)(Nil()) :
{b⇒ List [⊥]

10

}
((Int, b) → b

4
) → b ? ..., Γ w f

(app)
?, Γ w foldRight(xs)(Nil())(f) : Error

Typechecking application of foldRight(xs)(Nil())

Typechecking function argument f

Figure 2. Fragment of type derivation tree for application foldRight(xs)(Nil())(f), where xs = Cons(1, Nil()) and
f = fun(x, y)→ Cons(x + 1, y)

Our type customization and debugging framework builds
on top of the existing implementation of Scala [23], a hybrid
object-oriented and functional language. Apart from hav-
ing Java-like features and running on the JVM, Scala has
an advanced type system which includes features such as
higher-kinded types [18], path-dependent types [21] and im-
plicits [26], all of which are supported by our framework.

In this section, we will step through the construction of
this high-level representation, beginning in section 3.1 with
details of our compiler instrumentation API. Section 3.2 dis-
cusses how goals are defined in our high-level representa-
tion. Finally, section 3.3 describes how we can transform
low-level data obtained from instrumenting the Scala com-
piler to high-level premises and goals introduced in sec-
tion 3.2.

3.1 Instrumenting the Compiler
The type debugging framework collects low-level type-
checking information by instrumenting2 the existing Scala
compiler using a minimal API, a set of low-level instrumen-
tation classes, and an infrastructure for debugging. A small
example is shown in Listing 2, where we instrument the
body of a method that typechecks some AST (tree) given a
prototype (tpe).

In this example 2, an EV object collects all instrumenta-
tion notifications. TyperTypecheck, AstTyped, and
TyperTypecheckFinished of type Event are concrete in-
strumentation classes that carry raw typechecking informa-
tion, such as type or symbol references.

2 We chose to manually instrument the Scala compiler since the alternative
is to modify bytecode (e.g., http://eclipse.org/aspectj/), which is
too coarse-grained. That is, bytecode modification only provides means to
extract compiler data at the entry and exit point of method calls; obtaining
typechecking information from within the body of methods is not possible
to recover without reconstructing the logic of the mainline typechecker.

def typecheckAst(ast: Tree, tpe: Type): Tree = {

EV <<< TyperTypecheck(ast, expectedType)

... // instrumented typing of ast

EV << AstTyped(...)

...

EV >>> TyperTypecheckFinished(...)

...
}

Listing 2. A brief look at the Instrumentation API.

Importantly, we introduce the notion of an instrumenta-
tion block, which makes it possible for structural informa-
tion to be collected during instrumentation, which results in
instrumentation data that more closely reflects the premises-
conclusion relations in the typing rules, as opposed typical
“flat” instrumentation data. These instrumentation blocks are
delimited by the <<< and >>> operators, and typically also
contain other (potentially nested) instrumentation blocks,
delimited using the same operators, as well as single instru-
mentation points (defined using the << operator). As a re-
sult, the framework understands that direct instrumentation
points between the <<< and >>> method calls can be con-
sidered as typechecking dependencies, without having direct
references to them in the source code.

While stuctured, the type of information that instrumen-
tation collects is quite low-level. Raw compiler data, such as
ASTs that are being typechecked, expected types inherited
from the context, or type parameters to be instantiated, are
among the bits of low-level data collected. Indeed, this sort
of data is a far cry from the high-level type derivation trees
constructed from that we’re after, as it carries no knowledge
of related premises that need to be satisfied, nor of enclosing
typechecking context information.

Finally, while instrumentation does incur non-negligible
compilation time performance penalties while collecting

5 2014/3/26

data, our framework manages to sidestep noticeable slow-
downs by selectively enabling instrumentation only when
typechecking regions of the source code that directly affect
the detected errors. We additionally save performance by
making use of the fact that definitions in the Scala compiler
are initialized in a lazy manner i.e., their type signatures are
verified or inferred once per compilation, at the first point
when they are referenced during typechecker’s run.

3.2 High-Level Typechecking Representation
In this section, we provide a brief overview of our high-level
typechecking representation, based on type derivation trees.
In section 3.3, we delve into the details of our high-level rep-
resentation and how it maps to our low-level instrumentation
data.

abstract class Goal { | trait Typecheck extends Goal {
def allPremises: List[Goal] | def typeg: TypeGoal
def parent: Goal | def adaptg: AdaptGoal
} | }

Listing 3. Base class of high-level representation and goal
Typecheck that represents typechecking of an AST

Listing 3 provides a class for a Goal (or typing rule)
that has a reference to all its premises, and a conclusion,
parent, which is also of type Goal. Subclasses of Goal and
their members provide concrete requirements for each of the
typechecking decision points. Nodes of a type derivation tree
can be constructed from subclasses of Goals which represent
numerous concepts such as typing of an abstraction or typing
of function application.

Typecheck is an example of such a subclass. In order
to satisfy this goal, for example, its members require that
it first be typed and then adapted. Note that the process of
typing and adaptation in this example are represented via the
types of Typecheck’s members, which are also subclasses
of Goal.

3.3 Mapping From Low-Level to High-Level
To understand how we map from low-level instrumentation
data to high-level type derivation trees, we provide an ex-
planation from two different angles. We first begin with a
side-by-side example of instrumented code, and high-level
goals in Figures 4 and 5, respectively, which gives an in-
tuition for how our implementation achieves this mapping.
We then provide a formalization of this mapping, in an ef-
fort to provide a complete and general depiction of how our
framework translates from low-level instrumentation events
to high-level goals and premises.

3.3.1 Instrumention to Goals & Premises: An Example
Listing 4 presents a simplification of the actual Scala com-
piler’s implementation, and instrumentation, of typing func-
tion application. In this example, the method typeApplication
takes an argument, ast, which is an Apply AST node (an
AST node that represents function application). This AST

has two parameters, the AST for the function, and the AST
for the function’s arguments, both of which are extracted via
a pattern match on line 2.

The first instrumentation block is delimited by instru-
mentation classes TypeApplication and TypeAppDone.
This creates a logical block of instrumentation which es-
sentially specifies that any instrumentation executed in be-
tween is part of the logic responsible for typing an func-
tion application. The function itself is typechecked via
method typecheckAst, which is itself also instrumented
(not shown).

The rest of Listing 4, beginning on line 4, represents
the logic for actually typing function application. Lines 5,
11, and 14 illustrate different possible paths through this
typechecking method; a function type having type param-
eters (PolymorphicType, line 14), a monomorphic func-
tion type (MethodType, line 11), and an erroneous function
type (ErrorType, line 5). Importantly, each different path
through this typeApplication method result in the instan-
tiation of different sorts of instrumentation classes.

Now that we’ve seen an example of a typechecking
method, we now look at the high-level representation that
we’ll create from the low-level instrumentation events.

Listing 5 gives a high-level representation for typing
function application. We use inheritance to abstract over
different typechecker executions (one can think of traits
in Scala as a simple Java interface in this context). These
interfaces give users of the high- level representation a han-
dle on the possible decisions the typechecker can make. As
we will see in section 4, this also enables users to pattern
match [7] on these decisions.

In Listing 5, a TypeApp trait states that any typing of
function application has to always first typecheck the func-
tion (member typecheckFun) and directly corresponds to
the first premise of typing rule app in Figure 1. Traits
TypeAppFallback and TypeAppCorrect correspond to
different typechecker executions involving erroneous and
error-free results of typechecking a function. Trait
TypeApplicationMain, whose type is listed as the type
of a premise of TypeAppCorrect, represents the typing
of an application given a (valid) function type. Its sub-
traits TypeAppMonomorphic and TypeAppPolymorphic
correspond to executions involving typing of monomorphic
and polymorphic applications, respectively. This distinction
between subtraits of TypeApplicationMain directly re-
flects the presence, or lack thereof, of type variables in the
inference rule (app). Member targsFromExpectedType
corresponds to the potential inference of type arguments
from the result type of the method and the expected type
(recall InferTypeArguments in Listing 4), and member
inferMethInstance corresponds to the act of inferring
type arguments from the typechecked arguments and formal
parameters.

In order to relate these low-level instrumentation events to
this high-level representation, we return to the low-level in-

6 2014/3/26

0 def typeApplication(ast: Apply, expected: Type): Apply = {

1 EV <<< TypeApplication(ast)

2 val Apply(funAst, argsAsts) = ast

3 val fun1 = typecheckAst (funAst, ...)

4 val typedApp: Apply = if (fun1.tpe == ErrorType) {

5 EV <<< InvalidFunApp(...)

6 ...
7 } else {

8 EV <<< TypeApp1(...)

9 fun1.tpe match {
10 case MethodType(parameters, _) =>

11 val args1 = argsAsts map (arg => typecheckAst (arg, ...))

12 if (hasError(args1)) ... else ...
13 case PolymorphicType(tParams,MethodType(params,resultType)) =>

14 EV <<< InferTypeArguments(expected, tparams)

15 val argsTypes = expectedTypeForArgs(typeParams,
16 resultTpe, expected)

17 EV >>> Inferred(argsPt)

18 val args1 = (argsAsts zipWith argsType) map (

19 (arg, argExpectedType) => typecheckAst (arg, ...))

20 if (hasError(args1)) { ... } else {

21 EV <<< InferInstance(argsTypes, params, args1)

22 val inferredMethod = ...

23 EV >>> InferredMeth(inferredMethod)

24 if (hasError(inferredMethod)) ...
25 else typeApplication(..., expectedType)
26 }
27 }

28 EV >>> TypeAppFinished(...)

29 }

30 EV >>> TypeAppDone(typedApp)

31 typedApp
32 }

Listing 4. Example of instrumented typing of function ap-
plication

strumentation data. These low-level instrumentation events
collected by instances of EV are essentially a sequence of
type checking events, which carry low-level information like
symbols and expected types. Importantly, these events are
delimited by methods <<< and >>>, and instances of instru-
mentation classes. These delimiters enable us to reconstruct
the nesting structure characteristic of type derivation trees.

In order to determine which high-level goal a given in-
strumentation event corresponds to, we pattern match on
these sequences. If we succeed in matching, we create a cor-
responding high-level representation. In the following sec-
tion, we’ll see how this matching works. These high-level
representations refer back to the low-level events that they
were created from. Subtle differences between low-level in-
strumentation, especially in the presence of type errors, re-
sult in different high-level type derivation trees.

3.3.2 Formalization
In this section, we formalize a mapping function which
maps instances of low-level instrumentation into its high-

trait TypeApp extends TypeGoal {
def typecheckFun: TypeGoal

}
trait TypeAppFallback extends TypeApp { ... }
trait TypeAppCorrect extends TypeApp {
def typeApp: TypeApplicationMain

}
trait TypeApplicationMain extends Goal
trait TypeAppMonomorphic extends TypeApplicationMain {
def typecheckArguments: List[TypeGoal]

}
trait TypeAppPolymorphic extends TypeApplicationMain {
def targsFromExpectedType: InferPotentialTypeArguments
def typecheckArgs: List[TypeGoal]
def inferMethInstance: InferMethodInstance
def typeInferredApp: Option[TypeApplicationMain]

}

Listing 5. A fragment of the high-level representation cor-
responding to typechecker decisions necessary to type a
function application

level counterparts, in a one-to-many relation. The algorithm
transforms low-level instrumentation recursively in a depth-
first postfix manner. In other words, for any block of instru-
mentation data, we first map all low-level instrumentation
contained within it, and then use that information as a con-
text for the selection of a single high-level representation,
based on the types of members of potential high-level goals.

Definition 2. High-Level Representation & Dependencies
F ::= (f, S) (premise)
S ::= List[T] | T (type of premise)

Any high-level representation dictates its requirements
on typechecking decisions through premises. Definition 2
presents each premise, F, in the form of a tuple consisting
of a name, f, and its type, S, similarly to how we define
members for Goals.

Definition 3. Mapping: Type Signatures
premises : T⇒ F

linearlization : T⇒ T
reverse : T⇒ T

spec : T ⇒ S
targetT : Event⇒ T
compare : Event⇒ MatchR⇒ MatchR ⇒ Int

sort : MatchR ⇒ (MatchR⇒ MatchR ⇒ Int) ⇒ MatchR
matchF : T⇒ S⇒ T⇒ MatchR
head : MatchR⇒ T
map : Event⇒ T⇒ T

MatchR ::= Success S T | Partial S T

Definition 3 gives type signatures of functions used for
defining the mapping of low-level instrumentation (subtypes
of base type Event), to high-level representation, T (sub-
types of Goal). We use the same notational conventions as
in section 2.1.1.

Definition 4. Mapping: Function Definitions

premises(t) =

{
ε if t <: Goal ∧ Goal <: t
F if t <: Goal ∧ ¬(Goal <: t)

spec(t) = [Sf | (f, Sf)← premises(Tn),
Tn ← reverse(linearization(t))]

head(matches) =

{
t if matches = (Success s1 t),..., mn

t if matches = (Partial s1 t),..., mn

map(ev)(ps) = head(sort([(matchF(ps)(spec(TG))(TG) |
TG ← targetT(ev)])(compare(ev)))

7 2014/3/26

The premises function returns a sequence of all re-
quired premises for a given static type T, respecting the or-
der of declarations (T <: Goal means that Goal is among
super types of T and ε represents an empty sequence)
e.g., in the case of TypeAppCorrect it would be only type
TypeApplicationMain. The linearization function returns
the chain of super types up to type Goal. Function spec
follows the linearization chain to retrieve all (declared and
inherited) types of premises. targetT function declares pos-
sible high-level representations for every low-level instru-
mentation (it is defined by compiler experts). In order to ex-
press the accuracy of mapping a low-level instrumentation
to some concrete high-level representation, we use an inter-
nal data structure of MatchR. MatchR represents the result of
matching actual premises to required ones i.e., how already
mapped low-level instructions within the block (recall the
postfix order of mapping), fit with members of high-level
Goal. It can be either Success, meaning that the mapping
function has found real dependencies (S̄) for each of the re-
quired premises for the Goal of type T, or Partial, mean-
ing that only some (S̄) have been found.

The function matchF(ps)(ts)(g) attempts to map each
required premise t ∈ ts to an actual premise p ∈ ps.
This mapping respects the order of the actual and required
premises. To express the properties of matchF more for-
mally, we use a function match of type (MatchR, Int) =>
T. It extracts a sequence of actual premises, Y , that have
been associated with a required premise at a provided index.
Using match, we can express the order-preserving mapping
of matchF as follows:
1. ∀i∀j, j > i∧match(m, i) = Y ∧ match(m, j) = Y ′ ⇒

(∀k, lYk ∈ Y ∧ Y ′l ∈ Y ′ ⇒ l > k)

2. ∀i, match(m, i) = Y ⇒ (∀a∀b, a < b∧Y ak ∈ Y ∧Y bl ∈
Y ⇒ k < l)

The subscript j in Y kj represents an index of the premise Y
within an initial sequence of ps, while superscript k repre-
sents an index of an element within sequence Y . The first
statement ensures that actual premises respect the order in
which they were mapped to required premises, while the
second ensures that the order within a sequence associated
with a member is also preserved.

Sorting Matching Results The role of function matchF
is only to deterministically associate required with actual
premises for a single high-level representation. It does not
guarantee that it will always return a single Success ob-
ject if we apply it to different high-level Goals coming from
targetT function. In fact, since we do not restrict in any
way how high-level representations are defined, or what
mapping is provided by compiler experts, we can have mul-
tiple Success results for a one-to-many mapping between
the representations or none at all. Thus, in order to disam-
biguate, we sort the matching results using compare.

The first parameter of compare expresses the fact that
the comparison is bound with a particular instance of low-
level representation. The compare function returns a nega-

tive value, zero or a positive value as the second argument
is less specific than, equal to, or more specific than the third
one. The sorting function sort takes a sequence of (possibly)
ambiguous results of matching the premises, and sorts them
using this instance-bound compare.

The Final Mapping Step The mapping function map in
Definition 4 extracts the first, most specific, matching result
and returns the high-level representation associated with it
using the head function. As a result, map is capable of re-
constructing type derivation trees by mapping low-level in-
strumentation to a high-level representation. As (potentially)
ambiguous mappings are detected during the head opera-
tion since it checks if the next matching result in sequence is
strictly less specific.

4 Programmatically Exploring Typechecking
Our framework implements a number of generic search al-
gorithms on top of a high-level representation that can an-
swer common typechecking questions in the form of located
Goals. In section 4.1, we describe a generic technique that
uses the shape of the type derivation tree and the types of
terms to precisely prune the search space. Section 4.2 gives
an overview on how to combine this searching and pruning
with the high-level representation to understand decisions
made by typechecker. Section 4.3 gives an example on how
we can analyze type constraints used in type inference, and
finally, in section 4.4 we show how our framework can sug-
gest and verify code modification for type errors.

4.1 Pruning the Type Derivation Tree Search Space
Brute force navigation through the high-level representa-
tion is impractical for even small programs, while using
heuristics that perform undirected depth-first search over
type derivation trees is imprecise. We present a simple mech-
anism that we call TypeFocus, which allows us to gradually
build knowledge about the evolution of a type of interest as
we step through typing rules and at the same time prune the
search space.

TypeFocus is a function that takes a type and extracts
some part of it based on its shape. Definition 5 provides ex-
amples for function and polymorphic function type (Error
simply means that type extraction was invalid). We create
instances of TypeFocus to exploit the fact that parts of
prototype are used in a consistent way in the premises of
typing rules e.g., abstraction, (abs), uses only the result
type of the prototype. More importantly, we can freely com-
pose TypeFocus i.e., the composition of TypeFocus, say
f and g, applied to some type, (f ◦ g)(tp), is equivalent to
f(g(tp)). This gives us an opportunity to create composi-
tions of TypeFocus instances from multiple, potentially dis-
tant, typing rules and still extract specific portion of a type.

Applying TypeFocus to types of terms allows us decide
whether a potential type inference, that is performed as part
of a typing rule, should guide our type derivation tree ex-
ploration. During the first stage of type mismatch explo-

8 2014/3/26

Definition 5. Type focus.
Focus : T ⇒ T

foc-fun-res(tp) =

{
S if tp = T → S

Error otherwise

}
foc-fun-paramn(n)(tp) =

{
Tn if tp = (T1, ..., Tn, ..., Tm)→ S

Error otherwise

}
foc-poly-res(tp) =

{
T → S if tp = T

a−→ S
Error otherwise

}
foc-all(tp) = tp

ration, we want to understand how parts of the prototype
have been used to typecheck the argument so that we can
build an appropriate TypeFocus composition. Later, we can
engage TypeFocus, by applying it to types of terms, in order
to identify premises that perform type inference.

4.1.1 Building TypeFocus for Type Mismatch Errors
Definition 6 presents a recursive build function that back-
tracks from an actual error to function application. During
this process, we construct an appropriate composition of
TypeFocus instances based on the sort of typing rule used.
Such construction stops at the function application typing
rule because we know that its prototype does not affect the
prototype used for typing the erroneous argument. The func-
tion parent-rule returns a reference to the instance of a
parent typing rule it is part of in the derivation tree. Helper
functions, argn-error and result-type-error, allow us to de-
termine whether an error occurred in a premise that types an
argument or simply because of the method result type mis-
match.

Definition 6. Building TypeFocus from type mismatch:

build: typing-rule⇒ Focus⇒ Focus
build((abs))(f) = build(parent-rule(abs))(f ◦ foc-fun-res)

build((app))(f) =
{

f ◦ foc-fun-paramn if argn-error(app)
f ◦ foc-fun-res if result-type-error(app)

}
build((var))(f) = build(parent-rule(var))(f)

build for a derivation tree that typechecks an argument
of type mismatch from Figure 2 will therefore construct
composition foc-all ◦foc-fun-res ◦ foc-fun-param0.

4.1.2 Analysis of Type Derivation Trees Based on
TypeFocus

As each of the typing rules assigns a type to a term, we
can use TypeFocus in order to understand if typing rules
perform type inference that later leads to a type error. Figure
3 defines analysis for each of the typing rules present in the
local type inference formalization. The analysis judgment,
Fc, P,Γ `w t, S, is similar to the type inference judgment,
except for TypeFocus Fc, which guides exploration. Also,
unlike type inference, the judgment infers a sequence of
types, S, that affect the inference of a type extracted by
TypeFocus.

In the application rule, (APP-FOC), we use the informa-
tion extracted from the function type to determine if type
inference should affect our derivation tree exploration. This
is because a particular function type may contain type vari-
ables that are of no importance to us. If that is the case,

we continue exploration of the function with an updated
TypeFocus.

In the case that our derivation tree for foldRight(xs)(Nil())
represents function application, the composition of TypeFocus
would be foc-all ◦ foc-fun-res ◦ foc-fun-param0

◦ foc-fun-res ◦ foc-poly-res. Applying it to the type
of the function, b1

b2−→ ((Int, b3) → b4) → b5, results in a
still uninstantiated type variable b4 (indexes in type variable
are only for presentational reasons). Since we have extracted
type variables from the type using the TypeFocus, we know
that the type inference that will be performed as part of that
typing rule will also instantiate them, end eventually lead to
type mismatch.

Rule (APPtp-FOC), gives an example where applying
TypeFocus identifies explicit type arguments that will lead
to type errors.

The framework provides also a more refined TypeFocus
that is built from a high-level representation of failed algo-
rithmic subtyping operations. This allows for even more pre-
cise error reporting but also requires some refinements in
existing judgment, hence we describe the details only in Ap-
pendix C.

4.2 Exploring Type Derivation Trees
In this section, we show that our high-level representation
and TypeFocus do a good job of implementing exploration
techniques in a generic way, i.e., without making any as-
sumptions about the source code or user input.

In order to express analysis rules our framework conve-
niently allows for pattern-matching on instances of Goals to
extract their premises3.

Listing 6 shows that we can conveniently enumerate
through a list of typing rules by pattern matching on goal
in line 2. While we match on Goals of typing conditionals,
member selection, variables, and application, respectively,
we can integrate analysis for further typing rules by simply
adding new pattern matching cases. An example of such ex-
tension is given in method applicationContext, which
essentially implements the analysis rule APP-FOC. Apart
from the already-discussed function applications, we now
also pattern match on TypeAppOverloaded, and as a result
can support method overloading.

Listing 6 shows that we can conveniently enumerate
through a list of typing rules by pattern matching on goal
in line 2. While we match on Goals of typing conditionals,
member selection, variables and application, respectively,
we can integrate analysis for further typing rules by pattern
matching on their high-level representation. An example of
such extension is given in method applicationContext
which essentially implements analysis rule APP-FOC. Apart
from the already discussed polymorphic and monomor-
phic function applications, we now also pattern match on

3 Scala allows for providing custom extractors [7] for pattern matching and
the framework provides them for every Goal subtype

9 2014/3/26

(APP-FOC)

?,Γ,`w F : S
a−→ T

Fc1 = Fc ◦ foc-fun-res ◦ foc-poly-res
Fc1(S

a−→ T) = X, tvars = type-variables(X)

R =

{
tvars if (tvars 6= ∅)
R0 if Fc1, ?,Γ `w F,R0

}
Fc, P,Γ `w F (E), R

?,Γ `w F : S
a−→ T

Fc1 = Fc ◦ foc-fun-res ◦ foc-poly-res
Fc1(S

a−→ T) = X, tvars = type-variables(X)

U =

{
[r | a ∈ tvars, (r, a) ← zipR a] if (tvars 6= ∅)
U0 if Fc1, ?,Γ `w F,U0

}
(APPtp-FOC) Fc, P,Γ `w F [R](E), U

(ABS-FOC)

P,Γ, a, x : T `w E : S

R =

T if (Fc(T

a−→ S) = T)

R0 if (Fc(T
a−→ S) = S ∧

Fc = Fc0 ◦ foc-fun-res ◦ foc-fun-res ∧
Fc0, P,Γ, a, x : T `w E,R0

∅ else

Fc, T

a−→ P,Γ `w fun(x)E,R
(VAR-FOC)

R =

{
Fc(Γ(x)) if (Fc(Γ(x)) 6= Error)

∅ else

}
Fc, P,Γ `w x,R

Figure 3. Fragment of analysis of typing rules based on TypeFocus

TypeAppOverloaded, and as a result can support method
overloading.

0 def dispatch(goal: TypeGoal, focus: TypeFocus): List[Goal] =
1 goal match {
2 case TypeIfElse(_, thenP, elseP, leastUpperBound) => ...
3 case TypeMemberSelection(qualifier, memberSel) => ...
4 case TypeVariable() => ...
5 case TypeApp(_) => applicationContext(goal, focus)
6 }
7 def applicationContext(app: TypeApp, focus: TypeFocus) =
8 app match {
9 case TypeAppCorrect(fun, app@TypeAppPolymorphic(_, infer, _)) =>

10 val focus1 = focus compose FocFunRes compose FocPolyRes
11 val tpePart = focus1(typeOfFun(fun))
12 if (tpePart == Error) app :: Nil
13 else if (hasTypeVariables(tpePart)) inferInstance(infer, focus1)
14 else app :: dispatch(fun, focus1)
15 case TypeAppCorrect(fun, app: TypeAppMonomorphic) => ...
16 case TypeAppCorrect(fun, app: TypeAppOverloaded) => ...
17 }

Listing 6. Fragment of a generic routine that finds the
source of the type, based on TypeFocus

While the high-level representation is clearly neces-
sary for navigating derivation trees, it is not sufficient.
TypeFocus operates on low-level type information in or-
der to guide type exploration. While in line 11, we extract
low-level information using function typeOfFun, we there-
fore make our exploration implementation dependent.

4.3 Reconstructing Local Type Inference Decisions
Using the High-Level Representation

An advantage of local type inference is that all inference de-
cisions are local, in the sense of the proximity of Goals, and
are based on type constraints that are also locally collected.
In this section, we exploit this fact by describing how, in
using only TypeFocus and a type inference Goal, we can
recreate specific source code locations that affected type in-
ference.
trait InferMethodInstance extends InferInstance {
def subExpectedTpeWithResTpe: SubtypeCheck
def subArgsTpesWithFormals: List[SubtypeCheck]
def inferInstantiations: List[SolveTVar]
}

Listing 7. Instantiation of a polymorphic method
In Section 4.1, we have shown that by using TypeFocus

we can precisely identify typing rules where inference will
instantiate type variables from the extracted portion of a
type. We therefore assume that we can identify InferMethodInstance

Goals, presented in Listing 7, which are high-level represen-
tations of type inference decision process.

The interface of InferMethodInstance clearly states
that before performing any instantiation of type variables
in Goals of type SolveTVar, two typechecking decisions
will have to be made, both of which involve a Goal of type
SubtypeCheck. More importantly, SubtypeCheck Goals
represent a high-level representation for subtype relation
checks between the two types. Hence, the first two mem-
bers, give a reference to derivation trees that perform subtyp-
ing checks between the function result type and the expected
type, and types of arguments and formal parameters, respec-
tively. In a type inference sense, derivations represented by
the two members represent primary sources of type con-
straints.

The main concern is to identify only those type con-
straint Goals that affected the instantiation of particular type
variables. Here, again, we can make use of TypeFocus to
select only those SolveTVar Goals from the member of
inferInstantiations that have been in the extracted type
part of the polymorphic function type. As each type vari-
able instantiation Goal, SolveTvar, also has a low-level
reference of used type constraints, we can identify correct
SubtypeCheck Goals by simply traversing derivation trees
they represent in search for those constraints.

Knowing which subtyping relation checks led to type
constraints is still far from the actual identification of source
code locations used in type inference. This is because a cor-
responding low-level information of SubtypeCheck Goals
only has information about types rather than terms. From
the discussion in previous sections, we may recall that
InferMethodInstance is itself a premise to a polymorphic
function application goal, TypeAppPolymorphic. The latter
has a member typecheckArgs of type List[TypeGoal],
which represents the decision process for typechecking the
arguments, and more importantly has low-level informa-
tion about the expressions that were being typechecked
at that point. Subtyping checks performed in the member
subArgsTpesWithFormals of the type inference Goal,
come directly from typechecking those arguments. As a re-
sult, we are able to identify expressions that affected type
inference of selected type variables, without encoding that

10 2014/3/26

information directly in either the low-level or high-level rep-
resentation.

4.4 Providing Type-Correct Code Modifications
The high-level representation provides a convenient environ-
ment for compiler experts and library authors to use their
experience to suggest direct code modifications.

Since many of the errors related to limited local type in-
ference, the framework exposes two of the typechecker’s
internal methods responsible for calculating least upper
bound (lub) and greatest lower bound (glb) from a list of
types (both take simply arguments of type List[Type]).
This allows us to investigate a more suitable type instan-
tiation for local type parameters that is not limited by the
boundaries of parameters’ list i.e., in the motivating ex-
ample of foldRight application we provide original type
constraint List[Nothing] coming from Nil (discovered
using technique from Section 4.3), as well as an inferred
type List[Int] to lub, where typechecker returns better
instantiation, namely List[Int].

0 def typecheckAscription(exprPos: Position, lub: Type): Boolean
1 def typecheckTypeArguments(appPos: Position, targs: List[Type]): Boolean
2 def typecheckMethodSignature(appPos: Position, methodDef: Symbol,
3 newTypeSig: Type): Boolean

As a programmer, we still want to make sure that such
change is precise and type correct, so the framework has to
provide an API that can typecheck the modifications. The
listing above presents a subset of API provided in the frame-
work – typecheckAscription verifies an explicit type as-
cription of lub type for an expression at location exprPos,
typecheckTypeArguments verifies an application of type
arguments targs for a polymorphic function application at
position appPos, and typecheckMethodSignature which
modifies a type of a polymorphic method methodDef to a
new type newTypeSig and typechecks its usage in function
application at position appPos. This way programmers can
experiment with different heuristics for code modifications
both in generic and plugin approach and still remain conser-
vative in terms of type feedback.

5 Domain-Specific Type Errors
Generic exploration algorithms and code modifications might
still reveal internal details of the data structures in the de-
bugging feedback, which is correct but not always desir-
able. This section describes a complementary feature of the
framework infrastructure–type debugging plugins–that al-
lows for further type error customization for eDSLs and
general purpose libraries.
trait DebuggerPlugin {
def definedFor: PartialFunction[Goal, Option[Fix]]

}

Any domain specific plugin has to implement a
DebuggerPlugin trait presented in listing above. A single
method defines a handler for the erroneous case by means
of a partial function from Goal to an optional fix, Fix,
that carries information necessary to generate an additional
feedback (we leave out the definition of Fix for irrelevance).

Whenever an error Goal is encountered, the debugging
framework will first check if there exists a plugin that can po-
tentially handle it. If the custom plugin produces some user
feedback, then it will be reported. On failure, the mecha-
nism will find other potential plugins, or fallback to general-
purpose type error debugging algorithms. Hence we allow
for initial lightweight matching that is later verified through,
potentially expensive, more broad type derivation tree anal-
ysis. Lightweight error matching ranges from simple regular
expression matching on the error message to basic overview
of the derivation subtree in the vicinity of the error.

it should "check the status value" in {
class Foo { def status: String = "OK" }; val id = new Foo
id should (’status("OK"))

}
// overloaded method value should with alternatives:
// (notExist: org.scalatest.words.ResultOfNotExist)(implicit
// existence: ...)Unit <and> ... <and>
// (rightMatcherX1: org.scalatest.matchers.Matcher[Foo])Unit
// cannot be applied to
// (org.scalatest.matchers.HavePropertyMatcher[AnyRef,Any])
// id should (’status("OK"))
// ^

Listing 8. ScalaTest error for ’should’ operator
Consider a fragment of a simple test specification written

using a popular testing framework, ScalaTest4, in Listing
8. Programmer has defined a correct expectation regarding
an instance of class Foo in a human-readable style where
’status("OK") represents an expectation on the member
status to return a concrete string value. The error message,
that spans over multiple lines, reveals intimidating internal
details of the testing DSL.

0 def shouldOpError(realError: ErrorGoal) = realError.parent match {
1 case app@TypeAppOverloaded(_, typecheckArgs, inferAlts, _) =>
2 val TypeAppCorrect(fun, _) = app.parent
3 fun match {
4 case TypeMemberSelection(qual, TypeMemberInAdaptedQual(
5 adaptQual, typeAdapted)) =>
6 if (isCorrectShouldSymbol(typeAdapted)) {
7 val names = inferAlt map shouldMethodNames
8 ...
9 }}}

Listing 9. Fragment of ScalaTest plugin that handles over-
loaded ’should’ operator
Listing 9 presents a fragment of a ScalaTest-specific plugin
that identifies such operator overloading problem. Plugins
do not enforce any rules on how particular errors should be
identified and analyzed. The typical approach identifies the
vicinity of the error location by pattern matching on type
derivation trees and identifying used low-level symbols and
types.

In line 1 we pattern-match on the parent of the error and
expect high-level representation for method overloading,
TypeAppOverloaded. Clearly reported error mentioned
multiple alternatives in function application.

As the library author we also know that function is a
member selection and should operator is provided through
a DSL-specific implicit conversion. Our error handler en-
sures that this is the case in lines 4-6 by pattern-matching on

4 http://www.scalatest.org

11 2014/3/26

corresponding typing rule using high-level representation for
member selection, TypeMemberSelection. The second ar-
gument, TypeMemberInAdaptedQual, specifies that type-
checker had to adapt the qualifier to a particular member. In
line 6 we use low-level symbol information from the adapted
member selection, to make sure that the selected member is
the should method provided in the DSL.

The DSL-author can provide specialized, human-readable
information about each of the possible alternatives, which
are expressed in premise inferAlts (line 2), in order to
provide a more acceptable error message, such as:
’should’ misses an operator to handle property ’status("OK").
Providing one of the operators like ’should not exist’,
’should exist’, ’should contain’, ’should have’, ’should be’
... or an implicit conversion to ’ShouldMatcher’ is enough.

Since specialized type error debugging relies on identical
high-level representation as regular debugging, plugins’ pro-
grammers can reuse elements of the infrastructure to explore
type derivations in a uniform way. This includes provided al-
gorithms that identify the source of the expected type, locate
constraints that affect type inference or even analysis of im-
plicit search.

6 Real World Validation
In this section, we present several scenarios where we have
applied our framework in practice, from the mainline Scala
compiler, to a visual type debugging tool, to embedded
DSLs. Additional validation is in the appendix; we apply
our framework to the experimental validation found in [6],
and show that our framework applies appropriate feedback
in all cases (Appendix E), and we apply it to Scala Virtual-
ized [19] to provide custom type errors (Appendix F).

6.1 Instrumenting the Mainline Scala Compiler
The framework supports two versions of the Scala compiler:
2.11.x trunk branch (Scala 2.11.0-M2) and 2.10.x stable
branch (Scala 2.10.2). With 230 instrumentation classes
and no logical modifications to the compiler, we covered
most of the typechecker implementation that is typically ex-
ercised by libraries and DSL programmers. The framework
supports different compilers with the same set of instrumen-
tation (modulo code changes) as well as algorithms that an-
alyze type derivation trees. This follows our intuition that
while the compiler is actively developed, the logic of type-
checker remains mostly intact, and therefore hardly ever al-
ters our instrumentation.

6.2 Visualizing Typechecking
Our type error customization and debugging framework is
also capable of visualizing type derivations trees in an incre-
mental way, in the spirit of (and in many ways subsuming)
[28]. We’ve found that such a tool is advantageous to those
with only a cursory knowledge of type systems. All of the
generic search algorithms described in Section 4 can be run
and visualized, therefore enabling interactive exploration of

the erroneous scenarios. A screenshot of our tool is shown
in Figure 4 in Appendix D.

6.3 Type Debugging Existing eDSLs and Libraries
For the evaluation of the applicability of our framework in
explaining non-trivial type errors we have looked at popular
libraries and DSLs:

• Testing libraries5 (Specs2, Scalatest, Scalacheck)
• Shapeless6 – a type class and dependent type based

generic programming library that uses advanced type
system features (more elaborate discussion is available
in Appendix K).

• Standard Scala library – an official collections framework
that uses higher-order functions and higher-rank poly-
morphism.

• Lightweight Modular Staging (LMS) [29] – a framework
for type-driven staging to allow for deep embedding. We
tested LMS with OptiML, an eDSL for machine learning
written in Scala and based on LMS.

Customization offered by library- and DSL-specific plug-
ins mostly resolves to correct identification of the erroneous
scenario and analysis of results provided by the generic algo-
rithms in order to give even more specialized user feedback.
In many cases we have relied purely on generic algorithms
to analyze derivation tree and provide appropriate error mes-
sages.

Table 1 presents an overview of type-system features en-
countered in non-trivial problems in the given libraries, and
for which our framework was able to identify the root of the
problem and provide better feedback to users. Type errors
were collected from real code examples posted on mailing
lists, forums like StackOverflow, public repositories, as well
as directly from authors of the libraries. As a result we col-
lected 92 self-contained examples representing various non-
trivial problems. Many of the examples exercise the type-
checker’s ability to infer correct types. This involves debug-
ging type errors related to type inference

• Implementation limitations related to inference com-
posed of only local type constraints, including for higher-
kinded types.

• For type parameters having lower or upper type bounds
(either concrete or parametrized) (we also compare re-
lated work in that are in Appendix E).

• That is directed by the parametrized result type of the
method or where term is part of an assignment.

• For member selection where we deal with type parame-
ters belonging to methods and class declarations.

• For path-dependent types and partially applied function
applications.

5 etorreborre.github.io/specs2, scalatest.org and scalacheck.org
6 github.com/milessabin/shapeless

12 2014/3/26

Testing frameworks Shapeless Scala collections LMS/OptiML
Type inference (5) (14) (19) (3)

Implicits (6) (13) (12) (3)
Dependent-method types - (4) - -

Subtyping & Variance - (15) (27) -
Overloading resolution (8) - (2) (8)

Parsing (2) - - (2)

Table 1. Level of testing type errors, expressed as the number of tests exercising a particular feature, in external libraries and
DSLs, explained in more detail in Section 6.3. Note that some tests exercise multiple type system features at the same time.

Type inference for higher-kinded types in Scala is very
limited7 and often manifests itself in cryptic type errors in-
volving bottom type Nothing. While this is a known lim-
itation of Scala’s implementation that can be often solved
by modifying type signatures of methods, related questions
regularly appear on Stackoverflow or mailing lists. We have
implemented heuristics in our framework that identify such
situations based solely on high-level representation exposed
by our framework (examples are provided in Appendix I).
Type Debugger’s approach was tested on 14 real world ex-
amples, where it provided code modifications that correctly
fix those type errors.

Shapeless also uses Scala macros [2] that allow for con-
venient compile-time metaprogramming. Since macro ex-
pansion is part of regular typechecking and performs type-
checking as well, our framework was still able to expose
type derivations trees to library-specific plugin and eventu-
ally produce better error feedback.

While the framework has proved to be precise when ex-
plaining local type inference limitations, it failed to provide
comprehensive user feedback in situations when source of
term’s type has been distributed among different type infer-
ence locations i.e., if a type depends on an instantiation of a
type parameter that itself depends on an instantiation of an-
other type parameter at some other location, the framework
will not automatically identify such dependency between the
two locations. This is not caused by any technical limitation
but rather our aim to keep type error feedback succinct, as
we could very easily overwhelm users with the amount of
information.

Implicits [26] are used in the design of flexible eDSLs
and libraries with convenient APIs. LMS and OptiML use
implicit conversions to perform lifting of values to their
staged equivalents, and operations on staged values through
type-classes. Many of the methods in Shapeless have an
implicit parameter that allows for type-level computation,
whereas Standard Scala collections use them to avoid code
duplication [22].

Our framework can deal with typical type errors related to
implicit search i.e., diverging implicits, ambiguous implic-
its coming from the same as well as different scopes or sim-
ply no implicits found. Library-specific plugins can analyze
Goals representing implicit search information and present
it in a user-friendly way.

7 http://adriaanm.github.io/research/2010/10/06/new-in-scala-2.8-type-
constructor-inference/

Our type debugging framework is the first one to analyze
a popular design pattern used in all of the analyzed libraries
where implicit definition takes implicit parameters them-
selves, essentially triggering a chain of implicit searches on
application. While convenient to use, failures carry little or
none useful information to debug the problem. Since our
framework instruments implicit search implementation, we
can provide better feedback (we provide a simple example
in Appendix J).

Method overloading is commonly used in the tested li-
braries and LMS’s DSLs. We provide more user-friendly er-
ror messages by analyzing type signatures of the available
alternatives. We can also explain type inference limitations
in the presence of method overloading, such as not inferring
types of parameters for closures. While our framework cer-
tainly exposes enough information to explain why alterna-
tives were not selected according to language specification
or implementation, we do not perform it. Unless controlled
by users, which we currently do not support, the debugging
process would produce large amount of information that is
hard to parse visually.

To summarize, mature libraries and DLSs used for evalu-
ation of our type error customization and debugging frame-
work present non-trivial type errors that are encountered in
every day programming. Our results have shown that the
framework exposes enough of typechecking information in
a format suitable enough to handle advanced type features.
Finally, thanks to plugins infrastructure we were able to spe-
cialize error feedback for libraries and DSLs, that otherwise
would reveal internal data structures.

7 Other Related Work
Type inference algorithm modification. Research on type
error analysis has mostly focused on improving global type
inference limitations in languages like Haskell or ML. Many
implementations use a variation of the W algorithm [4]
which is known to produce biased type errors. Different
variations have been proposed such as MSYM [17] or UAQ
and IEI [14] that help with error localization. Apart from the
work done in [34], which mixes local and global type in-
ference elements, none of the solutions improve the state of
local type inference typically encountered in object-oriented
languages with subtyping. While modifications to the type
inference algorithm may improve the location information
they do not explain the decision process that led to type error.

13 2014/3/26

Explanation systems. Explanation systems[5, 11, 14]
typically collect information during typechecking to provide
additional feedback to the users regarding problematic error.
The process involves modifying the existing typechecker im-
plementation to provide debugging capabilities or collecting
constraints in a separate phase that essentially implements
a simplified version of the typechecker. Generating a good
message based on the type of constraint is challenging. Our
framework, does not modify or replicate the typechecker and
provides type derivations that can explored in conveniently.

Program slicing. Typechecking systems that have been
translated into constraint-based systems led to the develop-
ment of program slicing. Instead of generating an error mes-
sage, all locations that affected the inference of a type er-
ror [10, 30] are provided. Unfortunately program locations
needs to come with an additional information in order to be
useful. Our framework is capable of providing both. Further-
more, it is unclear how these systems would behave in the
context of more advanced type features such as implicits or
path-dependent types where an error can not always be ex-
plained with the use of a simple location.

Interactive debugging. Chameleon [31] offers a more in-
teractive approach to error messages in a subset of Haskell.
The type inference problem is translated into a constraint
solving problem, where constraints keep source location in-
formation. Therefore, the tool is able to respond precisely to
type inference questions from the user. Our framework pro-
vides a visualization of derivation trees, based on work done
in [28], which provides similar but more more powerful ca-
pabilities, as it visualizes every decision.

Automatic repair systems. Existing automatic repair sys-
tems [3, 17] typically attack the problem of ill-typed expres-
sions by generating a large amount of plausible solutions
which could potentially provide a quick solution. In order to
reduce the amount of inevitable false-positives results, one
has to devise a ranking mechanism that allows to quickly
judge how the repair relates to others [15]. [9] presents a
technique that explores a number of structure modifications
that would fix an ill-typed term. This is limited to prob-
lems based only on the simply typed lambda calculus. In
[3, 15, 16] the typechecker is used as an oracle for verifying
program modifications which reduces the amount of false-
positives. None of the approaches support type-classes (en-
coded in Scala as implicits [26]), which involve expensive
exploration of scopes.

8 Conclusions
We have presented a new, unified way of improving type
error feedback for regular programmers as well as DSL au-
thors. We provide a type debugging framework which in-
struments the Scala compiler in a lightweight way and ex-
poses typechecker’s decision process in a high-level repre-
sentation. Relying on high-level representation renders an
opportunity to easier navigate and reason about typecheck-
ing from the programmer’s point of view. We have exercised
our framework by generating useful corrective code sugges-

tions in order to overcome well-known limitations of local
type inference. A complementary plugin mechanism is use-
ful for library and DSL designers to customize type errors to
generate better user feedback.

In future work, we plan to explore the interactive aspect
of our framework. Users should be able to query every typ-
ing of their code, a natural progression of work, since that
information is available in the high-level representation al-
ready. Finally the high-level representation offers an inter-
esting opportunity for testing for regressions, and to verify
the stability of the compiler during regular development.
References
[1] N. Boustani and J. Hage. Improving type error messages for Generic Java.

Higher Order Symbol. Comput., June 2011.
[2] E. Burmako. Scala macros: Let our powers combine! In Scala, 2013.
[3] S. Chen and M. Erwig. Counter-factual typing for debugging type errors. In

POPL, 2014.
[4] L. Damas and R. Milner. Principal type-schemes for functional programs. In

POPL, 1982.
[5] D. Duggan and F. Bent. Explaining type inference. Science of Computer

Programming, 1996.
[6] N. El Boustani and J. Hage. Corrective hints for type incorrect generic java

programs. PEPM ’10, 2010.
[7] B. Emir, M. Odersky, and J. Williams. Matching objects with patterns. In

ECOOP’07. 2007.
[8] M. Gandhe, G. Venkatesh, and A. Sanyal. Correcting type errors in the Curry

System. In Foundations of Software Technology and Theoretical Computer
Science, Lecture Notes in Computer Science. 1996.

[9] T. Gvero, I. Kuraj, and R. Piskac. On Repairing Ill-Typed Expressions. Technical
report, 2013.

[10] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-order
languages. Sci. Comput. Program., 2004.

[11] J. Hage and B. Heeren. Heuristics for type error discovery and recovery. In IFL,
2007.

[12] B. Heeren, J. Hage, and S. D. Swierstra. Constraint based type inferencing in
helium. In IACP, 2003.

[13] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning haskell. In
Haskell, 2003.

[14] Y. Jun, G. Michaelson, and P. Trinder. Explaining polymorphic types. The
Computer Journal, 45:2002, 2002.

[15] B. Lerner, D. Grossman, and C. Chambers. Seminal: searching for ML type-error
messages. In ML, pages 63–73, 2006.

[16] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for type-
error messages. In PLDI, 2007.

[17] B. McAdam. Generalising techniques for type debugging. In Trends in Func-
tional Programming, pages 49–57, 2000.

[18] A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind. In OOPSLA,
pages 423–438, 2008.

[19] A. Moors, T. Rompf, P. Haller, and M. Odersky. Scala-virtualized. In PEPM,
2012.

[20] M. Odersky. Inferred type instantiation for GJ, 2002.
[21] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects

with dependent types. In ECOOP, pages 201–224, 2003.
[22] M. Odersky and A. Moors. Fighting bit rot with types (experience report: Scala

collections). In FSTTCS, 2009.
[23] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima Inc, 2nd

edition, 2011.
[24] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types.

TAPOS, 5(1):35–55, 1999.
[25] M. Odersky, C. Zenger, and M. Zenger. Colored local type inference. In POPL,

pages 41–53, 2001.
[26] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits.

In OOPSLA, pages 341–360, 2010.
[27] B. C. Pierce and D. N. Turner. Local type inference. ACM Trans. Program. Lang.

Syst., 22:1–44, January 2000.
[28] H. Plociniczak and M. Odersky. Implementing a type debugger for Scala. In

APPLC, 2012.
[29] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic approach

to runtime code generation and compiled dsls. In GPCE, 2010.
[30] P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM Trans. Program.

Lang. Syst., 27:1216–1269, November 2005.
[31] M. Sulzmann. An overview of the Chameleon System. In APLAS, 2002.
[32] V. J. Traver. On compiler error messages: What they say and what they mean.

Adv. in Hum.-Comp. Int., 2010, Jan. 2010.
[33] K. Tsushima and K. Asai. An embedded type debugger. In IFL. 2013.
[34] D. Vytiniotis, S. Peyton Jones, and T. Schrijvers. Let should not be generalized.

In TLDI, 2010.

14 2014/3/26

A Instrumentation Output for foldRight
Application

To give a better idea of the structure of the collected low-
level instrumented data, we present a simplified output for
typechecking application xs.foldRight(Nil()) (from
our motivating example) in Listing 10. For presentation
reasons instrumentation blocks increase the level of in-
dentation, and ... represents omitted instrumentation out-
put. Extracted information about a typechecked function,
xs.foldRight having type (z : B)

B−→ (op : (Int,B) →
B) → B, is within lines 1 and 6, type arguments are po-
tentially inferred in lines 7-9, Nil() term is typechecked
in lines 10-12, inference of type instantiation for type pa-
rameter B is output in lines 13-15, and finally typecheck-
ing of an application (with the just inferred type argument
List[Nothing]) gives output in lines 16-18. While this par-
ticular fragment of typechecking execution is type correct,
the true complexity of understanding such low-level output
is particularly problematic when an erroneous case occurs
and one of, potentially many, fallback mechanisms in the
compiler is executed. Since the primary aim of our tool is to
help with with understanding the decisions of typechecker
in the presence of cryptic type errors, the latter is a common
situation.

0 >TypeApplication // xs.foldRight(Nil())
1 >TypeMemberSelection // xs.foldRight
2 ...
3 >TypedSelection
4 >TypeApp1
5 >InferTypeArguments // B from type ’(z: B) =>
6 ... // (op: (Int, B) => B) => B’
7 >Inferred
8 >TypeGoal // Nil()
9 ...

10 >TypeGoalFinished
11 >InferInstance // For type ’(z: B) =>
12 ... // (op: (Int, B) => B) => B’
13 >InferredMeth
14 >TypeApplication // For (z: List[Nothing]) =>
15 ... // (op: (Int, List[Nothing]) =>
16 >TypeAppDone // List[Nothing]) => List[Nothing]
17 >TypeAppFinished
18 >TypeAppDone

Listing 10. Simplified instrumentation output for
xs.foldRight(Nil())

B Encoding Lists in the Formalism from [25]
Using the minimal language we can provide intuitive defini-
tions for lists using records with a single, match, method that
uses visitor pattern for inspection (in the same manner as
in [25]).
type List[a] = { type ListVis[a,b] = {
match[b](v: ListVis[a,b]): b caseNil(): a,
} caseCons(x: a, xs: List[a]): b

}

Type List takes a single type parameter, a, that represents
the elements of the list, while the local type parameter of
match, b, represents the type of the result of matching on
such a list with a list visitor. ListVis is a record type re-
quiring two functions that are called either when an under-

lying list is empty (caseNil) or when it is not (caseCons).
Instances of list constructors - for an empty, Nil, and a non-
empty Cons, lists - can then be expressed in a following way:
Nil[a]():List[a]= { Cons[a](x:a, xs:List[a]): List[a]= {
match v = v.caseNil() match v = v.caseCons(x,xs)
} }

C TypeFocus Built From Algorithmic
Subtyping

TypeFocus that is created solely from typing rules is not
able to provide enough precision for complex types, such
as type constructors having multiple type parameters. For
instance, let us assume that the type constructor Map has
two type parameters A and B, and we encounter a type er-
ror caused by the type mismatch between Map[X,Y] and
Map[I,J], where the type argument Y is not a subtype of J.
Using the provided analysis, we would only identify types
that affect type Map[A, B], rather than just the type param-
eter B.

The framework provides an orthogonal TypeFocus that
is built from the high-level representation of algorithmic
subtyping. Such subtyping TypeFocus allows us to achieve
a greater level of precision when identifying parts of types
that lead to errors. At the same time, it requires minor re-
finements in the formalization of the analysis presented in
Figure 3. To illustrate the problem, we consider TypeFocus
that selects a first type argument in type application involv-
ing List type constructor (i.e., foc-targ-0-list(List[a])
= a for some type variable a) in
foc-all ◦ foc-targ-0-list ◦ foc-fun-res ◦
foc-fun-param-0 ◦ foc-fun-res ◦ foc-poly-res
Applying full TypeFocus composition to the function type
will be invalid, since b4 is an uninstantiated type vari-
able, rather than an expected type application. Therefore
TypeFocus objects provide partialFocus method of type
T ⇒ (T, Focus). It returns a tuple consisting of a type
that has been extracted before an Error, and the remaining,
failed, part of the TypeFocus composition. Analysis rules
can be easily updated to reflect that change, and we use the
remaining part of TypeFocus composition to analyze type
constraints in type inference more precisely.

D Visual Type Debugger: Screen Shot
(See Figure 4)

E Debugging type errors related to Generics
The work of El Boustani and Hage [6] focuses on provid-
ing more informative error messages for problems related to
Java Generics. In that sense they are the closest to our frame-
work that authors are aware of, in terms of type debugging
modern language that supports polymorphism and subtyp-
ing. We have translated all 22 examples that were used in
the evaluation of the Java framework into Scala, 4 of which
have been excluded as they were type correct in Scala.

15 2014/3/26

Figure 4. Visual type debugging of foldRight

The examples handle method invocations that have, po-
tentially many, local type parameters or type constructors
with various type bounds, and arguments are either vari-
ables or functions which result type is a concrete type. Type
Debugger for Scala provides comparable error messages for
such type errors. The quality of feedback has been assessed
in terms of localizing the source of error and highlighting
type constraints that led to a type mismatch. Only examples
involving wildcard types, that were translated to existential
types in Scala, proved to be problematic, as they do not al-
ways follow the same instantiation semantics and locations
as regular type parameters. More importantly our framework
does not limit error reporting to just invocations of polymor-
phic methods.

Code modifications suggested by the Java framework
only modify type arguments or types for already type an-
notated variables without actually verifying those code
changes. We believe that if type annotation is provided by
the user, it expresses a firm conviction that a term is of a par-
ticular type and there is a much smaller chance that a simple
type argument change will be type correct for the defini-
tion of the variable. To illustrate the difference we present a
small Java program taken from [6], Scala translation of the
method and error produced at function application:
<T> List<T> foo(Map<T, ? super T> a){...}
Map<Number, Integer> m = ...;
List<Integer> ret = foo(m);

def foo[T](a: Map[T, _ >: T]): List[T] // foo in Scala

Java framework generates type error:
Method <T>foo(Map<T, ? super T>) is not applicable for the argument
of type (Map<Number, Integer>), because:
[*] The type Integer in Map<Number, Integer> on 5:9(5:21) is not
a supertype of the inferred type for T: Number. However,
replacing Number on 5:13 with Integer may solve the type conflict.

while our Type Debugger would produce:
Type mismatch has been partially caused by the type of the
value ret that has an explicit type List[Integer].
Locations on the RHS of the assignment that directly led
to type mismatch:

val m: Map[Number, Integer] = ???
~~~~~~

val ret: List[Integer] = foo(m)
~~~ ~

Part of the initialized value that inferred the conflicting type:
val ret: List[Integer] = foo(m)

~~~~~~~
Type parameter T in method foo has been instantiated to Number
using the least upper bound of:

val m: Map[Number, Integer] = ???
~~~~~~ ~~~~~~~

val ret: List[Integer] = foo(m)
~~~~~~~

By following Java’s suggestion and modifying the type an-
notation of m we will most likely lead to a type mismatch
between the new type annotation of value m and its RHS.
Hence, a more conservative approach in our framework.

F Virtualized Scala
Virtualized Scala [19] is an experimental branch of the Scala
compiler that enables DSL authors to override standard lan-
guage constructs (conditionals, variables, loops) by essen-
tially transforming them into regular method calls. Meth-

16 2014/3/26



ods prefixed with infix_ are treated as infix operators and
require even more modifications in typechecking function
application in order to support them. Whenever function in
function application is a member selection, such typechecker
will always try to find an infix method in the scope for the
member i.e., x.y(z) will essentially trigger a search and
typechecking of application infix_y(x, z).

Our framework supports experimental compiler in order
to improve the general DSL experience. Although Virtual-
ized Scala modifies the existing Scala typechecker we had
to add only 8 new instrumentation classes and 12 high-level
Goals to regain the ability to correctly expose the same type-
checking decision process as in a regular compiler. If type-
checking of infix function fails, which would be most of the
time, we fallback to regular typechecking of function appli-
cation, for which a high-level representation already exists.
For completeness we provide an example of high-level rep-
resentation for virtualized function application in Appendix
G.

Naturally, our exploration algorithms needed to be up-
dated to reflect such change. Since analysis is expressed by
pattern matching on high-level representation, we only had
to add new pattern matching cases, rather than redesigning
the whole framework. More importantly any changes are
statically verified.

To evaluate our approach we have provided a custom
debugger plugin specific to Scala Virtualized and libraries
based on it. We were able to precisely identify common
problems, involving type inference or operator overloading,
and provide better error feedback.

G High-Level Representation for Virtualized
Function Application

trait TypeVirtApply extends TypeGoal {
def typeInfixMethod: TypeGoal

}
trait TypeVirtApplyFallback extends TypeVirtApply {
def typeApply: TypeApply

}
trait TypeVirtApplyCorrect extends TypeVirtApply {
def typeQual: TypeGoal
def typeArg: TypeGoal

}

Listing 11. High-level representation for virtualized func-
tion application
Goal TypeVirtApply expresses that in the typechecker of
Virtualized Scala, we first attempt to type some method
infix_y when encountering function application AST.
Through member typeApply in TypeVirtApplyFallback
we express the constraint that on failure, we fallback to
the usual typing of function application, while on success
our type debugger would return TypeVirtApplyCorrect,
where premises mean that we need to typecheck (old) quali-
fier, x, and a single argument, z.
H Providing Customized Type Errors for

Virtualized Scala
val x: Rep[Array[Int]] = ...

x foreach { x => x + "a" }
// found : Rep[String]
// required: Rep[Unit]
// x + "a"

^

Listing 12. An error in eDSL that uses LMS and Virtualized
Scala

Using type debugging plugins described in Section 5,
we can provide custom feedback to libraries that make
use of Virtualized Scala. Lightweight Modular Staging
(LMS) [29], being one example, often exhibits confusing
type errors that reveal internals of the staging process. Cur-
rently there exists no technique to mitigate or customize
such errors. Listing 12 presents a trivial case where a user
attempted to apply some function to all elements of a staged
Array value, x. Type constructor Rep tells LMS that the
value is supposed to be staged. Both, regular and staged,
types of Array provide method foreach through an im-
plicit coercion, therefore DSL user could assume that the
presented code is valid (without type Rep such code is a reg-
ular type-correct Scala code). Instead, an error is reported. In
an ideal situation programmers would identify this problem
by pattern matching on some function application where
the function is foreach and it’s a member of qualifier of
type Rep[Array[...]]. Such scenario is therefore abstract
enough to be expressed in terms of typing rules. Fortunately,
our framework was perfectly able to do. LMS-specific plu-
gin would pattern match on the type derivation tree using
case
case TypeAppCorrect(TypecheckGoal(_,

TypeMemberSelection(qual, mem)), _),

typeAppMain) => ...

to identify erroneous function application. Without going
into details, TypeAppCorrect represents an already en-
countered typing rule for function application, with TypecheckGoal
representing typechecking of function, premise TypeMemberSelection
refers to regular high-level representation of a member se-
lection typing rule where qual premise refers to typecheck-
ing of a qualifier, and mem to typing of a member of that
qualifier. More importantly qual has low-level data about
the type of the qualifier, and mem about the member that is
accessed. If LMS plugin successfully matches them with
Rep[Array[T]] (for some T) and foreach on them, re-
spectively, then it has identified that particular problem. We
were able to exploit that knowledge to produce more useful
message:
Unlike the regular Scala compiler, LMS does not insert
implicitly ‘()‘ value in the body of the ’foreach’ closure.
’foreach’ on ’Array’ differs from the one in Standard library.

I Limitations of Type Inference for
Higher-Kinded Types in Scala

Our test-suite contains 14 real examples that specifically
target compiler’s inability to infer types for higher-kinded
types. We illustrate the problem with a simple problem,

17 2014/3/26



where one of the type parameters, T, is used within the
bounds of another, U, and is in higher-order position:
abstract class A; abstract class B[T <: A]
class XA extends A; class XB extends B[XA]
def foo[U <: B[T], T <: A]( resolver: U ): Unit = ()
foo(new XB)

Example below presents an un-informative type error from
the regular Scala compiler, and the Type Debugger feedback.
inferred type arguments [XB,Nothing] do not conform to
method foo’s type parameter bounds [U <: B[T],T <: A]
foo(new XB)
^

Type Debugger feedback:
The current type signature of method foo
(of type [U <: B[T], T <: A](resolver: U): Unit)
limits the current’s implementation ability to infer
an appropriate type argument for the type parameter T.
Inferred type argument for U, XB, is not within the upper
bound B[Nothing]. In order to track appropriately the constraints
for the type parameter T you can modify the type signature to:
def foo[U[_ <: A] <: B[_], T <: A](resolver: U[T]): Unit

J Errors related to implicit search
0 class Bar; class Foo;
1 implicit val b1: Bar = ...; implicit val b2: Bar = ...;
2 implicit def foo(implicit x: Bar): Foo = ...
3 def test()(implicit x: Foo){ ... }
4 test()
5 // ^
6 // Current Compiler error:
7 // could not find implicit value for parameter x: Foo
8

9 //Type debugging framework:
10 // could not find implicit value for parameter ’x: Foo’
11 // due to ambiguous implicits in the implicit search chain
12 // test()(foo([*ambiguous-implicit-values(b2,b1)*])

The example above defines three implicits in the scope -
b1, b2 and foo, and two classes. More importantly lack
of an argument in function application test() triggers an
implicit search. Type Debugger provides not only a reason
for a type error, but also concrete arguments that led to it.
Such feedback is crucial since Scala libraries typically define
large number of potentially ambiguous implicits in them.
K Errors in Shapeless
Exotic combinations of advanced type system features, such
implicits and higher-kinded types, that are present in Shape-
less lead to type errors that are hard to parse for users. Never-
theless, we found Type Debugger to remain reasonably pre-
cise even without specialized debugger plugin.
def foo(x: Int :: String :: Nil) {};
foo(1 :: 2 :: Nil)
// ^
// found : shapeless.::[Int, shapeless.::[Int, shapeless.Nil]]
// required: shapeless.::[Int, shapeless.::[String, shapeless.Nil]]

// Type Debugger feedback:
// Conflicting expression and type:
// def foo(x: Int :: String :: Nil) = ...
// ~~~~~~
// foo(1 :: 2 :: Nil)
// ~

A function application example above uses data structure for
heterogeneous lists, HList. Type mismatch reported by the
compiler blames full type for an error and reveals internal
details of the implementation, whereas Type Debugger is

able to identify exact conflicting locations using subtyping
TypeFocus.

18 2014/3/26


