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Abstract

Blood glucose concentrations of patients with type 1 diabetes mellitus are subject to very high inter- and intra-patient
variability. This variability may be detrimental to the reliability of the treatment, thus resulting in potentially frequent
hypo- or hyperglycemia. Model-based therapies have the potential to improve the quality of the treatment, but most of
the well-accepted deterministic models of reasonable complexity are not capable of capturing intra-patient variability.
The contribution of this article is to propose a method to predict individual blood glucose concentrations and the
corresponding confidence intervals while accounting for inter- and intra-patient variability. For this purpose, it is proposed
to construct a stochastic model by incorporating parametric uncertainty on a given continuous deterministic model and
by propagating the uncertainty using the theory of the extended Kalman filter. Resulting stochastic model predictions
are shown to be reliable using the FDA-approved UVa/Padova simulator and real clinical patient data. They can be
used, among others, to increase safety for blood glucose control (open- as well as closed-loop), or to filter measurements.

Keywords: Type 1 Diabetes Mellitus, Blood Glucose Prediction, Stochastic Modeling, Confidence Intervals,
Uncertainty

1. Introduction

Type 1 Diabetes Mellitus (T1DM) is a disease charac-
terized by the absence of endogenous production of insulin,
a hormone that stimulates the uptake of glucose from the
blood into cells. This disease, originated by an autoim-
mune destruction of insulin-producing β-cells in the pan-
creas, leads to elevated Blood Glucose (BG) concentra-
tions. This state is known as hyperglycemia and, if not or
improperly treated, can cause a number of severe condi-
tions such as blindness or nerve and cardiovascular damage
[1]. The treatment of T1DM consists in infusing exogenous
insulin using an insulin pump or a pen. The main chal-
lenge in this treatment lies determining the appropriate
insulin dose. Overdosing insulin leads to low BG concen-
trations, also known as hypoglycemia, causing severe acute
consequences such as losing consciousness, coma or even
death. Therefore the insulin treatment needs to avoid hy-
poglycemia completely, while reducing hyperglycemia as
much as possible - the right compromise needs to be found.

However, this treatment is greatly complicated by a
large number of uncertainties:

• Inter-patient variability: Patients differ significantly
from one to another and need to have an individu-
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alized treatment. These differences have physiologi-
cal and life-style related reasons and are significant:
inter-patient variability for insulin absorption may
have a coefficient of variation (CV) between 20-45%
in a clinical environment [2]. This number might
even be higher for complete BG dynamics and in
an out-patient setting. For this reason, model-based
treatment typically requires that the model at hand
is reliably identifiable for each patient. An example
of inter-patient variability is given in figure 1.

• Intra-patient variability: If a single patient is set
to repeat the same day several times, BG concen-
trations during these days may change significantly.
This glucose variability is related among others to
changes in insulin sensitivity, but also to insulin ther-
apy [3]. The CV of this variability has been recently
quantified and lies between 15 and 25% for insulin
absorption in a clinical setting [2]. This is consider-
able and may lead to hypoglycemia.

• Measurement noise: BG measurements, when using
Self Monitoring of Blood Glucose (SMBG) or Con-
tinuous Glucose Meters (CGM), are very noisy. The
ISO 15197 norm prescribes that 95% of measure-
ments should be within 20% of the exact value if
the reference BG > 75 mg/dl and within ±15 mg/dl
if BG ≤ 75 mg/dl. However, neither many SMBG
devices [4], nor CGMs [5] currently fulfill this norm.
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Figure 1: Example of inter-patient variability. The figure shows
CGM measurements from 12 patients of a clinical study described in
4.1.2. All patients took the exact same meal under standard therapy.
BG concentrations are normalized with their respective initial BG
concentrations.

• Meal announcement errors : For most T1DM treat-
ment methods, patients have to annouce their meals.
Hence, they need to estimate the carbohydrates (CHO)
content of the meal they are about to ingest. How-
ever, this estimation is prone to be difficult and even
experienced patients may make considerable estima-
tion errors. An average intra-individual variation in
meal announcements of 30%, which has a significant
impact on treatment outcomes, has been reported
[6].

• Meal uptake rate variability: Depending on the type
of a meal, the blood glucose apperance rate may vary
considerably [7]. This variation can be quantified by
means of the Glycemic Index (GI) that can be taken
into account when predicting the effect of the meal.
Nevertheless, this source of uncertainty remains and
can mainly be addressed by using different model
parameters for each kind of meal.

The combination of these uncertainties makes accurate
BG predictions impossible and calls for using probabilistic
approaches.

As discussed above, inter-patient variability can be ac-
counted for by identifying individual model parameters
for each patient. However, this requires models with very
specific properties such as the Therapy Parameter-based
Model (TPM) [8]. Meal uptake rate variability can be
addressed by identifying dedicated meal parameters and
constructing, e.g., a meal library [9, 7]. However, methods
to quantify intra-patient variability are more difficult and
rarely found in the literature. These methods aim at find-
ing confidence intervals on predicted BG concentrations.
One possibility is to apply modal interval analysis [10, 11].
With this approach, upper and lower limits on BG are

computed on the basis of the deterministic model at hand
and on the predetermined model parameter bounds. This
method is computationally efficient, but difficult to set up.
Additionally, neither experimental verification nor method
to determine parameter intervals is available. Similarly,
the problem was addressed by computing upper and lower
bounds based on TPM parameter identification [12]. An-
other approach is to add process noise to transform Ordi-
nary Differential Equations (ODEs) into Stochastic Differ-
ential Equations (SDEs) and to identify the process noise
amplitude [13]. However, finding this amplitude is not
straightforward. A similar approach uses a multi-model
method, but is computationally demanding [14]. Finally,
it is also possible to estimate uncertainties using linear re-
gression prediction methods. However, this method is only
reliable for short prediction horizons of up to 20 minutes
[15].

In this article, we propose a generic and complete pro-
cedure to estimate the time-varying quality of model pre-
dictions by constructing a stochastic model and quanti-
fying model uncertainties. The ODEs of potentially any
continuous and deterministic model are transformed into
SDEs by the addition of parametric uncertainties. Model
parameter uncertainties are estimated during the classi-
cal parameter identification stage and, thus, no additional
parameters need to be identified. These uncertainties are
then propagated using Extended Kalman Filter (EKF)
theory. We show that, applied to a well-chosen BG predic-
tion model such as the TPM, this approach leads to the
obtaining of confidence intervals on BG predictions.

The article is structured as follows: first, in section 2,
the stochastic model, the uncertainty estimation, and the
covariance propagation are introduced. Then the TPM is
presented in section 3 and the proposed method is applied
to it. In section 4, predictions using the stochastic TPM
are done and validated using simulated and clinical data.
Finally, conclusions are drawn and future work is discussed
in section 6.

2. Stochastic modeling

2.1. Construction of a stochastic model

The construction of a stochastic model is based on a
well-chosen deterministic model. The latter one should be
continuous and expressed as:

ẋ(t) = fdet (x(t),u(t), θθθ) , (1)

where x is the vector of n states, t is the time, u is the
m-dimension input vector, θθθ is a vector containing p model
parameters, and fdet is the n-dimensional vector of differ-
entiable functions that define the model dynamics. Vec-
tors and matrices are represented in bold. One of the
states in x should be the BG concentration. As already
mentioned in the introduction, a good BG model should
lead to appropriate BG predictions. Nevertheless, because
of the random nature of human glycemia, BG predictions
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are rarely accurate and therefore a stochastic model can
show to be useful to evaluate the quality of the determin-
istic predictions. For this reason, it is useful to turn the
deterministic model at hand fdet into a stochastic one of
the form:

ẋ(t) = fsto (x(t),u(t),w(t), θθθ) , (2)

where w(t) ∼ N (0,Q), Q is the covariance matrix of a
multivariate zero-mean Gaussian, and fsto is the n-dimen-
sional vector of differentiable functions that define the
model dynamics. Now x(t) is a random variable whose
distribution is propagated through time.

The biggest challenge in estimating the quality of BG
predictions is to model how the uncertainty w(t) affects
the BG concentration. Often, a zero-mean univariate Gaus-
sian is added to the BG state and all other states remain
unchanged [13]. In practice, it is difficult to choose a nu-
merical value for this Gaussian’s standard deviation σ and
it requires additional and computationally important iden-
tification steps. Also, with this approach, the uncertainty
is independent of model inputs, even though meal inputs
are a more important source of uncertainty than insulin
injections, for example.

In order to define a meaningful and easy-to-identify al-
ternative, it is proposed to consider the parametric uncer-
tainty of the model parameters. So, to obtain a stochastic
model, θθθ is replaced by a normally distributed parameter
vector ΘΘΘ in equation 1, defined as

ΘΘΘ ∼ N (θθθ,Q) (3)

∼ θθθ +w(t) (4)

In other words, a Gaussian term is added to every param-
eter Θi, such that Θi = θi +wi, where w = [w1, . . . , wp]

T

has the covariance matrix Q. Thus the uncertainty on sev-
eral parameters can be correlated. The strong assumption
that the parameters are normally distributed presents the
biggest drawback of the proposed method, as physiological
parameters are often found to be log-normally distributed
[16]. However, as shown in section 4, results are convinc-
ing.

If the deterministic model is linear with respect to its
parameters, equation 2 can be written as

dx(t) = fdet (x(t),u(t), θθθ) dt+ g (x(t),u(t), θθθ) dw(t) (5)

where w is a standard Brownian motion vector of dimen-
sion p and covariance matrix Q, and g is a deterministic
function. fdet is called the drift function and quantifies the
deterministic part of the model, same as in equation 1. g
is called diffusive function and quantifies the uncertainty
of the different states.

To simulate the stochastic model, for instance, the
Euler-Maruyama scheme can be used. The simulations
could then be used for different Monte Carlo methods.
These have the advantage of giving accurate results, but
at a high computational price.

2.2. Propagating uncertainties

If the complete distribution of the states is not neces-
sarily needed, but the propagation of its variance is suf-
ficient, the computational burden of Monte Carlo simu-
lations can be considerably alleviated by propagating the
covariance using EKF theory [17]. The model designed in
the previous section is not forcibly linear. In the case of
non-linearities, finding the evolution of the states and its
uncertainties needs the application of a non-linear version
of a Kalman filter. For this reason, the model is linearized
along the estimated trajectory and A and L are defined:

A(t) =
∂fsto(t)

∂x(t)

∣

∣

∣

∣

x̂(t),w0

(6)

and

L(t) =
∂fsto(t)

∂w(t)

∣

∣

∣

∣

x̂(t),w0

, (7)

where x̂(t) is the estimated state vector x(t) at time t. The
estimated trajectory has no process noise, hence w0 = 0.
Furthermore,

Q̃(t) = L(t)QL(t)T . (8)

The state estimation is the same as for the determin-
istic model and the state covariance P(t) propagates over
time, giving the following set of equations to integrate:

˙̂x(t) = fsto (x̂(t),u(t),w0, θθθ) (9)

Ṗ(t) = A(t)P(t) +P(t)A(t)T + Q̃(t), (10)

where w0 = 0. The initial conditions for x̂(t) are set using
BG measurements and state propagation using past in-
puts, while the initial conditions for P(t) are determined
by covariance propagation using past inputs.

Using the covariance matrix, the standard deviation on
the BG state can be isolated and thus, its uncertainty es-
timated at every point in time. Furthermore, the distribu-
tion of the uncertainty of the states over time is assumed to
follow a normal distribution. This is a strong assumption,
but allows computing confidence intervals on BG concen-
tration. It might not hold for models with strong non-
linearities, nevertheless, if the model is linear and linearly
parameterized, this is not an approximation and exact re-
sults are found.

The 95% confidence interval is defined by

P (x̂BG(t) − 1.96σBG(t) ≤ xBG(t) ≤ x̂BG(t) + 1.96σBG(t)) = 0.95,
(11)

where x̂BG is the estimated BG state and σBG is the
standard deviation of x̂BG. σBG =

√
PBG, where PBG

is the variance of x̂BG, whose value is found on the BG
element of the diagonal of P. The upper 95% confidence
limit is thus x̂BG(t) + 1.96σBG(t) and the lower one is
x̂BG(t)− 1.96σBG(t).

In order to compute the confidence intervals, n(n+1)
2

additional differential equations need to be integrated. With
the n equations from the deterministic model, this leads to

a total of n(n+3)
2 ODEs to be integrated over the desired

time horizon.
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2.3. Parameter identification

The performance of the proposed stochastic model de-
pends largely on the quality of the vector of model pa-
rameter estimates θθθ and of the covariance matrix Q. The
following paragraphs show how they can be determined.

2.3.1. Estimation of θθθ

A non-linear weighted least squares method that min-
imizes the objective function J is used to estimate θθθ for a
given patient:

J(θθθ) =

N
∑

i=1

Wi(Gi − x̂BG(θθθ, ti))
2 (12)

where N is number of available BG measurements, Gi

is the i-th BG measurement, Wi is the weight associated
to the measurementGi, and x̂BG(θθθ, ti) is the predicted BG
value at the measurement time ti.

Finally, the identification problem can be written as
the following optimization problem:

min
θθθ

J(θθθ) (13)

s.t. ˙̂x(t) = fdet (x̂(t),u(t), θθθ) . (14)

Thus, the deterministic model equations need to be inte-
grated over an appropriate time horizon and the resulting
estimated glucose state is used to compute the value of the
objective function.

2.3.2. Estimation of Q

It is proposed to use the inverse of the Fisher informa-
tion matrix III to estimate Q.

The Cramér-Rao bound gives a lower bound on Q:

Q ≥ III−1. (15)

To estimate Q, it is assumed that the Cramér-Rao bound
is attained

Q = III−1, (16)

where III is defined as

III = SBG(θθθ, ti)









W1

σ2

1

0 0

0
. . . 0

0 0 WN

σ2

N









SBG(θθθ, ti)
T , (17)

and σi is the standard deviation of the measurement error
of the ith data point and:

SBG(θθθ, ti) =
∂x̂BG(θθθ, ti)

∂θθθ
(18)

is the [p × N ]-dimensional matrix of the partial deriva-
tives of the estimated BG concentration with respect to
the parameter vector θθθ. They can be determined by inte-
grating the sensitivity equations with respect to θθθ at the
measurement times ti:

Ṡ(θθθ, t) =
∂fdet (x(t),u(t), θθθ)

∂x
S(θθθ, t) +

∂fdet (x(t),u(t), θθθ)

∂θθθ
(19)

where S(θθθ, t) = ∂x̂(θθθ,t)
∂θθθ

. These n · p equations to inte-
grate may be computed by hand or symbolic mathemati-
cal software and are very useful to compute the gradient
via forward sensitivity analysis that can be used in the
minimization of J .

3. Application to the TPM

In this section, we show how the proposed method for
estimating confidence intervals can be used to quantify the
quality of the BG predictions by means of an application
to the TPM. This is not only an example, but the TPM is
recommended as an excellent choice for stochastic predic-
tions.

3.1. TPM

The TPM is a simple linear prediction model that is
identifiable using only BG measurements and was shown
to have good prediction capabilities. Additionally, its pa-
rameters are strongly correlated to standard therapy pa-
rameters. If parameterized in a linear way, its equations
are:

Ġ(t) = −KxX(t) +KgUG(t) (20)

U̇G(t) = −agUG(t) + agUG,1(t) (21)

U̇G,1(t) = −agUG,1(t) + agUCHO(t) (22)

Ẋ(t) = −axX(t) + axX1(t) (23)

Ẋ1(t) = −axX1(t) + axUI(t). (24)

where G is the BG concentration in mg ·dl−1, UG is the
gut glucose absorption in g ·min−1, UG,1 the intermediate
gut glucose absorption in g ·min−1, X is the insulin action
in U ·min−1, and X1 is the intermediate insulin action in
U ·min−1.

The model parameters are the meal sensitivity Kg in
mg · dl−1 · g−1, the inverse of the meal time constant ag in
min−1, the insulin sensitivity Kx in mg · dl−1 · U−1, the
inverse of the insulin action time constant ax in min−1.
Kx is the equivalent of the therapy parameter commonly
called correction factor and quantifies by how much BG
concentration drops per unit of injected insulin. Analo-
gously, Kg quantifies by how much BG concentration rises
per gram of ingested CHO. The therapy parameter called
insulin-to-carb ratio is equivalent to

Kg

Kx
and predicts how

many units of insulin should be injected per gram of in-
gested CHO.

The manipulated inputs are the subcutaneous insulin
infusion, UI in U ·min−1 and the carbohydrate intake rate
UCHO in g ·min−1.

The 4-dimensional vector of model parameters vector
is θθθ = [Kg, ag, Kx, ax]

T while the 5-dimensional vector
of states is defined is x = [G, UG, UG,1, X, X1]

T and the
2-dimensional input vector is u = [UCHO, UI ]

T .
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3.2. Stochastic model for TPM

To turn the TPM into the stochastic TPM (sTPM),
θθθ is replaced by its stochastic version ΘΘΘ (cf equation 4),
with w = [wKg

, wag
, wKx

, wax
]T denoting the parameter

uncertainty vector. We also denote wi the uncertainty on
the ith parameter. The sTPM can thus be written as:

Ġ(t) = −(Kx + wKx
)X(t) + (Kg + wKg

)UG(t) (25)

U̇G(t) = (ag + wag
)(UG,1(t)− UG(t)) (26)

U̇G,1(t) = (ag + wag
)(UCHO(t)− UG,1(t)) (27)

Ẋ(t) = (ax + wax
)(X1(t)−X(t)) (28)

Ẋ1(t) = (ax + wax
)(UI(t)−X1(t)) (29)

Since the TPM is linearly parameterized, drift and dif-
fusion functions can be defined according to equation (5).
fdet is the deterministic part of equations (25) to (29) and
is thus the same as the deterministic TPM defined in equa-
tions (20) to (24):

fdet(t) =













−KxX(t) +KgUG(t)
−agUG(t) + agUG,1(t)
−agUG,1(t) + agUCHO(t)
−axX(t) + axX1(t)
−axX1(t) + axUI(t)













. (30)

The diffusion vector function, which models the uncer-
tainties, is given by

g(t) =













−wKx
X(t) + wKg

UG(t)
−wag

UG(t) + wag
UG,1(t)

−wag
UG,1(t) + wag

UCHO(t)
−wax

X(t) + wax
X1(t)

−wax
X1(t) + wax

UI(t)













. (31)

Since the TPM is linear, the covariance propagation
proposed in Section 2.2 is not an approximation, but leads
to exact results. Thus, equation (6) gives

A =













0 Kg 0 −Kx 0
0 −ag ag 0 0
0 0 −ag 0 0
0 0 0 −ax ax
0 0 0 0 −ax













, (32)

and equation 7 reads:

L(t) =











UG(t) 0 −X(t) 0
0 UG,1(t) − UG(t) 0 0
0 UCHO(t) − UG,1(t) 0 0
0 0 0 X1(t) −X(t)
0 0 0 UI(t) −X1(t)











.

(33)

It should be noted that A is time invariant, while L

depends on the states. This introduces a non-linearity
in the covariance propagation equations, hence evaluating
the stochastic model of a linear and linearly parameterized
model does not result in a set of linear equations.

The initial values for these equations may be found
by propagating past model inputs. However, the initial
uncertainty on the BG state, PBG,0, should be set accord-
ing to the relative accuracy of the glucose meter. For the
used SMBG device, 95% of BG measurements are within
r = 10% of the accurate value [4], while r = 20% for CGM
data (even though this value could be higher) [18]. Hence,
because the distribution is assumed to be Gaussian,

PBG,0 =

(

rG0

1.96

)2

(34)

where G0 is the measured BG value at the initial time.
The whole set of equations resulting from equation (10)

are given in Appendix A.

3.3. Relevance of the stochastic model

To illustrate the benefits of the stochastic model, exam-
ples, based on model parameters identified on CGM data
from patients of the clinical study described in 4.1.2, are
considered. Two different scenarios are analyzed whereby
the patient ingests 50g of CHO one hour after the start
of the experiment and applies standard therapy, i.e. he
infuses the amount of insulin calculated using the insulin-
to-carb ratio. The CGM measurement relative error is set
to 20% (i.e. to the ISO 15197 norm) and a target BG of
100 mg/dl is used.

• Scenario 1 : The chosen patient’s effect of insulin is
faster than the effect of the meal (ax > ag). The
deterministic TPM predicts safe treatment, however
it does not take into account any source of variabil-
ity. Different realizations of the sTPM in figure 2
show that the treatment may lead to hypoglycemia
in some cases. The 95% confidence interval indicates
that the risk of hypoglycemia is higher than 2.5 %.

• Scenario 2 : If the effect of the meal is faster than
the one of the insulin (ax < ag), which is the case
for some of the patients, there is a significant risk of
hyperglycemia, as illustrated in figure 3.

These two scenarios show that there is a risk of hypo- and
hyperglycemia, respectively, if standard therapy is applied.
The proposed stochastic model allows to quantify this risk
and may allow reducing it.

4. Stochastic model validation

4.1. Validation data

The data used to evaluate the proposed stochastic model
comes from the UVa simulator and a clinical study.
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Figure 2: Scenario 1: Example of 5 realizations of the sTPM (top)
and estimation of 95% confidence interval (bottom).

4.1.1. UVa/Padova simulator

The FDA approved in silico testing of diabetes control
strategies in order to replace pre-clinical animal testing.
The approved software is referred to as the UVa/Padova
simulator and is based on the high-order model by Dalla
Man et al. [19]. As this simulator is currently the most
important benchmark for the evaluation of control strate-
gies, it is important for the proposed stochastic model to
perform well on data generated by this simulator.

Four different days (with scenarios defined in table 1)
are generated to assess the performance on UVa simula-
tor data. These experiments result in BG concentrations
with a wide range, in such a way that the non-linearities
of the UVa simulator model are not avoided. No insulin
sensitivity tests are considered, because they are not com-
patible with the dynamics of the TPM. This is due to dif-
ferent steady-state behaviors between the TPM and the
UVa simulator model [8].

The 10 available adults were used and basal rates were
set to default values in the UVa simulator. CGM, as well
as exact BG concentrations, were used for validation.

Figure 3: Scenario 2: Example of 5 realizations of the sTPM (top)
and estimation of 95% confidence interval (bottom).

4.1.2. Clinical study

The stochastic TPM is validated on data from 10 sub-
jects with T1DM who participated in a mono-center and
open-label clinical study. A total of 7 subsequent days are
available for each patient. 3 different protocols were fol-
lowed: 2 insulin sensitivity test days, 2 standard therapy
test days, and 3 optimized insulin infusion days. During
the insulin sensitivity test days, the patients were admin-
istered isolated insulin boluses in order to be able to reli-
ably identify the insulin sub-model of the TPM [8]. During
standard therapy days, test meals were ingested and stan-
dard therapy was applied. The optimized insulin infusion
days are similar to the standard therapy days with the
exception that instead of an insulin bolus, an optimized
insulin pattern, based on data from previous days, was ad-
ministered. Additional experiment setup details are given
in table 2. For some patients, some days were disregarded
or shortened because of hypoglycemic interventions, med-
ication intake, or unusually high BG variability.

The patients’ basal rate was carefully tuned by physi-
cians such that, without insulin infusions or CHO inges-
tion, BG stays approximately constant along the day.
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d ts te ∆I tI ∆M tM TM

1 8 AM 4 PM 10 8 AM 10 8 AM 10

2 8 AM 4 PM 70 8 AM 70 8 AM 20

3 8 AM 4 PM 120 8 AM 120 8 AM 10

4 8 AM 11 PM 100 10 AM 80 8 AM 10

5 2 PM 20 2 PM 15

10 3 PM 10 6 PM 20

15 4 PM

Table 1: UVa simulator protocol. Day d, experiment start time ts,
experiment end time te, the insulin bolus induced drop in BG ∆I

in mg/dl, the time of the insulin bolus tI , the CHO induced rise in
BG ∆M in mg/dl, the time of the CHO intake tM , and the meal
duration TM in minutes are given.

day ts te Ts CGM Wi

1,2 8:30 AM 11:30 AM 15 X 5

3,4 9:00 AM 4:00 PM 30 X 1

5,6 9:00 AM 4:00 PM 30 X 1

7 9:00 AM 4:00 PM 30 × 1

Table 2: Clinical study protocol. The experiment start time ts,
experiment end time te, SMBG sampling interval Ts in minutes,
availability of CGM data, and the chosen measurement point weight
Wi (cf 2.3) are specified.

Measurements were taken with Accu-Chek R© Combo
meters for SMBG and Dexcom R© SEVEN R© PLUS CGMs.
It should be noted that CGM data is not available on day
7.

The test meal was identical on all days and for all pa-
tients and contained 750 kcal with 25-30% carbohydrates,
15-20% protein, and 55-60% fat. This is a very slow acting
meal, i.e. a meal with low GI where the rise in BG is slow,
chosen intentionally to show the benefits of an insulin infu-
sion pattern, which only exist if the insulin action is faster
than the meal effect.

For model parameter identification, the weights of the
different data points depend on the study day. The insulin
sensitivity tests have a weightWi that is 5 times the weight
of the other days. This increased importance given to the
identification quality of the insulin subsystem is key to the
reliable identification of insulin action [8].

4.2. Validation methods

4.2.1. Cross-validation

The data used for parameter identification should never
be used for validation. Since 4 days of UVa simulator data
and 7 or 6 days for study data (for SMBG and CGM data,
respectively) are available, cross-validation is performed.
Model parameters are identified using the data of all but
one days, while the data of the remaining day is kept for
validation. This procedure is done such that every day is
used for validation once. This way, a maximum of 4 valida-
tions for every adult on the UVa simulator can be obtained,
which leads to a total of 40 experiments. For clinical study
data, this would add up to 70 (respectively 60 for CGM
data). However, since for some patients some days were
disregarded, the actual number of separate validations is

case data origin identification data validation data

1 UVa simulator exact BG exact BG

2 UVa simulator CGM exact BG

3 UVa simulator exact CGM

4 UVa simulator CGM CGM

5 clinical study SMBG SMBG

6 clinical study CGM SMBG

7 clinical study SMBG CGM

8 clinical study CGM CGM

Table 3: Possible validation cases

58 (respectively 52 for CGM data). These results are then
averaged in order to evaluate performance.

4.2.2. Choice of identification and validation data

For each of the two data sources, two different mea-
surements are available: the exact BG and CGM for the
UVa simulator, and SMBG and CGM measurements for
clinical study data. This means that there are 8 possible
validation cases (cf table 3) depending on what measure-
ments are used for identification and validation. For the
sake of brevity, only a few cases are analyzed in detail.

The main goal of the proposed method is to obtain
probabilistic estimations of the patient’s actual BG con-
centration. These estimations should be as exact as possi-
ble when parameters are identified on measurements. For
this reason, stochastic predictions should always be com-
pared with the most accurate measurement that is avail-
able. Therefore, only cases 2, 5, and 6 are analyzed in de-
tail and the other cases are used to show particular model
properties.

The initialization of G and PBG is always done with
respect to the measurements used for identification. This
means that if parameters are identified on CGM, exact,
or SMBG data, then G is initialized with CGM, exact,
or SMBG measurements, respectively. PBG is initialized
according to equation (34) with r=20%, r= 0%, or r=10%,
respectively.

The way the data was collected plays a crucial role in
analyzing the results. It is, for instance, straightforward
to decide whether exact data generated by the UVa sim-
ulator lies within an estimated confidence interval or not.
This is of course not as simple with inexact measurements,
such as CGM or SMBG measurements. The measure-
ment noise is normally distributed and the variance for
SMBG and CGM measurements Gi are σSMBG = 0.1Gi

1.96

and σCGM = 0.2Gi

1.96 , respectively. This entails that it is
impossible to give an exact value for the percentage of
BG concentrations within the predicted confidence inter-
val. On the other hand, it is possible to give its expected
value, denoted p95%. Since the exact, and not the mea-
sured BG concentration lies inside the confidence interval,
is of interest, it can be assumed that Ge,i ∼ N (Gi, σ

2
i ),

where Ge,i is the exact BG concentration at time ti. Let
us denote pi is the probability of Ge,i being inside the
confidence interval. If xBG and xBG are the upper and
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case % mean % median n
1 0 0 40
2 97.73 100 40
3 0 0 40
4 84.13 85.00 40

Table 4: Expected average and median percentage of prediction
points within the 95% confidence interval on the maximum predic-
tion horizon.

lower bounds of the estimated confidence interval, respec-
tively, then pi is given by the normal cumulative distribu-
tion function:

pi = P (xBG,i(t) < Ge,i ≤ xBG,i) (35)

= P (Ge,i ≤ xBG,i)− P (Ge,i ≤ xBG,i) (36)

, where:

P (X ≤ a) =
1

2

[

1 + erf

(

a−Gi
√

2σ2
i

)]

(37)

Finally, the expected value of the percentage of points
within the confidence interval is

p =
1

N

N
∑

i=1

pi (38)

If the stochastic model fulfills our assumptions and a 95%
confidence interval is used, then p ≈ 95%.

5. Results

5.1. Percentage of measurements inside confidence inter-
val over complete data set

First, in order to validate the proposed method for
computing confidence intervals, the accuracy of the stochas-
tic predictions over the whole duration of the available
data sets (i.e. from ts to te) is evaluated. Cross validation
(cf 4.2.1) is performed and for every validation data set the
percentage of data points within the estimated confidence
interval is computed and averaged over all combinations
and patients.

5.1.1. UVa simulator data

Results for cases 1 to 4, defined in table 3, are sum-
marized in table 4 and illustrated by figure 4. Examples
of simulations over the complete time horizon are given in
figure 5 for different cases. Cases 1 and 2 are the most
relevant ones as they compare predictions to exact BG
concentrations.

• Case 1: In this case, exact measurements were used
to identify model parameters. Calculating Q us-
ing equation (17) and σi = 0 for all measurements,
the Fisher information matrix will be independent of
both the model and the measurements. Q is in fact

0
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Figure 4: Boxplot of percentage of measurements inside the 95%
confidence interval of all validation data sets (n=40) for cases 1-4.

a zero matrix and, as a consequence, the stochas-
tic term of the stochastic model is zero. Hence, the
model reduces to the deterministic TPM and it is im-
possible to estimate confidence intervals. This can be
explained by the fact that the parameter covariance
matrix is assumed to be equal to the inverse Fisher
information matrix even though it actually gives a
lower bound on this matrix. If measurements are
noiseless, this lower bound is equal to zero because,
if an appropriate model is available, the model pa-
rameters can be identified perfectly. However, be-
cause of the model mismatch between the TPM and
the UVa simulator model, this lower bound will not
be reached. Hence, it is recommended not to use the
sTPM when using exact measurements.

• Case 2 assesses the efficiency of using CGM data
for identification through comparison with exact BG
concentrations. Results are very good, considering
that the analysis on the maximum prediction horizon
is strongly dependent on the inaccurate initial BG
measurement. The percentage of points within the
confidence interval is even too high, which indicates
that confidence intervals may be too large. However,
a visual inspection of figure 6 shows that the intervals
are indeed not overly large.

Some subjects from the UVa simulator population,
such as adult 9 (which has already been identified
as a complicated patient [20]), have dynamics that
cannot be reproduced by the TPM. Figure 6 shows
that adult 9 has a pronounced two-peak response to
a meal. Hence, its dynamics are only partially cap-
tured by the TPM and the confidence intervals are
only partially appropriate. The proposed method
thus only performs well if the deterministic model is
adapted to the data.

• Case 3 has little interest as CGM data would never
be used if exact data was available. Again uncer-
tainty is estimated to be zero, for the same reasons

8



Figure 5: Examples for cases 1 (top) to 4 (bottom).

as for case 1.

• On the other hand, Case 4 is important since, in a
closed-loop setting, only CGM is available. Similarly
to case 2, CGM noise has a significant influence on

Figure 6: Examples for case 2 when validating over the complete
data set.

BG initialization. Additionally, the results depend
on the different noise realizations during the exper-
iment. Since this realization is the same for all pa-
tients, the noise influence is not averaged out. Figure
7 gives an example that shows the negative influence
of unfavorable noise realization, which explains the
low percentage values of table 4.

Overall, the performance of the sTPM is very good on
the UVa simulator when CGM data was used for identifi-
cation.

5.1.2. Study data

The results of the study data analysis are summarized
in table 5 and illustrated in figure 8. There is little dif-
ference between validating on SMBG and CGM data, as
both measurement types have a significant level of noise.
Results are generally slightly better with SMBG measure-
ments, because of the increased confidence in the accuracy
of the measurements. Only cases 5 and 6 are discussed in
more detail as the observations are analogous for cases 7
and 8.

The expected percentage of points within the 95% con-
fidence interval is acceptable for data identified using SMBG
or CGM measurements. Several outliers, visible in figure
8, occur and have a strong influence on the average value.
Therefore, the median, which is more robust against out-
liers, is also given.

9



Figure 7: Examples for case 4 when validating over the complete
data set. Both examples show the negative influence of their identical
noise realization.

case % mean % median n
5 71.25 73.38 58
6 78.80 89.68 52
7 63.58 67.38 52
8 74.80 79.67 52

Table 5: Expected average and median percentage of prediction
points within the 95% confidence interval on the maximum predic-
tion horizon.
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Figure 8: Boxplot of expected percentage of measurements inside the
95% confidence interval of all validation data sets for cases 5 to 8.

For case 5, results are good, but not perfect, as the
expected percentage of points within the confidence inter-

val is lower than 95%. A possible explanation is that the
amplitude of the SMBG measurement noise is underesti-
mated.

Case 6 shows better results. This is due to the fact
that the assumptions on measurement noise are more ap-
propriate. Nevertheless, results are not perfect, mainly
because of the reduced quality of the parameter identifica-
tion on CGM measurements. This is illustrated in figure 9:
Case 5, identified on SMBG measurements, has better de-
terministic predictions, but narrower confidence intervals
than case 6, which is identified on noisier and unreliable
CGM data.

As a conclusion, with real patient data, BG uncertainty
can be predicted with acceptable accuracy using SMBG, as
well as CGM data. Analysis shows that, as expected, best
results are obtained for parameters identified on accurate
and frequently sampled data. Ideally, SMBG data with
increased sampling rate or CGM data on more days should
be used.

Figure 9: Comparison of stochastic prediction for cases 5 and 6.

5.2. Stochastic predictions

The analysis of the results over the maximum predic-
tion horizon performed in section 5.1 is a good indicator
for the performance of the uncertainty predictions. How-
ever, to get more insight, an analysis of the performance
over well-defined prediction horizons is performed. In par-
ticular, the effects of measurement noise will be filtered
out, leading to more representative results.
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To do stochastic predictions, the following procedure is
followed for every combination of identified model param-
eters and validation data set, and for every measurement
Gi in the validation data set: A simulation is started h
minutes before tGi

, where tGi
is the time of the measure-

ment Gi and h is the prediction horizon. The inputs are
propagated to initialize the insulin and CHO sub-systems
and their respective covariance elements. The BG mea-
surement preceding tGi

− h is used to define the initial
BG and BG variance. As a consequence, to have a BG
measurement to initialize the model, tGi

has to be greater
than h+ ti. The simulation is then run for h minutes and
the final BG and confidence interval are compared to the
measurement Gi. The results are then averaged for all
measurement points, for all cross-validation permutations,
and for all patients. Finally, the resulting value of points
within the confidence interval and its standard deviation
are plotted as a function of the prediction horizon. As il-
lustration, examples of 90-minute predictions are given in
figures 10 and 11.

The results for different prediction horizons on UVa
simulator data are given in figure 12. In accordance with
what was discussed in 5.1, cases 1 and 3 cannot give confi-
dence intervals, and percentages of points within are zero.
Case 2 (the most relevant one) shows excellent results over
all horizons and case 4 gives good results that become even
better when h increases. This improvement is due to the
vanishing influence of the initial BG, and to the more fa-
vorable CGM noise realizations. The standard deviation
indicates that the variability of the stochastic predictions
rises with low prediction horizons and reaches a maximum
value for h > 150 minutes. This indicates that predic-
tions are stable, even for long horizons. The overall level
of variability is acceptably small.

Figure 13 depicts the results obtained with study data.
Again, these results are in agreement with section 5.1:
Cases 6 and 8 have a higher percentage of points within the
95% confidence interval because the uncertainty was esti-
mated to be larger with CGM measurements. Cases 5 and
7 show a lower percentage of points within the confidence
interval, but this is caused by the SMBG measurement er-
ror that was probably larger than the used value of 10%.
The quality of the predictions is very good nevertheless, as
the percentage of points within the 95% confidence inter-
val does not depend much on h. The standard deviation
is shown to increase with h. This is similar to the results
obtained on the UVa simulator. However, in this case, the
value of the standard deviation is higher, because of the
higher variability and noise level in the study data.

5.3. Other models

The proposed method to evaluate the prediction qual-
ity was also tested on other models (figure 14). Results on
the LMM and the MM, as defined by Bock et al. [8], show
acceptable results. Since LMM and MM led to inferior
deterministic predictions, the performance of the corre-
sponding stochastic model is also lower. The LMM does

Figure 10: Examples for different cases on 90 minutes prediction
horizon on UVa simulator data.
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Figure 11: Examples for different cases on 90 minutes prediction
horizon on clinical study data.
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Figure 12: Prediction results for UVa simulator results (cases 1-4)
for different horizons. Means and standard deviations evaluated on
all 40 validation sets are given. Mean values (top) and standard
deviations (bottom) are plotted.
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Figure 13: Prediction results for clinical study results (cases 5-8) for
different horizons. Means and standard deviations evaluated on all
validation sets are given. Mean values (top) and standard deviations
(bottom) are plotted.
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not have a linear parameterization. Therefore, the appli-
cation of the EKF is an approximation. The MM is non-
linear and results in additional approximations compared
to the TPM.

These results show that the method performs well even
in case of mild non-linearities, especially if the determin-
istic model has intrinsically good prediction capabilities,
but also that the quality of the deterministic model plays
an important role.

6. Conclusion

A novel method, to construct a stochastic model based
on parametric uncertainty and to propagate these uncer-
tainties, was presented and applied to the TPM. This new
approach allows computing confidence intervals on BG
concentrations in a simple, yet effective way. It performs
as expected, although the designed stochastic models are
always just as good as their underlying deterministic mod-
els. As such, it is important that the latter is adapted to
the modeled system. Validation was performed on UVa
simulator data, as well as clinical data and led to good
results for the relevant cases. Since clinical data contains
more unpredictable events, estimation results were slightly
worse than with UVa simulator data.

However, the expected percentage of points within the
95% confidence interval is not 95% as it should be, if all
assumptions were satisfied. Hence, more than 5% of the
points lie outside the estimated confidence interval. This
has numerous causes, such as non-Gaussian noise, different
sources of non-linearities, or exceptional intra-patient vari-
ability. Nevertheless, using the stochastic information is
beneficial in all circumstances: if the uncertainty is reliably
estimated, patients can be treated while considerably re-
ducing the risks of hypo- and hyperglycemia. Furthermore,
if the uncertainty is thought to be larger than it actually is,
patients still have a lowered risk for large glycemic devia-
tions, but may need to take more SMBG measurements to
reduce the conservatism of the resulting recommendations
for insulin injections. If uncertainties are underestimated,
the treatment is still safer than without uncertainty esti-
mations. Also, if a CGM device is used, inaccuracies can
immediately be detected and parameters can be adapted
accordingly.

The estimation of BG uncertainty is an invaluable ad-
dition to improve diabetes treatment. The use of the
stochastic information allows reducing patient’s hypo- and
hyperglycemia risk, especially if combined to a CGM de-
vice. Possible new applications in the field of diabetes
management are among others in predictive treatment meth-
ods (e.g. automated pancreas, pump suspension algo-
rithms, open-loop control), state estimation, CGM filter-
ing, detection of unexpected events, or model validation.

Future work will focus on using the proposed model for
the development of tools to improve the treatment of type
1 diabetes. Furthermore, the method will be extended
by the incorporation of adaptive methods to continuously
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Figure 14: Stochastic prediction results for different models for case
2 and case 6. Mean values and standard deviations are plotted.
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adapt model parameters to potential changes in patient’s
physiological characteristics. This may eventually lead to
a completely automated parameter identification method.

Finally, it should be noted that the application field of
this new method is not limited to diabetes management,
but it may be applied to any process where a large uncer-
tainty needs to be estimated. Also, the application is not
limited to parametric uncertainty, but can be extended to
take input uncertainty into account. Coming back to BG
control, the uncertainty in the estimation of meal amounts
could also be addressed.
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Appendix A. Stochastic TPM equations

The covariance propagation equations for the TPM are
given below. If combined with the deterministic TPM
equations 20 to 24, the complete stochastic model can be
simulated.

ṖG,G =QKx,Kx
X2 − 2QKg,Kx

XUG

+QKg,Kg
U2
G + 2KgPG,UG

− 2KxPG,X

(A.1)

ṖG,UG
=KgPUG,UG

−KxPUG,X − agPG,UG

+ agPUG,UG,1
+XQag,Kx

(UG − UG,1)

− UGQKg,ag
(UG − UG,1)

(A.2)

ṖUG,UG
=2agPUG,UG,1

− 2agPUG,UG

+Qag,ag
(UG − UG,1)

2
(A.3)

ṖG,UG,1
=KgPUG,UG,1

−KxPUG,1,X − agPG,UG,1

−XQag,Kx
(UCHO − UG,1)

+ UGQKg,ag
(UCHO − UG,1)

(A.4)

ṖUG,UG,1
=agPUG,1,UG,1

− 2agPUG,UG,1

−Qag ,ag
(UCHO − UG,1)(UG − UG,1)

(A.5)

ṖUG,1,UG,1
=Qag,ag

(UCHO − UG,1)
2 − 2agPUG,1,UG,1

(A.6)

ṖG,X =KgPUG,X −KxPX,X − axPG,X + axPG,X1

+XQKx,ax
(X −X1)− UGQKg,ax

(X −X1)

(A.7)

ṖUG,X =agPUG,1,X − agPUG,X − axPUG,X + axPUG,X1

+ PUG,X(X −X1)(UG − UG,1)

(A.8)

ṖUG,1,X =axPUG,1,X1
− axPUG,1,X − agPUG,1,X

− PUG,X(X −X1)(UCHO − UG,1)
(A.9)

ṖX,X =2axPX,X1
− 2axPX,X +Qax,ax

(X −X1)
2

(A.10)

ṖG,X1
=KgPUG,X1

−KxPX,X1
− axPG,X1

+XQKx,ax
(X1 − UI)− UGQKg,ax

(X1 − UI)

(A.11)

ṖUG,X1
=agPUG,1,X1

− agPUG,X1
− axPUG,X1

+Qag,ax
(X1 − UI)(UG − UG,1)

(A.12)

ṖUG,1,X1
=− agPUG,1,X1

− axPUG,1,X1

−Qag,ax
(X1 − UI)(UCHO − UG,1)

(A.13)

ṖX,X1
=axPX1,X1

− 2axPX,X1

+Qax,ax
(X −X1)(X1 − UI)

(A.14)

ṖX1,X1
=Qax,ax

(X1 − UI)
2 − 2axPX1,X1

(A.15)
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