
Path-following funnel control for rigid-link revolute-joint robotic systems

T. Faulwasser† and C.M. Hackl⋆,‡

Abstract— In this paper we investigate the application of
funnel control to unconstrained path-following problems. While
funnel control is a high-gain based time-varying feedback
strategy applicable to minimum-phase systems with known
relative degree, path following refers to the problem of tracking
a reference path in an output space. A particular feature of
path following is that the timing along the reference path
is not determined a priori. The timing is adjusted online by
the controller and may be exploited to improve the tracking
performance. We show that the combination of funnel control
and path following is applicable to fully-actuated rigid-link
revolute-joint robots.

I. I NTRODUCTION

Usually, one distinguishes the control problems of set-
point stabilization and trajectory tracking. While the former
refers to the task of stabilizing a feedback system around
a point in state space, the latter describes the design of
controllers which ensure tracking of time-varying references.
However, not all control problems fit into this framework.
For instance, consider the task to steer a robot along a pre-
specified (prescribed) geometric curve in its workspace (or
the corresponding joint space), whereby the speed to move
along the curve is not fixed a priori. Such problems are
usually referred to as path-following problems, see [1]–[3].

Different approaches to solve path-following problems are
discussed in the literature: In [1], [2] and [4], [5] backstep-
ping, respectively, geometric control are considered. In [3],
[6], [7] tailored predictive control schemes are presented. In
the present contribution, we investigate the application of
funnel control to path-following problems of rigid revolute-
joint robotic systems.

Funnel control—developed by Ilchmann et al.
(see e.g. [8]–[11] and references therein) for systems
with bounded-input bounded-output (BIBO) stable zero-
dynamics, known relative degree and known sign of the
high-frequency gain—is a high-gain based time-varying
control strategy which guaranteestracking with prescribed
transient accuracy, i.e. the absolute value of the control
error (difference between regulated output and reference
signal) is limited by a prescribed (possibly non-increasing)
function of time.

In this contribution we will combine both methods. The
combination of funnel control and path following assures
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that the path error (difference between regulated output and
desired path) is always kept within prescribed bounds.

The remainder of this paper is organized as follows: In
Section II we recall output path-following problems and in-
troduce the considered class of robotic systems. In SectionIII
we briefly re-visit funnel control for reference tracking of
this system class. In Section IV we give sufficient conditions
which allow to combine funnel control with path following.
In Section V we apply path-following funnel control for
position control of a planar (elbow-like) robot and present
simulation results as a proof of concept.

Notation
N,R,C natural, real and complex numbers.
[a, b) interval froma to b (excluded).
R>0, R≥0 positive real numbers, with zero.
x ∈ R

n,0n ∈ R
n column, zero vector.

A ∈ R
n×m matrix with n-rows & m-columns.

det(A), spec(A) determinant, spectrum ofA ∈ R
n×n.

diag{a1, . . . , an} diagonal matrix witha1, . . . , an ∈ R

In, Ĩn ∈ R
n×n := diag{1, . . . , 1}, :=

[
0n−1 In−1

0 0
⊤
n−1

]

f(·); f(t) a functionf : I ⊆ R≥0 → Y ⊆ R
n,

n ∈ N; value off(·) at t ∈ I.
f (i)(t) := di

dti f(t) the i-th (time) derivative off(·) at t.
Cn(I;Y ) space ofn-times continuously differ-

entiable functions mappingI → Y .
Lp(loc)(I;Y ) space of measurable, (locally)p-

integrable functions.
L∞
(loc)(I;Y ) space of measurable, (locally) essen-

tially bounded functions with norm:
‖f‖∞ := ess-supt∈I ‖f(t)‖.
Wk,∞(I;Y ) space of bounded locally absolutely

continuous functions with essentially
bounded derivativesf (i) ∈ L∞(I;Y )
for all i ∈ {1, . . . , k}.

II. PATH-FOLLOWING PROBLEMS

We consider nonlinear continuous-time, control-affine sys-
tems of the following form

ẋ = f(x) +

nu∑

j=1

gj(x)uj , x(0) = x0 ∈ R
nx (1a)

y = h(x), (1b)

where x ∈ R
nx is the state,u ∈ R

nu is the input and
y ∈ R

ny is the output (with dimensionsnx, nu, ny ∈ N).
Subsequently, we assume that the vector fieldsf : Rnx →
R
nx , (g1, . . . , gnu) : R

nx → R
nx×nu andh : Rnx → R

ny

are sufficiently often continuously differentiable.



In the present contribution we consider the problem of
following a geometric curve

P = {y ∈ R
ny | θ ∈ R 7→ y = p(θ)} (2)

in the output-space defined by (1b). The referenceP is
denoted aspathandp : R → P is called its parametrization.
We assume thatP is a regular curve [12] and that its
parametrizationp is sufficiently often continuously differen-
tiable. The main idea of path following is that the timing—
i.e. the mapt 7→ θ(t)—is not determined a priori. Rather
it is a degree of freedom and has to be calculated online in
the controller. Formally, we consider the following control
problem:

Problem 1 (Output path following).
Given system(1a), reference pathP as in (2) and prescribed
functionψi,0 : R≥0 → R>0 for i ∈ {1, . . . , ny}, designa
feedbacku and a timingθ which achieve:

i) Prescribed path accuracy: The system outputy = h(x)
converges such that forallt ≥ 0:

∀i ∈ {1, . . . , ny} : ‖hi(x(t))− pi(θ(t))‖ < ψ0,i(t).

ii) Convergence on path: The system moves alongP such
that

lim
t→∞

‖θ(t)‖ = 0.

Here we consider an output path-following problem with
prescribed path accuracy, i.e. we want to enforce that the
absolute value of each path-following error|hi(x) − pi(θ)|
is always bounded by the prescribed functionψi,0(·). One
should note that in the literature path-following problems
usually require convergence of the output to the path (cf. [1],
[7]) instead ofprescribed path accuracy. Furthermore, the
convergence-on-path requirement is sometimes replaced by
strict forward motion, i.e. it can be required thatθ̇(t) > 0
holds for all t, see [1].

The main idea of path-following is to regard the path
parameterθ as a virtual state of the control problem whose
dynamics are governed by a timing law, e.g. of the form
θ̇ = g(θ, v) whereg : R×R → R>0 (see [1], [2]). The timing
law includes an additional (virtual) control inputv.1 In the
following we will use this extra input to control the evolution
of the reference alongP and to enforce prescribed path
accuracy. However, we do not use a first-order timing law.
For r̂ ∈ N, we consider a chain of integrators as dynamics
of θ, i.e.

θ(r̂)(t) = v(t), θ(i)(0) = θ
(i)
0 , i ∈ {1, . . . , r̂}. (3)

The length of this chain of integrators is chosen to equal the
maximum element of the vector relative degree of system
(1a). Similar to [3], [7] we rely on this timing law and
tackle path-following problems via an augmented system

1The problem of tracking output trajectories can be understood as a
special case of output path-following with fixed reference timing, i.e. in
θ̇ = g(θ). The external inputv does not appear.

description

ẋ = f(x) +

nu∑

j=1

gj(x)uj , x(0) = x0 ∈ R
nx (4a)

ż = Ĩ r̂z +

(
0r̂−1

1

)
v, z(0) = z0 ∈ R

r̂ (4b)

e = h(x)− p(z1), (4c)

θ = z1. (4d)

Here, (4a) includes the dynamics of the system to be
controlled (1a); in (4b) the timing law (3) is written with
z = (θ, θ̇, . . . , θ(r̂−1))⊤. The error output (4c) represents
the deviation from the path and (4d) describes the current
reference position on the path.

The main idea behind this augmented system description
for path-following problems is that (4) can be mapped into
path-following specific coordinates, i.e. a so-calledtrans-
verse normal form[3], [5]. We will show later that this
description of path-following problems allows the design of
path-following funnel controllers for rigid-link revolute-joint
robotic systems.

Rigid-link revolute-joint robotic systems

Subsequently, we restrict the investigations to path fol-
lowing for rigid, fully-actuated robotic systems withn ex-
clusively revolute joints,n ∈ N. Such an degree-of-freedom
robotic manipulator is described by
(
ẋ1

ẋ2

)
=

(
x2

M(x1)
−1

[
−C(x1,x2)x2−g(x1)−d(t)+u

]
)

(5a)
y = (y1, . . . , yn)

⊤ = x1 (5b)

with initial value (x1(0), x2(0)) = (x0
1, x

1
2) ∈ R

2n. For
details on this model we refer to [13, p. 77]. The signals
x1 in [rad]

n and x2 in [rad/s]
n represent joint angle and

joint speed (vector), respectively.M(·) ∈ C(Rn;Rn×n) is
the position dependent inertia matrix. For our approach,
the inertia matrixM(·) must be known. MatrixC(·, ·) ∈
C(R2n;Rn×n) is the position and speed dependent cen-
trifugal and Coriolis force matrix.d(·) ∈ L∞(R≥0;R

n)
represents an exogenous disturbance andg(·) ∈ C(Rn;Rn)
is the position dependent gravity vector. The robot is actuated
by joint torque vectoru [Nm]

n (control input). We do not
consider friction. The following assumptions are imposed on
model (5) and path (2):

(A1) the inertia matrix is uniformly bounded from above and
below (see e.g. [14]), i.e.∃ cM , cM > 0 ∀y ∈ R

n :

0 < cMIn ≤M(y) =M(y)⊤ ≤ cMIn;

(A2) the centrifugal and Coriolis force matrix is upper
bounded (see e.g. [13, Sections 4.2]) as follows

∃ cC > 0 ∀y,v,w ∈ R
n : ‖C(y,v)w‖ ≤ cC‖v‖‖w‖;

(A3) the gravity vector is uniformly bounded (see e.g. [13,
Sections 4.3]), i.e.∃ cg > 0 ∀y ∈ R

n : ‖g(y)‖ ≤ cg;



(A4) the exogenous disturbance is bounded, i.e.d(·) ∈
L∞(R≥0,R

n)
(A5) joint anglesx1(·) and velocitiesx2(·) are available for

feedback (measured signals);
(A6) the pathP is contained in a compact subset̃P ⊂

R
n and its parametrization satisfiesp(·) ∈ C2 ∩

W2,∞(R;Rn).

Assumptions (A1)-(A3) are intrinsic properties of rigid
robotic manipulators with exclusively revolute joints (see
e.g. [13, Sections 4.1-4.3]). Assumptions (A4)-(A5) are re-
alistic for position control problems of mechatronic sys-
tems (see e.g. [10] and [15, p. 210-213 and 290-292]).
Assumption (A6) is used to simplify the proof of our main
result in Sec. IV.

III. F UNNEL CONTROL FOR RIGID-LINK

REVOLUTE-JOINT ROBOTIC SYSTEMS

Funnel control (see e.g. [8]–[11]) is a high-gain based
time-varying output feedback control strategy which guaran-
teestracking with prescribed transient accuracy. It allows for
gain increaseand decrease (in contrast to classical high-gain
adaptive controllers). Measurement noise is tolerated (but
neglected in this paper). Simple root locus analysis show that
relative-degree-two systems are not in general stabilizable
by simple high-gain output feedback: either a backstepping
controller [9] or derivative feedback [11] is necessary.

Based on the single-input single-output (SISO) results
in [10], [11] of funnel control with derivative feedback for
relative-degree-two systems and its application to position
control problems of mechatronic systems, an extension to the
multi-input multi-output (MIMO) case of rigid-link revolute-
joint robots (5) withknowninertia matrix is presented in [16].

For a given time-varying reference yref(·) :=
(yi,ref(·), . . . , yn,ref(·))⊤ ∈ W2,∞(R≥0;R

n), the control
objective istracking with prescribed transient accuracyfor
position and speed tracking error of each jointi ∈ {1, . . . , n}
(see Fig. 1), i.e.

∀ t ≥ 0: |ei(t)| = |yi,ref(t)− yi(t)| < ψ0,i(t) ∧
|ėi(t)| = |ẏi,ref(t)− ẏi(t)| < ψ1,i(t) (6)

where ψ0(·) := (ψ0,1(·), . . . , ψ0,n(·))⊤ ∈
W1,∞(R≥0; (0,∞)) andψ1(·) := (ψ1,1(·), . . . , ψ1,n(·))⊤ ∈
W1,∞(R≥0; (0,∞)) are the sub-funnel boundaries for
position and speed error, respectively. For alli ∈ {1, . . . , n},
the boundary functions(ψ0,i(·), ψ1,i(·)) are chosen from

B2 :=

{
(ψ0, ψ1) : R≥0 → R

2

∣∣∣∣

(i) ∀ i ∈ {0, 1} ∃ ci > 0: ψi(·) ∈ W1,∞(R≥0, [ci,∞))
(ii) ∃ δ > 0 for a.a. t ≥ 0: ψ1(t) ≥ − d

dt ψ0(t) + δ

}
. (7)

Condition (ii) in (7) is essential: only if an error derivative
with sign(ei(t))ėi(t) < d

dt ψ0,i(t) is admissible/feasible,
then the error ei(t) “may depart” from sub-boundary
ψ0,i(t) (see Fig. 1). In other words, for funnel boundary

(ψ0(·),ψ1(·)) ∈ Bn2 (with B2 as in (7)), tracking error

e(·) = y(·)− yref(·) (8)

and speed tracking erroṙe(·) = ẏ(·) − ẏref(·) shall evolve
within the “performance funnel” given by

F(ψ0,ψ1)
:=

{
(t, ξ,η) ∈ R≥0 × R

n × R
n
∣∣

∀ i ∈ {1, . . . , n} : |ξi| < ψ0, i(t) ∧ |ηi| < ψ1, i(t)
}
, (9)

i.e. (t, e(t), ė(t)) ∈ F(ψ0,ψ1)
for all t ≥ 0. The asymptotic

accuracies of the limiting functions (see Fig. 1) are given by

λ0,i := lim inf
t→∞

ψ0,i(t) and λ1,i := lim inf
t→∞

ψ1,i(t).

Example 1. LetΛ0,i ≥ λ0,i > 0, TE > 0 [s] andλ1,i > 0 [s]
for i ∈ {1, . . . , n}, then a possiblei-th sub-boundary is

(ψ0,i, ψ1,i) : R≥0 → (λ0,i,Λ0,i]×(λ1,i, (Λ0,i−λ0,i)/TE ],

t 7→
(
(Λ0,i − λ0,i) exp (−t/TE) + λ0,i

Λ0,i−λ0,i

TE
exp (−t/TE) + λ1,i

)
. (10)

Boundary (10) is positive, non-increasing, bounded
and smooth. Its asymptotic accuracies are given by
(λ0,i, λ1,i). The boundary ‘starts’ at(Λ0,i,

Λ0,i−λ0,i

TE
+λ1,i)

and its derivative is essentially bounded by(
(Λ0,i − λ0,i)/TE , (Λ0,i − λ0,i)/T

2
E

)
. By settingδi := λ1,i

and noting thatψ1,i(t) ≥ −ψ̇0,i(t) + δi for (almost) all
t ≥ 0 in (10), it is easy to see that(10) is element ofB2.

If the inertia matrixM(·) of (5) is known, then the
MIMO funnel controller is a simple proportional-derivative
controller. Its properties are stated in the following theorem,
see also Theorem 3.1 in [16].

Theorem 1.
Let n ∈ N and consider an-th DOF rigid-link revolute-
joint robotic manipulator of form(5) with known iner-
tia matrix M(·) and which satisfies assumptions (A1)-
(A5). Then, for arbitrary position referenceyref(·) ∈
W2,∞(R≥0,R

n), funnel boundary(ψ0(·),ψ1(·)) ∈ Bn2 ,
gain scalingς0(·), ς1(·) ∈ W1,∞(R≥0; [c,∞)n), c > 0 and
initial value (x0

1,x
1
2) ∈ R

2n satisfying∀ i ∈ {1, . . . , n} :

|x01,i − yref,i(0)| < ψ0,i(0) and |x12,i − ẏref,i(0)| < ψ1,i(0),
(11)

the MIMO funnel controller

u(t) = −M(x1(t))
(
K0(t)

2e(t)+K0(t)K1(t)ė(t)
)

(12)

with gain matrices

K0(t) =

[
k0,1(t)

. . .

k0,n(t)

]
, k0,i(t) =

ς0,i(t)

ψ0,i(t)− |ei(t)|
and

K1(t) =

[
k1,1(t)

. . .

k1,n(t)

]
, k1,i(t) =

ς1,i(t)

ψ1,i(t)− |ėi(t)|
,

wherei ∈ {1, . . . , n},





(13)

applied to(5) yields a closed-loop initial-value problem with
the properties:



ei(·)
ei(0) ψ0,i(·)

ψ0,i(0)

−ψ0,i(0)

ei(t)

ψ0,i(t)

−λ0,i ėi(·)
ėi(0)

ψ1,i(·)
ψ1,i(0)

−ψ1(0)

ė(t)

ψ1,i(t) ≥ − d
dt ψ0,i(t) + δi

λ1

i-th sub-funnel

tt time t [s]

Fig. 1: i-th sub-funnel for thei-th joint, i ∈ {1, . . . , n}: Position error ei(·)
and speed erroṙei(·) with sub-funnel boundariesψ0,i(·) andψ1,i(·).

u1

u2

l1

l2

m1

m2

y1

y2

Fig. 2: Planar (elbow-like) rigid-link
revolute-joint robotic manipu-
lator.

(i) there exists a solution2 (x1(·),x2(·)) : [0, T ) → R
2n

which can be maximally extended andT ∈ (0,∞];
(ii) the solution(x1(·),x2(·)) does not have finite escape

time, i.e.T = ∞;
(iii) the tracking error e(·) as in (8) and ė(·) are uni-

formly bounded away from the boundary, i.e.∀ i ∈
{1, . . . , n} ∃ε0,i, ε1,i > 0 ∀ t ≥ 0 : ψ0, i(t) − |ei(t)| ≥
ε0, i andψ1,i(t)− |ėi(t)| ≥ ε1,i;

(iv) control action and gains are bounded, i.e.u(·) ∈
L∞(R≥0;R

n) andK0(·), K1(·) ∈ L∞(R≥0;R
n×n).

Proof. See [16].

Remark 1 (Time-varying gains). Gain “adaptation” in (12)
is—for each jointi ∈ {1, . . . , n}—as follows: Gaink0,i(·)
(or k1,i(·)) increases, if errorei(·) (or ėi(·)) draws close to
ψ0,i(·) (or ψ1,i(·)) (more aggressive control) and decreases,
if error ei(·) (or ėi(·)) becomes small (more relaxed control).

IV. PATH-FOLLOWING FUNNEL CONTROL

In this section we investigate the combination of funnel
control and path-following. We will design a combined
controller and, with that, will solve Problem 1 for rigid-
link revolute-joint robots as in (5). The proposed design is
based on a version of augmented system (4) that is tailored
to form (5).

Clearly, the rigid-link revolute-joint robot in (5) has a
global vector relative degree ofr = (2, . . . , 2)⊤.3 Hence
r̂ = 2 and we choose an integrator chain of length two
as timing law (3). So the augmented system (4) for path-
following of (5) reads
(
ẋ1

ẋ2

)
=

(
x2

M(x1)
−1

[
−C(x1,x2)x2−g(x1)−d(t)+u

]
)

(14a)

ż =

[
0 1
0 0

]
z +

(
0
1

)
v, (14b)

e = x1 − p(z1) (14c)

θ = z1 (14d)

The initial conditions are(x1(0), x2(0)) = (x0
1, x

1
2) ∈ R

2n

andz(0) = z0 ∈ R
2.

2Solutions of ordinary differential equations are considered in the sense
of Carathéodory (see e.g. Section 2.1.2 in [17]).

3Readers not familiar with the notion of a vector relative degree of a
nonlinear system are referred to [18, Sec. 5.1].

We design the path-following funnel controller based
on the augmented system description (14) including robot
dynamics (14a) with control inputu and the timing law (14b)
with virtual inputv. The combined controller will consist of
two parts: the funnel controller as in (12) with its gains as
in (13) and a (virtual) error-dependent feedback for the path
timing given by

v(t) = −κ
(
e(t), ė(t)

)⊤
z(t) (15)

whereκ : Rn × R
n → R

2. Now, the interesting question is
how to design the feedback for the virtual inputv of (14b)?
In principle, there are two options: either one relies onv =
−κ⊤z, with κ ∈ R

2
>0 being constant, or one allows error-

dependent path-parameter feedbacks of the form (15).

In the former case withv = −κ⊤z, it is straightforward
to designκ ∈ R

2
>0 such that the timing dynamics (14b) are

asymptotically stable.However, the degree of freedom to
adjust the timing along the path with respect to current error
information would be lost. This way one would turn the path-
following problem into a tracking problem withyref(·) =
p(θ(·)) and one could directly invoke Theorem 1 to conclude
that path-following funnel control is feasible.

The latter case withv from (15) is more interesting. It has
the appealing property that the current path deviation can
influence the evolution of the referencep(z1(·)). This way,
one may e.g. slow down the path evolutionp(z1(·)) for large
errorse(·) and/orė(·). For this case, it is not yet clear how
to design the gainκ : Rn × R

n → R
2 such that asymptotic

stability is guaranteed. In the next theorem we present
sufficient conditions guaranteeing stability of (14) subject to
error-dependent timing (15) and funnel controller (12).

Theorem 2 (Path-following funnel control).
Consider the augmented system(14) and let assumptions

(A1)-(A6) be satisfied. Moreover, assume the following holds

(A7) κ(·, ·) :=
(
κ1(·, ·), κ2(·, ·)

)⊤ ∈ C1(Rn × R
n;R2)

in (15) and there exist real constants0 < κ ≤ κ such
that for all α, β ∈ R

n:

0 < κ ≤ κ1(α,β) ≤ κ2(α,β) ≤ κ
and 1 + κ ≤ κ2(α,β).

}
(16)

Then, for any funnel boundary(ψ0(·),ψ1(·)) ∈ Bn2 , gain
scaling ς0(·), ς1(·) ∈ W1,∞(R≥0; [c,∞)n), c > 0 and
initial value (x0

1,x
1
2, z

0) ∈ R
n × R

n × R
2 satisfying∀ i ∈



{1, . . . , n} :

∣∣x01,i − pi(z
0
1)
∣∣ < ψ0,i(0) ∧

∣∣∣∣x
1
2,i −

∂pi(z
0
1)

∂θ
z02

∣∣∣∣ < ψ1,i(0),

(17)
the MIMO path-following funnel controller(12) with (13)
and timing feedback(15) applied to (14) yields a closed-
loop initial-value problem with the properties:

(i) there exists a solution(x1, x2, z) : [0, T ) → R
n ×

R
n × R

2 which can be maximally extended andT ∈
(0,∞];

(ii) the solution (x1, x2, z) does not have finite escape
time, i.e.T = ∞;

(iii) the path error e(·) as in (14c) and ė(·) are uni-
formly bounded away from the boundary, i.e.∀ i ∈
{1, . . . , n} ∃ε0,i, ε1,i > 0 ∀ t ≥ 0 : ψ0, i(t) − |ei(t)| ≥
ε0, i andψ1,i(t)− |ėi(t)| ≥ ε1,i;

(iv) the timing dynamicsz(·) are asymptotically stable;
(v) control action and gains are bounded,

i.e. u(·) ∈ L∞(R≥0;R
n), v(·) ∈ L∞(R≥0;R)

andK0(·), K1(·) ∈ L∞(R≥0;R
n×n).

The main difficulty in proving Theorem 2 is due to the
potential singularity in the right-hand side of the closed-loop
system (14), (12), (15). Hence, existence of a global solution
cannot be concluded by standard arguments and some care
must be exercised. The proof is quite similar to the proof of
Theorem 1 which can be found in [16]. And furthermore,
we rely on the proof of Theorem 3.3 in [10]. Due to space
limitations only the crucial steps are presented in detail.

Proof. Step 1: Some preliminaries
It is easy to see that (A1) implies

γ0In ≤ Γ0(y) :=M
−1(y) = Γ0(y)

⊤ ≤ γ0In. (18)

Define the constants∀ i ∈ {1, . . . , n} :
ς0,i := inft≥0 ς0,i(t) and ς1,i := inft≥0 ς1,i(t),

λ0,i := inft≥0 ψ0,i(t) and λ1,i := inft≥0 ψ1,i(t).
(19)

Furthermore, for path errore as in (14c) the augmented
system (14) may be written in the following form

d
dt

(
e

ė

)
=

(
ė

f̃(t, e, ė, z,u, v)

)
,

(
e(0)
ė(0)

)
=

(
x0
1 − p(z01)
x1
2 − ṗ(z0)

)

(20a)

ż =

(
0 1
0 0

)
z +

(
0
1

)
v, z(0) = z0 (20b)

θ = z1 (20c)

where ṗ(z0) :=
∂p(z01)

∂θ
z02 in (20a) andf̃ : R≥0 × R

n ×
R
n × R

2 × R
n × R → R

2n × R
2 reads

f̃(t, e, ė, z,u, v) =M(e+ p(z1))
−1·

[
−C

(
e+ p(z1), ė+

∂p(z1)

∂θ
z2
)
·
(
ė+

∂p(z1)

∂θ
z2
)

−g(e+p(z1))−d(t)+u
]
− ∂2p(z1)

∂θ2
(z2)

2− ∂p(z1)

∂θ
v.

Step 2: It is shown that Assertion (i) holds true, i.e. exis-
tence of a maximally extended solution.
It suffices to consider system (14) in the form (20). For
F(ψ0,ψ1)

as in (9) define the non-empty and open set

D :=
{
(t, (µ, ξ), z) ∈ R≥0 × R

2n × R
2
∣∣∣

(t,µ, ξ) ∈ F(ψ0,ψ1)

}
, (21)

and the functionfall : D → R
n×R

n×R
2, (t, (µ, ξ), z) 7→




ξ































Γ0(µ+ p(z1))

[

−C

(

µ+ p(z1), ξ +
∂p(z1)

∂θ
z2

)

·

·

(

ξ +
∂p(z1)

∂θ
z2

)

− g(µ+ p(z1)) − d(t)

]

−
∂2p(z1)

∂θ2
z22

−
∂p(z1)

∂θ
κ(e, ė)⊤z − diag

{

ς0,1(t)

ψ0,1(t)−|µ1|
, . . . ,

ς0,n(t)

ψ0,n(t)−|µn|

}2
µ

− diag
{

ς0,1(t)ς1,1(t)

(ψ0,1(t)−|µ1|)(ψ1,1(t)−|ξ1|)
, . . . ,

ς0,n(t)ς1,n(t)

(ψ0,n(t)−|µn|)(ψ1,n(t)−|ξn|)

}

ξ































(

0 1
−κ1(e, ė) −κ2(e, ė)

)

z




.

Then, for state variablêx := (e, ė, z), the initial-value
problem (12), (15),(20) may be expressed in standard form

d
dt
x̂(t) = fall(t, x̂(t)), x̂(0) =

(
x0
1 − p(z01)

x1
2 − ṗ(z0)

z0

)
. (22)

Furthermore, for any compact setT × S ⊂ D there
exist constantsmS ,MS , PS , QS > 0 such that for all
(t, (µ, ξ, z)) ∈ T × S:

‖(t, (µ, ξ, z))‖ ≤MS (23a)

min
i∈{1,...,n}

{ψ0,i(t)− |µi|, ψ1,i(t)− |ξi|} ≥ mS (23b)
∥∥∥∥
∂p(z1)

∂θ
z2

∥∥∥∥ ≤ PS (23c)
∥∥∥∥
∂2p(z1)

∂θ2
z22

∥∥∥∥ ≤ QS ∧
∥∥∥∥
∂p(z1)

∂θ
κ(e, ė)⊤z

∥∥∥∥ ≤ QS . (23d)

Then, for d(·) ∈ L∞(R≥0; R
n) and ς0(·), ς1(·) ∈

W1,∞ (R≥0,R
n
>0), and in view of Assumptions (A1)-(A7),

the functionfall(·, ·) has the following properties:
(i) fall(t, ·) is continuous for each fixedt ≥ 0;

(ii) for each fixed (µ, ξ, z) ∈ S the function
fall(·, (µ, ξ, z)) is measurable;

(iii) for almost all t ≥ 0 and for all(µ, ξ, z) ∈ S we have

‖fall(t, (µ, ξ, z))‖
(A1)−(A7), (23)

≤ MS

+ γ0

[
cC(PS +MS)

2 +MS + cg + ‖d(t)‖
]
+ 2QS

+ ‖ς0(t)‖
(
‖ς0(t)‖+ ‖ς1(t)‖

)
MS/m

2
S

+ (2κ2 + 1)MS =: lS(t)

wherelS(·) ∈ L∞(R≥0;R≥0) ⊂ L1
loc(R≥0,R≥0); and

(iv) for any compact setC ⊂ T ×S there exists a function
l̃C(·) ∈ L1(R;R≥0) such that for all(t, x̃), (t, ỹ) ∈ C:

‖fall(t, x̃)− fall(t, ỹ)‖ ≤ l̃C(t) ‖x̃− ỹ‖ .
Hencefall(·, ·) is a Carathéodory function (see [17, p. 84])
and invoking Theorem 2.1.14 in [17] yields existence of



a solution x̂ : [0, T ) → R
2n × R

2 of the initial-value
problem (22) withx̂([0, T )) ∈ D, T ∈ (0,∞]. Each solution
can be extended to a maximal solution. Moreoverfall(·, ·) is
essentially bounded and so, ifT <∞, then for any compact
C ⊂ D, there exists̃t ∈ [0, T ) such thatx̂(t̃) /∈ C. In the
following, let x̂ := (e, ė, z) : [0, T ) → R

n × R
n × R

2 be
a fixed and maximally extended solution of the initial-value
problem (22). Note that(e, ė, z) : [0, T ) → R

n × R
n × R

2

solves the closed-loop initial-value problem (20), (12), (15)
for almost allt ∈ [0, T ). This shows Assertion (i).

Step 3: Some technical inequalities are introduced.
In view of Step 1,e(·) and ė(·) are continuous on[0, T )
and evolve within the funnelF(ψ0,ψ1)

as in (9). Moreover,
due to the properties ofB2 in (7), it follows that ∀ i ∈
{1, . . . , n} ∀ t ∈ [0, T ) : |ei(t)| < ψ0, i(t) ≤ ‖ψ0, i‖∞ and
|ėi(t)| < ψ1, i(t) ≤ ‖ψ1, i‖∞. Hence

∀ t ∈ [0, T ) : ‖e(t)‖ < ‖ψ0‖∞ ∧ ‖ė(t)‖ < ‖ψ1‖∞. (24)

In view of (A7) and Theorem 2.14 in [19], the timing
closed-loop sub-system (14b), (15) is uniformly stable and
its solution evolves within a forward invariant compact set.
Hence,

∃Mz > 0 ∀ t ∈ [0, T ) : ‖z(t)‖ ≤Mz. (25)

Now, defined̂ : R≥0 × R
n × R

n × R
2 → R

n

(t,µ, ξ, z) 7→ d̂(t,µ, ξ, z) := Γ0(µ+ p(z1))·[
−C

(
µ+ p(z1), ξ +

∂p(z1)

∂θ
z2

)(
ξ +

∂p(z1)

∂θ
z2

)

−g(µ+p(z1))−d(t)
]
− ∂2p(z1)

∂θ2
z22−

∂p(z1)

∂θ
κ(µ, ξ)⊤z

and the constant

M := γ0

[
cC

(
‖∂p
∂θ

‖∞Mz + ‖ψ1‖∞
)2

+ cg + ‖d‖∞
]

+ ‖∂
2p

∂θ2
‖∞M2

z + ‖∂p
∂θ

‖∞
√
2κMz. (26)

Invoking Assumptions (A1)–(A7) yields

for a.a. t ∈ [0, T ) :
∥∥∥d̂

(
t, e(t), ė(t), z(t)

)∥∥∥
(18)
≤

Γ0(e(t) + p(z1(t)))

[
−C(·) ·

(
ė(t) +

∂p(z1(t))

∂θ
z2(t)

)

− g(e(t) + p(z1(t)))− d(t)
]
− ∂2p(z1(t))

∂θ2
z2(t)

2

− ∂p(z1(t))

∂θ
κ(e(t), ė(t))⊤z(t)

(24),(26)
≤ M,

It follows from Assumptions (A1)–(A7) that ∀ i ∈
{1, . . . , n} for a.a. t ∈ [0, T ) :

|d̂i
(
t, e(t), ė(t), z(t)

)
| ≤M. (27)

Inserting (12) and (15) into (20a) and invoking (27) yields

∀ i ∈ {1, . . . , n} ∀ t ∈ [0, T ) :

−M − k0,i(t)
2 ei(t)− k0,i(t) k1,i(t) ėi(t) ≤ ëi(t)

≤M − k0,i(t)
2 ei(t)− k0,i(t) k1,i(t) ėi(t). (28)

Step 4: For all i ∈ {1, . . . , n} it is shown that|ei(·)| is
uniformly bounded away from the boundaryψ0, i(·); more
precisely for positive

ε0,i ≤ min
{
λ0,i

4 ,
ψ0,i(0)−|ei(0)|

2 ,
1
2 δiς

2
0,i
λ0,i

β+
√

β2+2δ2i ς
2
0,i
λ0,iM

,

1
2 δiς0,iλ0,i

2‖ς1,i‖∞‖ψ1,i‖∞+
√

4‖ς1,i‖2
∞‖ψ1,i‖2

∞+2δ2i λ0,i(M+‖ψ̇1,i‖∞)

}
, (29)

with β := 2ς0,i‖ς1,i‖∞‖ψ1,i‖∞+δi

(
‖ψ1,i‖∞ + ‖ψ̇0,i‖∞

)2

,
λ0,i, λ1,i, ς0,i and ς1,i as in (19), δi = δ as in (7)
and M as in (26), it holds that ψ0,i(t) − |ei(t)| ≥
ε0,i for all i ∈ {1, . . . , n} and all t ∈ [0, T ).
Choosei ∈ {1, . . . , n} arbitrarily and note that forε0,i
as in (29) the Steps 3a-e in the proof of Theorem 3.3
in [10] go through without changes (settingγ = 1
and ε0,i = ε0). Hence the claim of Step 4 holds true.

Step 5: For all i ∈ {1, . . . , n} it is shown that|ėi(·)|
is uniformly bounded away from the boundaryψ1, i(·); more
precisely for positive

ε1,i ≤ min
{
λ1,i/2, ψ1,i(0) − |ėi(0)|, Mε

}
, (30)

with Mε :=
1
2 ς0,iς1,iλ1,iε

2
0,i

‖ψ0,i‖∞(M+‖ψ̇1,i‖∞)ε20,i+‖ς0,i‖2
∞‖ψ0,i‖2

∞

, M as

in (26)andε0,i as in(29), it holds thatψ1,i(t)−|ėi(t)| ≥ ε1,i
for all i ∈ {1, . . . , n} and all t ∈ [0, T ). Again choosei ∈
{1, . . . , n} arbitrarily and observe that identical arguments
as in Step 4 of the proof of Theorem 3.3 in [10] (setting
γ = 1 andε1,i = ε1) show the claim of Step 5.

Step 6: It is shown that Assertions (ii)-(v) hold true.
For M as in (26),Mz as in (25),ε0,i as in (29) andε1,i as
in (30), i ∈ {1, . . . , n} define

C :=
{
(t, (µ, ξ), z) ∈ [0, T ]×R

2n×R
2
∣∣∣ ∀ i ∈ {0, . . . , n} :

|µi| ≤ ψ0, i(t)−ε0, i ∧ |ξi| ≤ ψ1, i(t)−ε1, i ∧ ‖z‖ ≤Mz

}
.

Let D be as in (21) (see Step 2). IfT < ∞ then
C ⊂ D and contains the whole graph of the solution
t 7→ (e(t), ė(t), z(t)), which contradicts maximality of the
solution. HenceT = ∞. Assertion (iii) follows from Step 4
and Step 5. Invoking Lemma 1 (in the Appendix) yields
asymptotic stability of (14b), (15), which shows Assertion
(iv). Moreover, Step 4 and Step 5 with boundedness of
ς0(·) and ς1(·) on R≥0 imply that K0(·) andK1(·) are
uniformly bounded onR≥0, respectively. Then, from (24),
(A1) and (12), it follows thatu(·) is uniformly bounded
on R≥0. Note thatκ(·, ·) ∈ L∞(Rn × R

n;R2) follows by
Assumption (A7) which with boundedness ofz(·) implies
v(·) ∈ L∞(R≥0;R). Hence Assertion (v) is shown. This
completes the proof.



V. SIMULATION EXAMPLE

In this section, we present simulations as a proof of
concept. We apply path-following funnel controller (12) with
timing feedback (15) (to be specified later) of a planar elbow-
like rigid-link revolute-joint robot with two joints actuated by
u1 andu2 [Nm], respectively (see Fig. 2). The links are as-
sumed massless and have lengthl1 andl2 [m]. Point masses
m1 andm2 [kg] are attached to their distal ends, respectively.
Control objective is path-following funnel control of joint
anglesy1 and y2 [rad] with prescribed path accuracy. The
mathematical model of this robot [15, p. 259ff.] is given by

M(y(t)) ÿ(t) +C(y(t), ẏ(t)) ẏ(t) + g(y(t)) = u(t) (31)

with initial value (y(0), ẏ(0)) = (0,0), inertia matrix

M : R
2 → R

2×2, y 7→M(y) :=[
m1 l

2

1 +m2 (l
2

1 + l22 + 2l1l2 cos(y2)), m2(l
2

2 + l1l2 cos(y2))

m2(l
2

2 + l1l2 cos(y2)), m2l
2

2

]
,

(32)

centrifugal and Coriolis force matrix

C : R2 × R
2 → R

2×2, (y,v) 7→ C(y,v) :=[
−2m2l1l2 sin(y2)v1, −m2l1l2 sin(y2)v2

−m2l1l2 sin(y2)v1, 0

]

and gravity vector

g : R
2 → R

2, y 7→ g(y) :=

g

(
m1l1 cos(y1) +m2(l1 cos(y1) + l2 cos(y1 + y2))

m2l2 cos(y1 + y2)

)

where g = 9.81
[
kgm2

]
is the (rounded) gravity con-

stant. For simplicity, disturbances (and measurement errors,
e.g. noise) are neglected. The planar robot satisfies Assump-
tions (A1)-(A5) [16]. The considered pathθ 7→ p(θ) =
(cos(θ), sin(θ))⊤ is a circle in the joint space. The initial
condition for the path-parameter state isz(0) = (θ0, 0)

⊤

with θ0 = −1.1π. The aim is to steer the robot to the end
of path atp(0) = (1, 0)⊤. Robot and controller parameters
are collected in Tab. I. Note that for controller design solely
the inertia matrix must be known. As timing feedback (15),
we implement the following error-dependent feedback

v(t) = −α(e(t), ė(t))κ⊤z(t) (33)

to adjust the timing in (14b). The error-dependent scaling
α : Rn × R

n → R>0 is chosen as

α(e(t), ė(t)) =
αmax + αmin(‖e(t)‖+ ‖ė(t)‖)

‖e(t)‖+ ‖ė(t)‖+ 1
, (34)

whereαmin = 0.82 andαmax = 10 are fixed constants. The
intuition behind the choice ofα(·, ·) in (34) is as follows: For
large errors the timing should be decelerated and for small
errors it is accelerated again. This is achieved by (34),
sinceα(·, ·) is a strictly decreasing function of‖e‖ + ‖ė‖.
Its maximum αmax is attained as‖e‖ + ‖ė‖ → 0 and,
furthermore, it tends toαmin as‖e‖+ ‖ė‖ → ∞.
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Fig. 3: Errors e(·), ė(·) and control actionu(·).

For the specific values listed in Tab. I, the productα(·, ·)κ
satisfies (16) withκ = αminκ1 = 0.082 (i.e. the case‖e‖+
‖ė‖ → ∞), 1 + κ = 1.082 < αminκ2 = 1.0906 and κ =
αmaxκ2 = 13.3 (i.e. the case‖e‖+ ‖ė‖ → 0).

The simulation results are shown in Figures 3, 4 and 5.
As can be seen in Fig. 3, the funnel controller (12) achieves
path-following with prescribed transient accuracy for joint
positionsy1(·),y2(·) and joint velocitiesẏ1(·), ẏ2(·), respec-
tively. Both joint position errorse1(·), e2(·) and both joint
velocity errors ė1(·), ė2(·) evolve within the performance
funnel. The two spikes in the errors and inputs beforet = 20s
and at t = 25s are due to the nonlinear coupling of the
robot joints. Furthermore, Fig. 4 illustrates the closed-loop
dynamics of the path parameter states and the scalingα(·)
in the timing feedback (33). Note that the two spikes in the
errors beforet = 20s and att = 25s lead to reduced values
of α(·), cf. (34). The behavior of the proposed path-following
funnel controller in they1 − y2 plane is depicted in Fig. 5.
The robot approaches the path and follows it along with
prescribed accuracy.

VI. CONCLUSIONS

In this paper we have investigated the application of funnel
control to path-following problems of rigid-link revolute-
joint robotic systems. We showed that under suitable assump-
tions prescribed path accuracycan be guaranteed. Future
work will focus on (i) disturbance rejection properties, (ii)
robustness of the proposed control scheme in comparison
to other path-following approaches and (iii) establishinga
feasibility condition in presence of actuator (input) saturation
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z2(·)

θ(·) = z1(·)

Fig. 4: Timing statesθ(·) = z1(·), z2(·) and scalingα(e(·), ė(·)).

y1 [rad]

y
2
[r
ad

]

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
p(θ(·))
(y1(·), y2(·))

Fig. 5: Trajectory in they1 − y2 plane with pathp(θ(·)).

(in the spirit of [11]). Furthermore, it is still an open question
how to design the path parameter feedback (15) such that
strict forward motion along the path is enforced (e.g. path-
following in finite time).

APPENDIX

Lemma 1 (see Theorem 2.15 in [19]).
Let α0(·), α1(·) ∈ C1(R≥0;R) andα ≥ α > 0 and consider
the planar linear time-varying system given by

ż(t) =

(
0 1

−α0(t) −α1(t)

)
z(t), z(0) = z0 ∈ R

2. (35)

If (i) 0 < α ≤ α0(t) ≤ α1(t) ≤ α and (ii) 1 + α ≤ α1(t)
for all t ≥ 0, then system(35) is asymptotically stable.
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