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Abstract—In this paper we investigate the application of
funnel control to unconstrained path-following problems. While
funnel control is a high-gain based time-varying feedback
strategy applicable to minimum-phase systems with known
relative degree, path following refers to the problem of tracking
a reference path in an output space. A particular feature of
path following is that the timing along the reference path
is not determined a priori. The timing is adjusted online by
the controller and may be exploited to improve the tracking
performance. We show that the combination of funnel control
and path following is applicable to fully-actuated rigid-link
revolute-joint robots.

that the path error (difference between regulated outpdt an
desired path) is always kept within prescribed bounds.
The remainder of this paper is organized as follows: In
Section Il we recall output path-following problems and in-
troduce the considered class of robotic systems. In Selttion
we briefly re-visit funnel control for reference tracking of
this system class. In Section IV we give sufficient condiion
which allow to combine funnel control with path following.
In Section V we apply path-following funnel control for
position control of a planar (elbow-like) robot and present

simulation results as a proof of concept.

[. INTRODUCTION )
o ] Notation
Usually, one distinguishes the control problems of set-N R C

point stabilization and trajectory tracking. While the fam a,b)
refers to the task of stabilizing a feedback system aroun -0, Rsg
a point in state space, the latter describes the design of, € R",0, € R"
controllers which ensure tracking of time-varying referes. 4 c RPXm
However, not all control problems fit into this framework. det(A), spec(A)
For instance, consider the task to steer a robot along a prediag{al’ ey an)
specified (prescribed) geometric curve in its workspace (or_ -~ nxn
the corresponding joint space), whereby the speed to move ™’ I, eR
along the curve is not fixed a priori. Such problems are f(-); f(?)
usually referred to as path-following problems, see [1]-[3 _
Different approaches to solve path-following problems are £ (t) := - f(t)
discussed in the literature: In [1], [2] and [4], [5] backste C™(I;Y)
ping, respectively, geometric control are considered.3lp [
[6], [7] tailored predictive control schemes are presented Ei’loc)(l ;Y)
the present contribution, we investigate the application o
funnel control to path-following problems of rigid revohit
joint robotic systems.
Funnel control—developed by lichmann et al. |[f|
(see e.g. [8]-[11] and references therein) for systemsW®>(I;Y)
with bounded-input bounded-output (BIBO) stable zero-
dynamics, known relative degree and known sign of the
high-frequency gain—is a high-gain based time-varying
control strategy which guaranteéscking with prescribed
transient accuracyi.e. the absolute value of the control

£ (1Y)

natural, real and complex numbers.
interval froma to b (excluded).
positive real numbers, with zero.
column, zero vector.

matrix with n-rows & m-columns.
determinant, spectrum oA € R™*".,
diagonal matrix withaq,...,a, € R

o

= diag{1,...,1}, := [";1 ;:T;:j
a functionf: I C R>o - Y C R",

n € N; value of f(-) at¢ € I.

the i-th (time) derivative off(-) att.
space ofn-times continuously differ-
entiable functions mapping — Y.
space of measurable, (locally)-
integrable functions.

space of measurable, (locally) essen-
tially bounded functions with norm:
= esssup, e, || F(1)]]

space of bounded locally absolutely
continuous functions with essentially
bounded derivativeg” € £>(I;Y)
forallie {1,...,k}.

Il. PATH-FOLLOWING PROBLEMS

error (difference between regulated output and referenceWe consider nonlinear continuous-time, control-affine sys
signal) islimited by a prescribed (possibly non-increasingjtems of the following form

function of time.
In this contribution we will combine both methods. The
combination of funnel control and path following assures

*1 Corresponding author: C.M. Hackl is leader of the researciug
“Control of renewable energy systems (CRES)” at the Municha®t of
Engineering (MSE), Technische Universitdt Munchen (TUMBgrmany,
chri st oph. hackl @um de

TT. Faulwasser is with the Laboratoire d’Automatique, EcolelyP "
technigue Fédérale de Lausanne, CH-1004 Lausanne, Sestder R™, (917 s
timm f aul wasser @pfl.ch

z=f(x)+ Zu:gj(m)uj, x(0) = xg € R (1a)
j=1

y = h(=), (1b)

wherexz € R"= is the stateu € R™ is the input and
y € R™ is the output (with dimensiona,, n,, n, € N).
Subsequently, we assume that the vector figidsR"= —
1Gy,) R — R X" andh : R" — R™
are sufficiently often continuously differentiable.



In the present contribution we consider the problem oflescription

following a geometric curve na,
P={yeR™ |HcR—y=p0)} (2) Sl Zlgj(w)uj, z(0) =z €R™  (43)
=
in the output-space defined by (1b). The referefitds L~ 0;_1 -
denoted apathandp : R — P is called its parametrization. z=ILiz+ | 7] |v, 2(0)=2€R (4b)
We assume thaf® is a regular curve [12] and that its e = h(z) — p(z1) (4c)
parametrizatiorp is sufficiently often continuously differen- g Y (4d)
= Z1.

tiable. The main idea of path following is that the timing—

i.e. the mapt — 6(t)—is not determined a priori. Rather Here, (4a) includes the dynamics of the system to be

it is a degree of freedom and has to be calculated online gbntrolled (1a); in (4b) the timing law (3) is written with
the controller. Formally, we consider the following cottro , — (9 4,... #("~1)T. The error output (4c) represents

problem: the deviation from the path and (4d) describes the current
reference position on the path.

The main idea behind this augmented system description
for path-following problems is that (4) can be mapped into
path-following specific coordinates, i.e. a so-call@dns-
verse normal form[3], [5]. We will show later that this
i) Prescribed path accuracy: The system output = h(x)  description of path-following problems allows the design o

converges such that foratl> 0: path-following funnel controllers for rigid-link revoletjoint

Vie{l,....on}: [hi(z(t) —p(0@)] < to.(t). robotic systems.

if) Convergence on path: The system moves aloiysuch  Rjgid-link revolute-joint robotic systems
that

Problem 1 (Output path following)

Given systen(la), reference patlP as in(2) and prescribed
function ;o : R>g — Ry for ¢ € {1,...,n,}, designa
feedbacku and a timing# which achieve:

lim [|6(t)]| = 0. Subsequently, we restrict the investigations to path fol-
oo lowing for rigid, fully-actuated robotic systems with ex-
Here we consider an output path-following problem withclusively revolute jointsp € N. Such an degree-of-freedom
prescribed path accuracyi.e. we want to enforce that the robotic manipulator is described by
absolute value of each path-following errdr; () — p;(6)] .
is always bounded by the prescribed function,(-). One <w1> — ( L2 )

-1
should note that in the literature path-following problems\*2 M (z1) [_C(‘Tl’w2)w2_g($1)_d(t)+“(!5a)
usually require convergence of the output to the path (¢f. [1
Y oo v P A AT L (5)

[7]) instead ofprescribed path accuracyFurthermore, the
convergence-on-path requirement is sometimes replaced With initial value (z,(0), z2(0)) = (x9, ) € R?". For
strict forward motion, i.e. it can be required thé&t) > 0  details on this model we refer to [13, p. 77]. The signals
holds for all¢, see [1]. x1 in [rad]” and x2 in [rad/s]" represent joint angle and
The main idea of path-following is to regard the pathoint speed (vector), respectivel\ (-) € C(R™;R™*") is
parametel as a virtual state of the control problem whoséhe position dependent inertia matrix. For our approach,
dynamics are governed by a timing law, e.g. of the fornthe inertia matrixM () must be known. MatrixC(-,-) €
6 = g(6,v) whereg: RxR — R (see [1], [2]). The timing C(R*";R"*") is the position and speed dependent cen-
law includes an additional (virtual) control input! In the trifugal and Coriolis force matrixd(-) € L£>(R>o;R")
following we will use this extra input to control the evoloti ~ represents an exogenous disturbance g € C(R™; R™)
of the reference along® and to enforce prescribed pathis the position dependent gravity vector. The robot is aetlia
accuracy. However, we do not use a first-order timing lawly joint torque vectors [Nm|" (control input). We do not
For # € N, we consider a chain of integrators as dynamicgonsider friction. The following assumptions are imposed o
of 9, i.e. model (5) and path (2):

o) (t) = v(t), F10) (0) = 9(()07 ief{l,...,7}. (3 (A1) the inertia matrix is uniformly bounded from above and

below (see e.g. [14]), i.e3Cnr,cpy > 0Vy € R™:
The length of this chain of integrators is chosen to equal the T
maximum element of the vector relative degree of system 0 <epln < M(y) = M(y) <emln;

(1a). Similar to [3], [7] we rely on this timing law and (a,) the centrifugal and Coriolis force matrix is upper
tackle path-following problems via an augmented system — poyunded (see e.g. [13, Sections 4.2]) as follows

deo > 0Vy,v,w e R": [|C(y, v)w| < collv|[wl);

1The problem of tracking output trajectories can be undetstas a . . .
special case of output path-following with fixed referenaeirg, i.e. in (A3) the gravity vector Is un'formly bounded (See €.g. [13,

6 = g(0). The external input does not appear. Sections 4.3]), i.edcg > 0Vy e R™: ||g(y)] < cg;



(A4) the exogenous disturbance is bounded, dé.) <
L:OC (Rzo, R"’)

(As) joint anglesz(-) and velocitieses (+) are available for
feedback (measured signals);

(Ag) the pathP is contained in a compact subsgt c
R™ and its parametrization satisfies(:) € C* N
WQ,OO(R;Rn)_

Assumptions (A)-(As) are intrinsic properties of rigid
robotic manipulators with exclusively revolute joints Qse

e.g. [13, Sections 4.1-4.3]). Assumptions JAAs5) are re-

alistic for position control problems of mechatronic sys-
tems (see e.g. [10] and [15, p. 210-213 and 290-292])\; := hmmfil)ol()

Assumption (4&) is used to simplify the proof of our main
result in Sec. IV.

I11. FUNNEL CONTROL FOR RIGID-LINK
REVOLUTE-JOINT ROBOTIC SYSTEMS

Funnel control (see e.g. [8]-[11]) is a high-gain based

time-varying output feedback control strategy which goara
teestracking with prescribed transient accurady allows for

(Yo(-),%1(-)) € By (with By as in (7)), tracking error
e() = y(-) = Yret (1) @)

and speed tracking erroé(-) = ¢(-) — ¥,.¢(-) shall evolve
within the “performance funnel” given by

.7:(,4,0’,4,1) = {(t,g,’l’]) S Rzo x R™ x R™ ‘
Vie{l,...,n}: |&] <vo,i(6) Alm| <1,4(t)}, (9)
e. (t,e(t),e(t)) € Fryp,,) for all t > 0. The asymptotic

accuracies of the limiting functlons (see Fig. 1) are givgn b
and A1 := lim Hlf’t[)l’z(t)
’ t—o0

Example 1. LetAg; > Ag; > 0,Tg >0 [s]jandA; ; > 0 [s]
for i € {1,...,n}, then a possible-th sub-boundary is

(V0,35 ¥1,i): R>0 = (Ao,i, Moi] X (A1, (Aoi—Xo,)/TE],

(Mo,i — Aoyi) exp (=t/Tg) + Ao ¢>
t— . (0
( Ao 20 exp (—t/T) + Ari (10)
Boundary (10) is positive, non-increasing, bounded

gain increasand decrease (in contrast to classical high-gaind smooth. Its asymptotic accuracies are given by
adaptive controllers). Measurement noise is tolerated (b(o,i, A1,:). The boundary ‘starts’ aA;, Roidoi 4y, )
neglected in this paper). Simple root locus analysis sha thand  its  derivative is  essentially  bounded
relative-degree-two systems are not in general stablbizab((Ao.i — Xo.i)/Te, (Ao — Xo,i)/T). By settingd; := A1 ;
by simple high-gain output feedback: either a backsteppirgnd noting thatw; ;(t) > —(t) + 6; for (almost) all
controller [9] or derivative feedback [11] is necessary. t > 0 in (10), it is easy to see thgtl0) is element of3,.
Based on the single-input single-output (SISO) results

in [10], [11] of funnel control with derivative feedback for

by

If the inertia matrix M (-) of (5) is known, then the
MIMO funnel controller is a simple proportional-derivativ

relative-degree-two systems and its application to positi

control problems of mechatronic systems, an extensiongto t

multi-input multi-output (MIMO) case of rigid-link revoke-
joint robots (5) withknowninertia matrix is presented in [16].
For a given time-varying reference y, ()
Yiret(:), -+, Unret (1)) T € W2H®(Rso;R™), the control
objective istracking with prescribed transient accuradgr

controller. Its properties are stated in the following tesn,

see also Theorem 3.1 in [16].

Theorem 1.

Let n € N and consider an-th DOF rigid-link revolute-
joint robotic manipulator of form(5) with known iner-
tia matrix M(-) and which satisfies assumptions A

position and speed tracking error of each jaist {1,...,n}  (A;). Then, for arbitrary position referencey,;(-) €
(see Fig. 1), i.e. W2 (R0, R™), funnel boundary(v(-),%,(-)) € Bz,

. _ gain scalingso(+), s1(-) € WH°(Rx0; [¢c,00)™), ¢ > 0 and

vE=0: |?Z(t)‘ = Wirer(t) = 9i(0)] < Vo) A initial value (x9, z}) € R?" satisfying¥i € {1,...,n} :
|€7;(t)‘ - ‘yz ref( ) (t)| < ¢1 L( ) (6) | 0 (O)| w (O) d ‘ 1 . (0)| ’(/} (0)
T1; — Yref,i < o, and x5 ; — Yref,i <Y1

Where 'lpo() = (’(/}0,1(')’ ... ?wo,n(')) T € (11)
W (Rx0;(0,00)) andep, (-) := (¥1,1(-), -, ¥1a(-)) " €  the MIMO funnel controller

W (R>; (0,00)) are the sub-funnel boundaries for
position and speed error, respectively. Foriadl {1,...,n},
the boundary function$yo ;(-), ¥1,:(-)) are chosen from

u(t) = —M (1 (1)) (Ko(t)’e(t)+ Ko K1 (2(t)) (12)

with gain matrices

k (t)
By = { (1ho, 1) R — R _ - S
’ {(% e K(;(t) | ) 0= G
(1) Vie {0, 1} Je; > 0: wz() e wh OO(R>()7 [sz ))} (7) an k11 (1) ) i(t)
(ii) 36 > 0 for a.a. t > 0: P (t) > — S aho(t) + K, (t) = [ kl,nu)]’ kiai(t) = Gl — e
Condition (i) in (7) is essential: only if an error derivegi wherei € {1,...,n},

with sign(e; (t))éi(t) < S4p.(t) is admissible/feasible, (13)
then the errore;(t) “may depart” from sub-boundary applied to(5) yields a closed-loop initial-value problem with
10,;(t) (see Fig. 1). In other words, for funnel boundarythe properties:



P1,i(t) > — & o (t) +

o ¥1,4(0)
/Mm(t) \\/
G
—Xo,i \\// t U —
/\>§m-funnéeil(o)
—10,4(0) ! —11(0)

Fig. 2: Planar (elbow-like) rigid-link
revolute-joint robotic manipu-
lator.

Fig. 1:i-th sub-funnel for the-th joint, € {1,...,n}: Position errore;(-)
and speed errog;(-) with sub-funnel boundariego;(-) and 11 ,;(+).

(i) there exists a solutidn(z;(-), z2(+)) : [0,T) — R*" We design the path-following funnel controller based
which can be maximally extended afide (0, oo]; on the augmented system description (14) including robot
(i) the solution(x(-),z2(-)) does not have finite escapedynamics (14a) with control input andthe timing law (14b)
time, i.e.T = oo; with virtual inputv. The combined controller will consist of
(iii) the tracking error e(-) as in (8) and &(-) are uni- two parts: the funnel controller as in (12) with its gains as

formly bounded away from the boundary, i €
{17. .. ,TL} 36071',5171' >0Vt>0: 1/)01(t) — |61(t)| >
€o,; and y ;(t) — [€;(t)] > €1,

(iv) control action and gains are bounded, i.e() €
;CDO(REQ,R”) and KO('), Kl() € £OO(R20;R7"X").

Proof. See [16]. O
Remark 1 (Time-varying gains) Gain “adaptation” in (12)

is—for each jointi € {1,...,n}—as follows: Gainkg ;(-)
(or k1,:(+)) increases, if errore;(-) (or é;(-)) draws close to

in (13) and a (virtual) error-dependent feedback for thé pat
timing given by

v(t) = —k(e(t), ét)) ()

wherek : R” x R® — R2. Now, the interesting question is
how to design the feedback for the virtual inpubf (14b)?
In principle, there are two options: either one relieswoa
—k "z, with k € R, being constant, or one allows error-
dependent path-parameter feedbacks of the form (15).

(15)

In the former case withh = —k " z, it is straightforward

Yo,:(+) (Or ¥1,4(-)) (more aggressive control) and decreasesio designs € R2,, such that the timing dynamics (14b) are
if error e;(-) (or é;(-)) becomes small (more relaxed control).asymptotically stableHowever the degree of freedom to

adjust the timing along the path with respect to currentrerro
information would be lost. This way one would turn the path-

In this section we investigate the combination of funnefollowing problem into a tracking problem witly,.(-) =
control and path-following. We will design a combinedP(f(-)) and one could directly invoke Theorem 1 to conclude
controller and, with that, will solve Problem 1 for rigid- that path-following funnel control is feasible.
link revolute-joint robots as in (5). The proposed design is The latter case with from (15) is more interesting. It has
based on a version of augmented system (4) that is tailor@e appealing property that the current path deviation can
to form (5). influence the evolution of the referenggz, (-)). This way,

Clearly, the rigid-link revolute-joint robot in (5) has aone may e.g. slow down the path evolutipfx, (-)) for large
global vector relative degree of = (2,...,2)".® Hence errorse(-) and/oré(-). For this case, it is not yet clear how
7 = 2 and we choose an integrator chain of length twao design the gaim : R™ x R™ — R? such that asymptotic
as timing law (3). So the augmented system (4) for pathstability is guaranteed. In the next theorem we present

IV. PATH-FOLLOWING FUNNEL CONTROL

following of (5) reads

_ T2

<z;> B <M(=’B1)_1 [—C (21, @2)m2—g(1) —d(t)+u]>

(14a)
L= [8 (ﬂ z+ (2) v, (14b)
e=x —p(x)

0=z (14d)

The initial conditions aréz;(0), x2(0)) = (x, 1) € R?®
andz(0) = 2° € R2,

2Solutions of ordinary differential equations are considein the sense

of Carathéodory (see e.g. Section 2.1.2 in [17]).
SReaders not familiar with the notion of a vector relative @egof a
nonlinear system are referred to [18, Sec. 5.1].

(14c) (A7) k() =

sufficient conditions guaranteeing stability of (14) subj®
error-dependent timing (15) and funnel controller (12).

Theorem 2 (Path-following funnel control)
Consider the augmented systéfal) and let assumptions
(A1)-(Ag) be satisfied. Moreover, assume the following holds

(k1) 52(~7~))T € C'(R" x R™R?)
in (15) and there exist real constants< k < % such
that for all o, 3 € R™:

boao)

0 <k <ri(a,B) < kz(a,B) <R

and 14k < ka(e, B).
Then, for any funnel boundarfnp,(-), ¥, (-)) € By, gain
scaling (), s1(-) € WH°(Rso;[c,00)"), ¢ > 0 and
initial value (9, z}, 2°) € R" x R™ x R? satisfyingVi



{1,...,n}: Step 2: It is shown that Assertion (i) holds true, i.e. exis-
Opi(20) tence of a maximally extended solution.
|23 = pi(2))| < 0,:(0) A |3 — péel 29| < 414(0), It suffices to consider system (14) in the form (20). For
(17) Fapop,) @S I (9) define the non-empty and open set

the MIMO path-following funnel controlle(12) with (13) o 5
and timing feedback(15) applied to (14) yields a closed- D:= {(72 (1,€),2) € Rz x R x R ’
loop initial-value problem with the properties:
v o promen PoP (t,1.€) € Py b» (21)
(i) there exists a solutior{z;, x2, z) : [0,T) — R™ x
R"™ x R? which can be maximally extended afide  and the functionf,;, : D — R" x R" x R?, (¢, (i, £), z) —

(0, o0;
(i) the solution (x1, x2, z) does not have finite escape ¢ op(z1)
time, i.e.T = oc; To(p + p(21)) [ -C (u+p(21), £+ %91 Z2> :
(iii) the path error e(-) as in (14c) and é(-) are uni- op(z1) sl PG
formly bounded away from the boundary, i¥¢i e '(5+ 20 z2> ~9(nFp()) —dt)| = =55 2
{17 e 7n}' HEO,i;EI,? >0Vt Z 0: 1pO,Z(t) - |el(t)| Z 761:;;1) (e, é)Tz 7diag{1/)0,;(i’tl>(_tl)m‘ ..... wo;o(’g(_t‘)un‘ }2u
€0,14 and ¢17i(t) — \ez(t)\ > €1,i» 7diag{ ‘ 50,1 (t)s1,1(t)
(iv) the timing dynamicg(-) are asymptotically stable; | Wo’iéf’i?t‘)‘ii‘,iffi%*l“’HEI”g
(v) control acton and gains are  bounded, om @ Tin 1 (71D
ie. u(-) € LORso:R"), v() € L%Rse;R) ri(e,8) —male,e))
and Ko(-), K1() € L2(Rxo; R™"). Then, for state variabl@ := (e, é, z), the initial-value
The main difficulty in proving Theorem 2 is due to theProblem (12), (15),(20) may be expressed in standard form

potential singularity in the right-hand side of the clodedp d R R =) — PG
system (14), (12), (15). Hence, existence of a global smiuti g T = fa(t,z(t), 2(0)= (wz ~pee >>~ (22)
cannot be concluded by standard arguments and some care

must be exercised. The proof is quite similar to the proof of Furthermore, for any compact s&t x & c D there

Theorem 1 which can be found in [16]. And furthermore,exist constantsms, Ms, Ps,@s > 0 such that for all

we rely on the proof of Theorem 3.3 in [10]. Due to spacét’ (n.€,2)) € T x S
limitations only the crucial steps are presented in detail. I(t, (&, 2))|| < Ms (23a)
Proof. Step 1: Some preliminaries ieg}fl}m}wo,i(ﬂ — |pils 1i(t) = &1} > ms (23D)
It is easy to see that (A implies

. - Hap(Zl) z9|| < Ps (23C)

EI” <To(y) =M (y) =To(y) <oln. (18) ) 99
0 0

Define the constantgi € {1,...,n}: ‘ ge(jl) || < Qs A H%(;l) k(e e) z|| < Qs. (23d)
So.i 2'= i'nfftzo S0,i(t) andd S = il%ftfzo c1,i(t)s (19) Then, for d(-) € L>®(Rxo; R") and ¢o(-),s1(-) €
Ao i=infi>o¢o,i(t)  and Ay :=infi>oth1(t). Wt (Rso,R%,), and in view of Assumptions (A-(A7),
Furthermore, for path erroe as in (14c) the augmented the functionf (-, ) has the following properties:
system (14) may be written in the following form (i) fan(t,-) is continuous for each fixetl> 0;

. 0 _ (0 (i) for each fixed (u,&,2) € S the function
() ()~ CI30) O B 2T fene
(20a)

) (iii) for almost allt > 0 and for all(u, &, z) € S we have
(A1)—(A7), (23)

5 (5)

a. t7 ) 7Z S M
s (8 (1)) - <(1)> v, 2(0) = 2° (200) [ fan(t, (1, € ))||2 s
+ 75 [cc(Ps + Ms)? + Ms + cq + [d(1)]| | +2Qs
0= (20c)
' . +lso@®1 (sl + lls1(®)]l ) Ms /m

where p(z°) := Op(=1) 29 in (20a) andf : R>o x R™ x + (2R + 1)Ms =: Is(t)

R™ x RZ x R” x R — R?" x R? reads wherels(-) € L2(R>0;R>0) C L .(R>0,R>0); and
- ) . (iv) for any compact set C 7 x S there exists a function
f(t.eé zuv)=M(e+p(zn)) - le(-) € LY(R;Rx0) such that for all(t, &), (t,7) € ¢

. 0p(z . Op(z ~ _ ~ JU
[~ Cle+pla)e+ 222 ) (o4 P21 £ur68) = Fan (0] < Te(®) 13— 3.
_ Pp(z) ~ Op(z1) Hencef.,,(-,-) is a Carathéodory function (see [17, p. 84])

_ _ 2
gletp(z1)) d(t)+u] 062 (z2) a0 and invoking Theorem 2.1.14 in [17] yields existence of



a solutionz : [0,7) — R2?" x R? of the initial-value Inserting (12) and (15) into (20a) and invoking (27) yields
problem (22) withaz([0,7T")) € D, T € (0, oo]. Each solution

can be extended to a maximal solution. Moreoyeg (-, -) is Vie{l,....,n}Vte[0,T):
essentially bounded~and s0,1if < oo, then fgr any compact — M — ]gOJ(t)Q ei(t) —koi(t) k1 s(t) é:(t) < &)
¢ C D, there exists € [0,T) such thatz(t) ¢ ¢. In the < M — ko (82 eilt) — ko.(t) ka(t) é(t).  (28)

following, let z := (e, é,2): [0,T) — R" x R" x R? be
a fixed and maximally extended solution of the initial-value Step 4: For alli € {1,...,n} it is shown thatle;(-)| is
problem (22). Note thate, e, z) : [0,7) — R"® x R* x R?  uniformly bounded away from the boundayy ;(-); more
solves the closed-loop initial-value problem (20), (126) precisely for positive

for almost all¢ € [0,T). This shows Assertion (i).

, (O)—es 16i2 Noi
€0 < min{%ﬂo”(o)g e (0) So. %0
B+\/ﬂ2+252<0 Ao M’
Step 3: Some technical inequalities are introduced. 165, Ao
In view of Step 1,e(-) and é(-) are continuous o0, T') QHWHOCle,i|\x+\/4|\q,i\|§ole,i\|§o+25?Ao,i(M+|w1,i|\oo)} (29)

and evolve within the funneF, . ) as in (9). Moreover,
due to the properties oB, in (7), it follows thatVi € with 3 := 2g01||§17||oo||¢1i||oo+6i ng,iHoo ,
(L.} VL € [0,T) : [es(t)] < vo.i(t) < l[Yo.illec @Nd 5,5 N5 ¢ and ¢, as in (19), 6, = & as in (7)

€ ()] < 1,i(t) < [[¢h1,i|. Hence and M as in (26), it holds that vg,(t) — |e;(t)] >

. : eos for all i € {l,....,n} and all t € [0,7).
Vi 0D lle®ll < lolleo A HIEDN < o (24) Choosei € {1,...,n} arbitrarily and note that for;
In view of (A7) and Theorem 2.14 in [19], the timing as in (29) the Steps 3a-e in the proof of Theorem 3.3
closed-loop sub-system (14b), (15) is uniformly stable angh [10] go through without changes (setting = 1
its solution evolves within a forward invariant compact.setand ¢,; = ¢,). Hence the claim of Step 4 holds true.
Hence, Step 5: For alli € {1,...,n} it is shown that|é;(-)|

SM, > 0Vt e [0,T): ||z(0)] < M (25) is uniformly bounded away from the boundaty ;(-); more
# T - precisely for positive
Now, defined: R>( x R" x R" x R? — R"
N e < min{A/2 0140) — |G(0)), M.}, (30)
(tvu’vgaz)'_}d(tv“v&vz) = FO(“+p(zl)) Lo o ayae?
250,i%1,i"1,i%0,4

[— C (p, +p(z1), £+ Op(z1) 22) (5 + Op(z1) 22> YVIth M \W)O.i\_loo(M-i-l\_¢1,1||oo)5§,i+|\<o,iH?,ol\l/’o,.i\lgo' M-as

’ 90 90 in (26) ande ; as in(29), it holds thatyq ;(¢)—|é;(t)| > €1,

forall i € {1,...,n} and allt € [0,T). Again choosei €
_p(=1) L2 9p(=) (i, €)T {1,...,n} arbitrarily and observe that identical arguments
002 7 09 ’ as in Step 4 of the proof of Theorem 3.3 in [10] (setting

v =1ande;; = ;) show the claim of Step 5.
Step 6: It is shown that Assertions (ii)-(v) hold true.
- op 2 For M as in (26),M, as in (25),c0; as in (29) andt; ; as
M =5 o (na@ oM. + nwloo) oo+ ldle] in (@0 Te 1. n} oefine

—g(p+p(z1))—d(t)

and the constant

+H E: ||00M2+|| ||00me (26) C={(t (&), 2) € 0, T|xR*"xR? | Vi€ {0,...,n} :
Invoking Assumptlons (N—(A7) ylelds il < o,i(8)=e0.i A&l < dri(t)=eri A=l < M}
R (18) Let D be as in (21) (see Step 2). ' < oo then
for a.a.t € [0,7): Hd(t,e(t),é(t)z(t))” < ¢ C D and contains the whole graph of the solution

5 t — (e(t),e(t), z(t)), which contradicts maximality of the

. t . _ . en

To(e(t) + plz1(t) | — C() - (e(t) T p(z1(t)) zz(t)> solution. Hencel’ = 0. Assertion (|!|) follows from _Step_ 4
00 and Step 5. Invoking Lemma 1 (in the Appendix) yields

92p(=1 (1)) asymptotic stability of (14b), (15), which shows Assertion
—g(e(t) + p(z1 (1)) d(t)] — T (t)? (iv). Moreover, Step 4 and Step 5 with boundedness of
09 so(+) and ¢1(-) on R imply that K(-) and K+(-) are
(24),(26) uniformly bounded orRxq, respectively. Then, from (24),

o) !
— g rle®,e) =) = M, Y and (12). it follows thatu(.) is uniformly bounded

It follows from Assumptions (A)—(A;) that Vi e ©ONRxo. Note thatk(,,-) € L2(R" x R";R?) follows by
{1,...,n}foraa.t€[0,7T): Assumption (&) which with boundedness of(-) implies

’ . ’ v(-) € L>®(R>¢;R). Hence Assertion (v) is shown. This
|di (t, e(t), eé(t), z(t))| < M. (27)  completes the proof. O



V. SIMULATION EXAMPLE 06

e() '

In this section, we present simulations as a proof of o <—‘—‘Z§(.{)(-)=w/m<»)
concept. We apply path-following funnel controller (12Xkvi 021 ' '
timing feedback (15) (to be specified later) of a planar ebbow F o
like rigid-link revolute-joint robot with two joints actied by oo
uy; anduy [Nm], respectively (see Fig. 2). The links are as- /
sumed massless and have lengtiandl, [m]. Point masses 0y
my andmy [kg] are attached to their distal ends, respectively. 1
Control objective is path-following funnel control of jain \\
anglesy; andy. [rad] with prescribed path accuracyThe 05 Fooo TS T 1
mathematical model of this robot [15, p. 259ff.] is given by L>

= o} A\ ~
M(y(t) y(t) + C(y(t), y(t) y(t) + g(y(t)) = u(t) (31) = '
with initial value (y(0),%(0)) = (0, 0), inertia matrix Bl e T é 18() "

M: R? - R*? y s M(y) =
[ml 2+ mo (l% + 124+ 201, cos(y2)), mz(lg + U112 cos(y2))

mg(l§ + 1112 cos(y2)), mals

— ()

uz()

9

(32)

[Nm]

centrifugal and Coriolis force matrix

C:R*xR? = R*?  (y,v) — C(y,v) := \/\/\\_4_‘

—2malyla sin(y2)vy, —malils sin(yg)vgl 0 m 30 =0 0 20

time ¢ [s]

—mahla sin(y2)or, 0 Fig. 3: Errors e(-), &(-) and control actionu(-).

and gravity vector - ) )
For the specific values listed in Tab. |, the produ¢t, - )k

g: R 5 RY yg(y) = satisfies (16) withc = aumink1 = 0.082 (i.e. the caséle|| +
maly cos(y1) + ma(ly cos(y1) + la cos(y1 + y2)) le]] = o), 1 + £ = 1.082 < aminkz = 1.0906 andr =
mals cos(y1 + ys) amaxke = 13.3 (i.e. the casédle| + ||&]| — 0).

The simulation results are shown in Figures 3, 4 and 5.
where g = 9.81 [kgm?] is the (rounded) gravity con- As can be seen in Fig. 3, the funnel controller (12) achieves
stant. For simplicity, disturbances (and measurement®opath-following with prescribed transient accuracy fomjoi
e.g. noise) are neglected. The planar robot satisfies Assunisitionsy; (-), y2(-) and joint velocitiegj; (+), 72(-), respec-
tions (A1)-(As) [16]. The considered path — p(f) = tively. Both joint position errors:;(-),e;(-) and both joint
(cos(9), sin(9))" is a circle in the joint space. The initial velocity errorsé,(-), éx(-) evolve within the performance
condition for the path-parameter state4¢0) = (6o,0)"  funnel. The two spikes in the errors and inputs before20s
with 8 = —1.17. The aim is to steer the robot to the endand att = 25s are due to the nonlinear Coup”ng of the
of path atp(0) = (1,0)". Robot and controller parametersyohot joints. Furthermore, Fig. 4 illustrates the closedd
are collected in Tab. I. Note that for controller deSign SOle dynamics of the path parameter states and the Scd(np
the inertia matrix must be known. As timing feedback (15)in the timing feedback (33). Note that the two spikes in the
we implement the following error-dependent feedback  errors before = 20s and att = 25s lead to reduced values

o(t) = —ale(t), e(t)r T (t) (33) of a(+), cf. (34). The behavior of the proposgd path-fol_lowing
funnel controller in they; — yo plane is depicted in Fig. 5.
to adjust the timing in (14b). The error-dependent scalinffhe robot approaches the path and follows it along with

a:R" xR™ = Ry is chosen as prescribed accuracy.
. Qmax + Qmin(||€ t + |le(t
ale(t), é(t)) = : (Il .( 2“ ||1 ( )||)’ (34) | VI. C.ONCL.USIONS o
lle®ll + e + In this paper we have investigated the application of funnel

whereay,;, = 0.82 anda,,,, = 10 are fixed constants. The control to path-following problems of rigid-link revolute
intuition behind the choice af(-, ) in (34) is as follows: For joint robotic systems. We showed that under suitable assump
large errors the timing should be decelerated and for smdibns prescribed path accuracgan be guaranteed. Future
errors it is accelerated again. This is achieved by (34)york will focus on (i) disturbance rejection properties) (i
sincea(-,-) is a strictly decreasing function dfe|| + ||e]|. robustness of the proposed control scheme in comparison
Its maximum amax is attained aglle|| + ||&]] — 0 and, to other path-following approaches and (iii) establishang
furthermore, it tends tev,i, as|lel| + ||| — oo. feasibility condition in presence of actuator (input) sation



data/parametrization

= robot (31) my =meo =1 [kg], lh=1l=1 [m],
. desired path p(0) = (cos(), sin(6))"
= o1 20 ]| 2(0) = (09,0) T with 6y = —1.17
Y | initial error e(0) = (0.55,—0.19) T [rad]’
10F : — (MIMO) funnel M (y) as in (32), _
= f_/"_‘ | controller (12) (v, ¥1.:), @ € {1,2} as in (10)
6 (e(),€()) with (A 1, AOQ) = 1.5[rad]?,
4 10 20 30 1 30 (Ao,15 Aoj2) = 155 (7, ) [radf
time ¢ [3] (TE 1, Tk 2) (3 34 3. 34) [ ]
Fig. 4: Timing state9(-) = z1(-), 22(+) and scalinga(e(+), &(+)). (A1, A12) = ( ) [rad/s} ,
So(+) = (o1 (- ) % 2(+)),
0.6 §1(')—10(¢1 1( Y1,2(+))
timing =(0.1,1.33) T
04 feedback (33)  umax = 10, Qumin = 0.82
0.2 TABLE |: Robot and controller parameters for simulation.
0
. [4] A. Banaszuk and J. Hauser, “Feedback linearization ahdverse
3 02 dynamics for periodic orbitsSys. Contr. Lett.vol. 26, no. 2, pp. 95—
= ' 105, 1995.
> _04 [5] C. Nielsen and M. Maggiore, “On local transverse feedbateariza-
’ tion,” SIAM Journal on Control and Optimizatipnol. 47, pp. 2227—
2250, 2008.
—0.6 [6] T. Faulwasser and R. Findeisen, “Nonlinear model prédicpath-
following control,” in Nonlinear Model Predictive Control - Towards
—038 New Challenging Application_. Magni, D. Raimundo, and F. All-
gOwer, eds.), Lecture Notes in Control and Information Smsn384,
-1 pp. 335-343, Springer, Berlin, 2009.
. : ‘ . : . [7] T. Faulwasser, J. Matschek, J. Zometa, and R. Findeideredictive
-15 -1 —0.5 0 0.5 1 path-following control: Concept and implementation for adustrial
y1 [rad] robot,” in Proc. of IEEE Multi-Conference on Systems and Control
(MSC) 2013, Hyerdabat, Indj&2013.
Fig. 5: Trajectory in they, — y2 plane with pathp(6(-)). [8] A. IIc_hmann, E. P Ryan, and C. J. Sangw_ln,_“Tr_acklng withgeribed
transient behaviour,ESAIM: Control, Optimisation and Calculus of
Variations vol. 7, pp. 471-493, 2002.
[9] A. lichmann, E. Ryan, and P. Townsend, “Tracking with présed

(in the spirit of [11]). Furthermore, it is still an open gties

how to design the path parameter feedback (15) such that
strict forward motion along the path is enforced (e.g. path1q)
following in finite time).

(11]
APPENDIX
Lemma 1 (see Theorem 2.15 in [19]) [12]
Letag(-),a1(-) € C}(R>o;R) anda > @ > 0 and consider
the planar linear time-varying system given by (23]
0 1 0 B2 (35)
z(t) = z(t z(0) = zp € R”.
0= Loy —angy) O 20 =20
If () 0<a<ag(t) <an(t) <aand (i) 1+a < ai(t) ps)
for all ¢ > 0, then systen(35) is asymptotically stable. 6]
16
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