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Abstract
The first part of this thesis presents the theoretical study of an anomaly of unknown origin in

the excitation spectrum of the Quantum spin-1/2 Heisenberg Square lattice Anti-Ferromagnet.

The anomaly manifests itself in Inelastic Neutron Scattering data for short wavelength/high

energy excitations. Instead of the expected sharp semi-classical harmonic modes, a broad

continuum emerges suggesting the possibility of fractionalized excitations. A theoretical

framework based on the Gutzwiller projection is developed and allows to link the observed

continuum to unbound fractional quasiparticle pairs while the sharp harmonic excitations

may be described by bound ones.

The second part of this thesis presents the detailed theoretical modeling of the spin-wave

dispersion relation measured in insulating cuprate materials. Starting from the one-band

Hubbard model with extended hopping amplitudes, an effective low-energy theory is derived

allowing to describe on the same footing different insulating cuprate magnetic excitation spec-

tra. The effective theory is fitted against experimental data and microscopic model parameters

are extracted. The high level of details included in our effective theory allows a consistent

characterization of the studied materials as measured by various magnetic or electronic exper-

imental techniques.

Keywords : Quantum magnetism, square lattice antiferromagnet, spin-waves, fractionaliza-

tion, insulating parent compounds (cuprate superconductors).
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Résumé
La première partie de cette thèse présente l’étude théorique d’une anomalie d’origine incon-

nue trouvée dans le spectre des excitations magnétiques de l’anti-ferro-aimant de spin-1/2 sur

le réseau carré. L’anomalie se manifeste dans les données provenant d’expériences de diffu-

sion de neutron inélastique pour les excitations de courte longueur d’onde et de haute énergie.

En lieux et place des excitations harmoniques discrètes attendues, un continuum émerge

suggérant la possible présence d’excitations fractionnelles. Une théorie basée sur la projection

de Gutzwiller est développée. Elle permet de lier le continuum observé à l’émergence de

paires non-liées de quasi-particules fractionnaires alors que les excitations harmoniques

conventionnelles sont reproduites par des paires liées.

La seconde partie de cette thèse présente la modélisation détaillée de la dispersion des ondes

de spin mesurée dans une sélection de matériaux isolants de la famille des cuprates. En partant

d’un modèle de Hubbard à une bande incluant des amplitudes de saut étendues, une théorie

effective de basse énergie est dérivée permettant de décrire les différents spectres d’excitations

magnétiques des cuprates isolants sélectionnés. La théorie effective est ajustée de façon à

correspondre aux données expérimentales et les paramètres du modèle microscopique sont

extraits. Le haut niveau de détails inclus dans la théorie effective permet une caractérisation

cohérente des matériaux étudiés, tels que mesurés par différentes techniques de mesures

magnétiques ou électroniques.

Mot-clés : Magnétisme quantique, antiferroaimant sur réseau carré, ondes de spin, fractional-

isation, composés isolants parents (superconducteurs cuprates)
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Chapter 1. Introduction

This thesis is divided into two main chapters which correspond to originally separated projects.

The two topics broadly relate to the square lattice antiferromagnet, and more precisely to

its excitation spectrum as measured by different techniques. I nonetheless felt it would be

artificial to shape the two topics into a single one. I thus chose to present the two topics

separately in their dedicated chapters.

It then falls upon this introduction to provide some link between these chapters. A strong link

is contained first into the scientific approach which gave birth to these works. Both topics

were motivated by prior experimental results on specific materials which raised questions

about their theoretical interpretation. It just so happened that the materials considered were

all realizations of the square lattice antiferromagnet. Of course calling this a coincidence

is an exaggeration. Indeed the magnetic properties of the square lattice antiferromagnet is

one of the fundamental problems of the quantum magnetism research domain and, in a

broader context, a possible key-ingredient into the still controversial high temperature su-

perconductivity problem. The mentioned experimental results allowed to characterize with

unprecedented accuracy the magnetic excitation spectrum, which then required a detailed

theoretical modeling.

While the two topics share many aspects, they also represent different complementary piece

of work of scientific research. The first topic in chapter 2 studies theoretically the fundamental

Heisenberg model for which a variety of physical realizations exists. The emphasis is on devel-

oping original theoretical methods and using those to extract some fundamental properties

of this model, hopefully improving its understanding. On the other hand the second topic in

chapter 3 is geared towards using established theoretical tools in order to give a detailed theo-

retical characterization of materials. The emphasis there is on reaching a high level of detail in

existing theories in order to allow a quantitative interpretation of experimentally measured

quantities. This quantitative analysis then allows comparison across different experimental

techniques helping to build an overall consistent experimental picture.

The occurrence of these two approaches in a single thesis is reminiscent of the position which

was mine in the Laboratory for Quantum Magnetism. As a theoretically oriented student

in an otherwise experimental laboratory, it often fell on me to provide some simple “first

order ” theoretical description, using conventional theoretical tools such as the mean-field

approximation, or spin-wave theory. Upon the success or failure of such simple approach,

more sophisticated approach could be undertaken. In the case of the first project in chapter 2,

the established failure of spin-wave theory to capture some striking aspects of measurements

lead into undertaking a completely different theoretical approach. On the other hand the

relative success of spin-wave theory in the context of the second project in chapter 3 lead into

refining it accounting for fine details of specific materials. Overall I believe the two projects

make for an equilibrated picture of what has been my work as a theorist in the Laboratory for

Quantum Magnetism.
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Chapter 2. Variational Study of the Square Lattice Antiferromagnet Magnetic
Zone-Boundary Anomaly

2.1 Introduction

A constant trend in modern physics has been the prediction and experimental validation

of the existence of hidden degrees of freedom found in nature. Coincidentally a perfect il-

lustration is the 2013 physics Nobel price rewarding the theoretical prediction of the Higgs

boson following its experimental validation at CERN’s Large Hadron Collider (LHC). While

the discoveries of such hidden degrees of freedom have most often been accomplished by

carrying out experiments in extraordinarily high energy regimes, it is tempting to put it in

parallel with the phenomenon known as emergence found in condensed matter physics at

comparatively extremely low energy scales. The constituents of any condensed matter physics

system are by definition the building blocks of cold matter: nuclei and electrons. The energy

scale at which such systems are considered is adequately set by the thermal motion energy

at room temperature of 25meV, 14 orders of magnitude less than the collisions produced

in the LHC. At such low energies, the hidden degrees of freedom found for instance in the

nucleus are invisible. There are nevertheless hidden degrees of freedom which emerge in such

systems but only when regarding it as a whole, strongly interacting indivisible set of particles.

In such cases there have been many observations of new degrees of freedom characterized

as fractional as they can only be described as fractions of the degrees of freedom found in

the system in its non-interacting limit. Perhaps the most iconic example is the spin-charge

separation [Lieb and Wu, 1968] in quasi-1D electronic systems. The low-energy excitations

can be characterized by quasi-particles carrying either a charge degree of freedom (holon) or a

spin degree of freedom (spinon). But for the particles constituting the non-interacting system

– the electrons – the charge and spin degrees of freedom are indivisible. Angle-Resolved Photo-

Emission Spectroscopy (ARPES) experiments could observe this spin-charge separation [Kim

et al., 1996]. In the removal of an electron through the photoemission process, the spin-1/2

charge +e hole left in the system can thus be understood as a bound state of a holon and a

spinon which, due to the special nature of 1D physics, deconfine into two truly independent

degrees of freedom.

In the area of quantum magnetism, the prototypical emergent degree of freedom is the frac-

tional spin-1/2 quasiparticle often called spinon. Taking a system of non-interacting spin-1/2

degrees of freedom, the fundamental spin deviation is to flip a spin for instance from S =−1/2

to S = 1/2, corresponding to a ∆S = 1 excitation. But in an interacting system, spin-1/2 excita-

tions are known to emerge such that, in a similar fashion as in the spin-charge separation phe-

nomenon, a ∆S = 1 excitation deconfines into two unbound fractional spin-1/2 quasiparticles.

The deconfinement of fractional spin-1/2 quasi-particle has been exactly predicted [Faddeev

and Takhtajan, 1981; Müller et al., 1981] and experimentally observed [Tennant et al., 1995;

Lake et al., 2005; Mourigal et al., 2013] in 1D systems. In higher dimensions, the theoretical

characterization of deconfined fractional quasi-particle excitations and their experimental

observation is an ongoing challenge [Balents, 2010] with the most prominent candidates being

the frustrated triangular lattice [Coldea et al., 2001b] and the kagomé lattice [de Vries et al.,

2009; Han et al., 2012; Jeong et al., 2011] antiferromagnets. These systems are characterized by

a strong magnetic frustration – the impossibility to minimize classically a set of conflicting

4



2.1. Introduction

interaction energies – which is a key feature favoring non-magnetic groundstates composed of

highly correlated fluctuating spins called Quantum Spin Liquid (QSL). So far fractional excita-

tions have been searched for in systems where the groundstate was thought to be such a QSL

or very close to it. In contrast we take in this work another route and look at the unfrustrated

square lattice antiferromagnet.

The Quantum spin-1/2 Heisenberg Square lattice Anti-Ferromagnetic model (QHSAF) ground-

state has a spontaneously broken spin symmetry which exhibits a finite staggered magne-

tization comparable to the classical Néel order state where each neighboring spins point

in opposite directions. Despite the existence of a classical order parameter attached to it,

the groundstate also contains large quantum fluctuations around the classical Néel state

which reduces the staggered magnetization to 62% of its classicla value[Reger and Young,

1988; Hamer et al., 1992]. The low energy excitations are well described by fluctuations of the

ordered spins either in the transverse or longitudinal directions with respect to the ordering

axis. These excitations can be adequately derived by the Spin Wave Theory (SWT) approxi-

mation [Bloch, 1930; Anderson, 1952; Kubo, 1952]. The transverse excitations are found to

be dominantly spin-1 bosonic modes called magnons with crystal momentum q and the

longitudinal ones spin-0 weakly interacting pairs of magnons. In the SWT approximation

a weak magnon-magnon interaction arises which can be treated perturbatively. The small

parameter is 1/S, where S is the spin quantum number of the magnetic sites. In the spin-1/2

case, we are thus in the strongest interacting limit of SWT and it remains a question whether

the perturbative treatment of the magnon-magnon interaction is appropriate, as hinted by

the slowly, if at all, convergent quantum corrections to the magnon energy for the specific

momentum q = (π,0)[Syromyatnikov, 2010].

While there is a strong consensus for the groundstate of the square lattice Heisenberg anti-

ferromagnet to be Néel ordered, the nature of its quantum fluctuations is much less clear.

An alternate proposal is the so-called Resonating Valence Bonds (RVB) state, a superposition

of various lengths’ singlets arrangements on the lattice. The RVB state is a prototypical QSL

first proposed as a possible ground state of the triangular lattice antiferromagnet [Anderson,

1973]. Interest for this state arose dramatically following the discovery of high-temperature

superconductivity in the cuprate materials. In the generic cuprate phase-diagram (see for

instance fig. 3.2), the small doping necessary to destroy the antiferromagnetic order suggests

that QSL states such as the RVB state might be very close to the Néel ordered groundstate [An-

derson, 1987]. Analytical work of the RVB state elementary excitations showed that they can be

described as fractional fermionic [Hsu, 1990; Ho et al., 2001] or bosonic [Auerbach and Arovas,

1988] quasi-particles. The possibility thus exists that, even for a Néel ordered groundstate,

the square lattice Heisenberg antiferromagnet retains fractional excitations for some specific

momenta.

Experimentally, the SWT predictions proved to be accurate, even in the spin-1/2 case. The

Inelastic Neutron Scattering (INS) technique in particular could unambiguously characterize

both the instantaneous [Greven et al., 1995; Birgeneau et al., 1999; Rønnow et al., 1999] and the

low-energy/long wavelength dynamical [Yamada et al., 1989] properties of the square lattice

Heisenberg antiferromagnet in excellent agreement with SWT. Due to their importance for
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high-temperature superconductivity, experiments focused at first on the cuprate insulating

parent compounds La2CuO4 (LCO)[Birgeneau et al., 1999; Yamada et al., 1989] or Sr2CuO2Cl2

(SCOC)[Greven et al., 1995]. These compounds have the technical disadvantage that the mag-

netic interaction energy is rather large J ∼ 1500K which makes it difficult for INS to probe

the top of the magnon dispersion relation. INS measurements carried out on the much lower

energy model material Cu(DCOO)2 ·4D2O (CFTD)[Rønnow et al., 2001] systematically evi-

denced important deviations from SWT found at the high energy/small wavelength part of

the magnon dispersion [Rønnow et al., 2001; Christensen et al., 2007]. More precisely, these

deviations happen for momenta q on the magnetic Brillouin zone boundary |q | =π and are

hereafter mentioned as the magnetic zone boundary quantum anomaly. The anomaly has

more recently been found to exist in La2CuO4[Headings et al., 2010]. In particular, a key-feature

is the observation of a continuum of excitations found at the momentum q = (π,0), in strong

contrast with the SWT predictions. A possible interpretation of this unexpected feature is that

the states constituting the continuum correspond to different pairs of fractional excitations.

In the following work, we use a combination of analytical and numerical calculations to pro-

vide a new theoretical description of the high energy/small wavelength excitations of the

square lattice Heisenberg antiferromagnet in terms of bound or unbound fractional spin-1/2

particles pair and compare it to newly available polarized inelastic neutron scattering results.

2.1.1 Overview

We provide here as bullet points a quick overview of this study, pointing to the dedicated

sections for additional details.

– Experimental status: There are many physical realizations of the square lattice antiferro-

magnets (see section 2.3). The CFTD material is one of those with the distinct advantage

of the energy scale being the most favorable for thermal neutron scattering. This allowed

an accurate determination of the excitation spectrum to first order well accounted for by

SWT (see section 2.4.1). However with respect to SWT, a glaring anomaly appears at the

short wavelength/high enery part of the magnetic excitation spectrum (see section 2.3.1).

The anomaly appears for the q = (π,0) momentum of the Brillouin zone of unit length 2π.

It is characterized by a reduction of 7% of the q = (π,0) magnon energy with respect to

q = (π/2,π/2), a dramatic loss of intensity of the main magnon peak and the development

of a continuum of excitations extending to higher energies from the main magnon peak. In

strong contrast, the q = (π/2,π/2) magnetic spectrum stays sharp indicative of a long-lived

single-particle excitation.

– Postulate and theoretical framework: We postulate that the observed continuum might

be a manifestation of fractional quasiparticle deconfinement happening in the vicinity of

the q = (π,0) momentum. To tackle theoretically this idea, we start from the Heisenberg

model written in the fermionic operators (see section 2.4.2) which we treat using a mean-

field decoupling (see section 2.4.3). The obtained mean-field groundstate contains double

occupancies which are not part of the original physical Hilbert space associated with the

Heisenberg model. We thus consider the Gutzwiller-projected mean-field groundstate

6
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PG
∣∣ψMF

〉
as a trial wavefunction for the Heisenberg model groundstate depending on two

variational parameters, one being the so-called flux θ0 and the other the Néel order (see

section 2.4.6).

– Numerical evalutation of the projected mean-field wavefunction: Using variational Monte

Carlo (see section 2.5), we optimize the variational energy obtained by varying the projected

mean-field wavefunction parameters and consider only two distinct trial wavefunctions,

the Néel ordered |SF+N〉 and the spin liquid |SF〉 wavefunctions (see section 2.7.1). The

|SF+N〉 state has the best variational energy but exponentially decaying transverse spin

correlations which is inconsistent with the robust SWT prediction of algebraic decay. On the

other hand the |SF〉 state has a higher variational energy, no magnetic order but a consistent

algebraic decay of the transverse spin correlations.

– Construction of variational magnetic excitations: Using either the |SF+N〉 or |SF〉 trial

wavefunctions, we construct the magnetic excitations as projected particle-hole pairs (see

section 2.6.1). Defining γ†
kσb and γkσb the creation and annihilation operators diagonalizing

the mean-field Hamiltonian, k being the momentum,σ the spin and b ∈ {+,−} a band index,

the projected particle-hole pairs∣∣k ,σσ′, q
〉= PGγ

†
kσ+γk−qσ′−

∣∣ψMF
〉

(2.1.1)

span a subspace of magnetic excitations on which we numerically project the Heisenberg

model (see section 2.6.2). We then diagonalize the projected Heisenberg model obtaining

projected particle-hole eigenstates which allow to calculate the dynamic spin structure

factor (see section 2.6.4).

– Dynamic structure factor for the trial wavefunctions: The two different trial wavefunc-

tions |SF+N〉 and |SF〉 give a complementary picture of the experimentally observed anomaly

(see section 2.7.2). The former recovers the magnon dispersion with the 7% reduction of

the energy but shows no continuum. The latter develops a strong continuum at q = (π,0) in

strong contrast with q = (π/2,π/2) where the magnetic excitation spectrum stays sharp as

seen in experiments.

– Fractional quasiparticle deconfinement: With the complete knowledge of the projected

particle-hole excitation eigenstates, we develop quantities to characterize the degree of

fractional quasiparticle deconfinement (see section 2.8.3 and 2.8.4). We find that for the

|SF+N〉 trial wavefunction, the magnetic spectrum corresponds to bound pairs of fractional

quasiparticles recovering the conventional magnon excitation. On the other hand for the

|SF〉 trial wavefunction, we find that the continuum of excitations corresponds to unbound

fractional quasiparticle pairs (see section 2.8.5).

2.1.2 The Heisenberg Model

The Heisenberg model is the foundation of the quantum magnetism physics field. It is a

very general model describing magnetic interacting systems which can arise as the effective
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low-energy description of many strongly correlated electron systems. It is simply written as

H = 1

2

∑
i , j

Ji j Si ·S j (2.1.2)

where i , j index sites with a magnetic degree of freedom characterized by a quantum spin S,

Ji j is the magnetic coupling energy and Si are the spin operator vectors as defined below.

The magnetic degree of freedom of a site can be any of the 2S +1 states:

{|m =−S〉 , |m =−S +1〉 , . . . , |m = S −1〉 , |m = S〉} . (2.1.3)

The Hilbert space can be generated by the ladder operators {S+,S−}

S+ |m〉 =
√

S(S +1)−m(m +1) |m +1〉 (2.1.4)

S− |m〉 =
√

S(S +1)−m(m −1) |m −1〉 . (2.1.5)

It is customary to regroup these spin operators in a vector whose quantum average represents

the magnetic dipole moment of the site:

S =

 Sx

S y

Sz

 (2.1.6)

with

Sx =1

2

(
S++S−)

(2.1.7)

S y = 1

2i

(
S+−S−)

(2.1.8)

Sz =1

2

(
S+S−−S−S+)

(2.1.9)

The Hilbert space for N sites is spanned by the basis states that we will hereafter call real space

spin configuration:

ΩH = {|m1, . . . ,mN 〉} mi ∈ {−S, . . . ,S} . (2.1.10)

Compared to other many-body quantum states, the magnetic sites are distinguishable thus

there is no redundancy in the state labeling eq. 2.1.10.

The Heisenberg model will arise as the effective theory of electronic systems. We first note

that the only magnetic interaction for electrons as described by electrodynamics is the weak

dipole-dipole interaction which would couple the electron intrinsic magnetic moment and

angular momentum. Unlike the magnetic coupling Ji j in eq. 2.1.2, this interaction is highly
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anisotropic as characterized by the dipole-dipole tensor D(r ):

HD−D =∑
i j

ST
i D(r2 − r1)S j (2.1.11)

D
αβ

(r ) ∝rαrβ−δαβ|r |2
|r |5 . (2.1.12)

In most materials this coupling can be safely neglected especially for low-spin systems where

the magnitude of this interaction is very small. The Heisenberg model therefore does not arise

from a bare magnetic electron-electron interaction but as an effective theory. We give below

two examples.

The Heitler-London Method

The Heitler-London method was developed in the context of the covalent molecular bonding

theory. We consider only two "sites", for instance the two protons held fixed of an H2 molecule.

Labeling the sites a and b we only consider one orbital state per site |a〉 and |b〉 and a separa-

tion of Rab between the two sites. We study the 2-electrons problem. The Hamiltonian only

contains the electron kinetic energy and the Coulomb repulsion. The spin degree of freedom

of the electron does not enter the Hamiltonian at all. If the two sites are held at a very large

distance, the orbital states become eigenstates of the single electron problem:

HRab→∞ |a,σ〉 =E0 |a,σ〉 (2.1.13)

HRab→∞
∣∣b,σ′〉=E0

∣∣b,σ′〉 (2.1.14)

where σ and σ′ label the electron spins. In this limit, the |a,σ〉 and
∣∣b,σ′〉 states are orthogonal

regardless of their spin σ and σ′. Defining the electron i position-spin coordinate (ri , si ) = xi ,

the two-electron anti-symmetrized states are given by the Slater determinant:

ψσσ′
(x1, x2) =

∣∣∣∣∣ 〈x1|a,σ〉 〈x2|a,σ〉〈
x1

∣∣b,σ′〉 〈
x2

∣∣b,σ′〉
∣∣∣∣∣ , (2.1.15)

where we have omitted the (two) polar states where the two electrons sit on the same site with

opposite spin. We now turn towards the finite Rab limit. As the Hamiltonian has no explicit

spin dependence, it will be possible to factorize the total wavefunction into a spatial and a spin

part. In the following we will consider only the spatial part in a first step and will introduce the

spin part and the antisymmetry requirement in a later step. We will consider the variational

non-symmetrized states:

|c1,c2〉 = c1 |ab〉+ c2 |ba〉 (2.1.16)

where |ab〉 has electron 1 in orbital state a and electron 2 in orbital state b and |ba〉 the

converse. We want to evaluate the correction to the Rab →∞ energy E0 as we bring the two
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sites closer. We define the following quantities:

L2 =〈ab|ba〉 (2.1.17)

V =〈ab|H |ab〉 = 〈ba|H |ba〉 (2.1.18)

X =〈ab|H |ba〉 (2.1.19)

and find the variational energy

〈c1,c2|H |c1,c2〉
〈c1,c2|c1,c2〉

= (c2
1 + c2

2)V +2c1c2X

c2
1 + c2

2 +2c1c2L2
. (2.1.20)

The extrema are found for c1 =±c2 with the energies

E± = V ±X

1±L2 . (2.1.21)

Interestingly, the c1 = c2 solution imply that the spatial part of the wavefunction is symmetrical

and the c1 =−c2 anti-symmetrical upon electron interchange. Introducing the spin part and

enforcing the global anti-symmetry of the wavefunction leads to the following spatial-spin

wavefunctions with their associated energies:

E+ −→ (|ab〉+ |ba〉) (|↑↓〉− |↓↑〉) (2.1.22)

E− −→ (|ab〉− |ba〉)


|↑↓〉+ |↓↑〉
|↑↑〉
|↓↓〉

. (2.1.23)

Up to a constant energy shift, this is the same spectrum one would get from the dimer Heisen-

berg model:

H = S1 ·S2 (2.1.24)

with J = E−−E+. The sign of J will depend of the L2, V and X parameters in the following way:

J>0⇔ X −V L2 < 0. (2.1.25)

We have thus found that a pure Coulomb Hamiltonian leads to an effective Heisenberg Hamil-

tonian. The required ingredients were a finite overlap L2 and exchange integral X and most

importantly the antisymmetry requirement for the wavefunction. The particle statistics thus

plays an essential role into the emergence of quantum magnetism.

10



2.1. Introduction

The Hubbard model

Probably the most known example for the Heisenberg model derivation is from the Hubbard

model:

H =−t
∑
i jσ

c†
iσc jσ︸ ︷︷ ︸

T

+U
∑

i
c†

i↑ci↑c†
i↓ci↓︸ ︷︷ ︸

V

. (2.1.26)

We give a more extended description of this model in section 3.3.1. It describes fermions on

a lattice with one orbital and two spin states per site. The operator c†
iσ and ciσ respectively

create and destroy a fermion of spin-σ on site i . The first term is the kinetic energy and

the second one counts the number of doubly occupied sites which cost an energy U due to

Coulomb repulsion. If we compare to the Heitler-London method, the hopping amplitude t is

linked to the overlap integral L2 and the energy U corresponds to the polar states that were

disregarded due to their too high energy. We consider this model in the half-filled case where

there are as many fermions as there are sites and in the strong coupling limit t/U ¿ 1. In this

limit, the Coulomb interaction defines sectors of the Hilbert space with a given number of

doubly occupied sites and corresponding empty sites (because of half filling). These sectors

are separated by the large energy U such that in the Hamiltonian eq. 2.1.26 the interaction

part V is block-diagonal in the subspace of real space spin configurations with a given number

of double occupancies. However the kinetic term

K =−t
∑
i j

c†
iσc jσ (2.1.27)

is not block-diagonal on this subspace since it might increase or decrease the number of

double occupancies. The usual approach is to introduce it as a perturbation as t/U is a small

parameter. The lowest energy subspace corresponds to the real space spin configurations with

only one fermion on every sites. Let |α〉 be one of these we have

V |α〉 = 0. (2.1.28)

To the first order the perturbation will not bring any matrix elements between an |α〉 and a
∣∣β〉

state as

〈α|H (1)
∣∣β〉= 〈α|T ∣∣β〉= 0 (2.1.29)

since the kinetic operator T will necessarily create a double occupancy. To the second order

however we have:

〈α|H (2)
∣∣β〉=∑

γ

〈α|T ∣∣γ〉〈
γ
∣∣T

∣∣β〉
−U

(2.1.30)
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where
∣∣γ〉

are the states with one double occupancy and one hole. As T
∣∣β〉

belongs to these

states, the sum over the
∣∣γ〉

states resolves the identity on this subspace thus we have:

H (2) =− t 2

U

∑
i jσ

∑
i ′ j ′σ′

c†
iσc jσc†

i ′σ′c j ′σ′ . (2.1.31)

By inspection it is seen that the above Hamiltonian will only contribute on the real space spin

configuration space without double occupancies only if

j ′ =i (2.1.32)

i ′ = j (2.1.33)

giving the effective second order perturbation theory Hamiltonian

H (2) =− t 2

U

∑
i j

∑
σσ′

c†
iσc jσc†

jσ′ciσ′ . (2.1.34)

If we now consider the (i j ) part of the above applied on a state |ασσ′〉, there are four cases to

consider:

1.
∣∣α↑↑

〉= ∣∣∣∣. . .
i
↑ . . .

j
↑ . . .

〉
H (2)

∣∣α↑↑
〉= 0 (2.1.35)

2.
∣∣α↓↓

〉= ∣∣∣∣. . .
i
↓ . . .

j
↓ . . .

〉
H (2)

∣∣α↓↓
〉= 0 (2.1.36)

3.
∣∣α↑↓

〉= ∣∣∣∣. . .
i
↑ . . .

j
↓ . . .

〉

H (2)
∣∣α↑↓

〉= ∣∣∣∣. . .
i
↑ . . .

j
↓ . . .

〉
−

∣∣∣∣. . .
i
↓ . . .

j
↑ . . .

〉
(2.1.37)

4.
∣∣α↓↑

〉= ∣∣∣∣. . .
i
↓ . . .

j
↑ . . .

〉

H (2)
∣∣α↓↑

〉= ∣∣∣∣. . .
i
↓ . . .

j
↑ . . .

〉
−

∣∣∣∣. . .
i
↑ . . .

j
↓ . . .

〉
(2.1.38)
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where the negative sign in front of the off-diagonal elements come from the fermionic sign

rule. On the
{∣∣α↑↑

〉
,
∣∣α↑↓

〉
,
∣∣α↓↑

〉
,
∣∣α↓↓

〉}
states the effective Hamiltonian thus reads

〈
ασ1σ2

∣∣H (2)
∣∣ασ3σ4

〉=− t 2

U


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 (2.1.39)

which can be recast as

〈
ασ1σ2

∣∣H (2)
∣∣ασ3σ4

〉=2t 2

U




1
4 0 0 0

0 −1
4

1
2 0

0 1
2 −1

4 0

0 0 0 1
4

− 1

4

 (2.1.40)

=2t 2

U

(
Si ·S j − 1

4

)
. (2.1.41)

Putting back the sum over the sites, we obtain the Heisenberg model up to a constant:

〈α|H (2)
∣∣β〉= 4t 2

U

∑
〈i , j 〉

(
Si ·S j − 1

4

)
. (2.1.42)

As was the case for the Heitler-London method, we see that a Hamiltonian which has no

explicit spin-spin interaction as the Hubbard model results in an effective spin Hamiltonian

in some limit. Again a critical ingredient was the correct application of the fermionic statistics,

here applied through the fermionic sign coming along with the c†
iσ and ciσ operators. We show

in figure 2.1 the exchange process which underlies the second-order perturbation process

highlighting the importance of the Pauli exclusion principle, yet another expression of the

fermionic statistics.

2.2 The 1D spin-1
2 Heisenberg chain

Despite its simplicity the Heisenberg Hamiltonian hosts an extremely rich physics. In eq. 2.1.2,

neither the lattice, the quantum spin number S nor the magnetic couplings Ji j are explic-

itly defined. Depending on those, the ground state and the excitations can be of an entirely

different nature. In particular some choices of lattice and/or magnetic couplings result in mag-

netic frustration leading to macroscopically degenerate or exotic quantum entangled ground

states and fractional excitations [Balents, 2010]. Key-examples are for instance quantum spin-

liquid/valence bond solid and fractionalized excitations in the Kagomé lattice [Marston and

Zeng, 1991; Lecheminant et al., 1997; Singh and Huse, 2007; de Vries et al., 2009; Yan et al., 2011;

Han et al., 2012] and spin ice and magnetic monopoles in the pyrochlore lattice [Bramwell and

Gingras, 2001; Castelnovo et al., 2008; Jaubert and Holdsworth, 2009; Bramwell et al., 2009].

But even when considering simpler lattices without frustration, the Heisenberg model already
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Figure 2.1 – Illustration of the second order perturbation theory matrix elements from eq.
2.1.34. Through the virtual hopping, neighboring up side down spins can gain kinetic energy
by exchanging (top) while the process is forbidden for neighboring up or down spins (bottom)
due to the Pauli exclusion principle.

produces a wide range of phenomena. In the following we review the case of the 1D spin- 1
2

chain.

2.2.1 Theoretical overview

We consider the Hamiltonian

H =∑
i

Jx y
(
Sx

i+1Sx
i +S y

i+1S y
i

)+ Jz Sz
i+1Sz

i (2.2.1)

known as the XXZ model. We first consider the Jx y = Jz = J which is simply the Heisen-

berg model. The classical ground state is simply the antiferromagnetic arrangement where

Sz
i |GS〉 = 1

2 (−1)i . However the system has a continuous spin rotational symmetry which means

it cannot be spontaneously broken at finite temperature (the Mermin-Wagner theorem [Mer-

min and Wagner, 1966]) so the antiferromagnetic order is absent at any finite temperature.

That still leaves the possibility of T = 0 long-range order. If the system is ordered at zero

temperature, then it is reasonable to use the semi-classical SWT (see section 2.4.1) to approx-

imately diagonalize the Hamiltonian and calculate the predicted staggered magnetization.

Such a calculation leads to

Sz
(π,π) =S − 1

2π

∫ π/a

0
dk

(
1− J

ωk

)
(2.2.2)

ωk =J
√

1−cos2(ka) (2.2.3)

where ωk is the so-called spin-wave dispersion and, for small k, ωk ∼ k such that the integral

2.2.2 diverges. The SWT for the 1D chain, even at zero temperature, therefore is not self-
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consistent suggesting that there is no order at T = 0 as well. The same approach in higher

dimensions leads to a finite, although reduced, staggered magnetization at T = 0 for 2D

systems and to a finite temperature long range order in 3D systems. The importance of the

quantum fluctuations thus critically depend on the dimensionality.

The isotropic Heisenberg case can in fact be exactly solved by the so-called Bethe Ansatz [Bethe,

1931], an inspired guess of the ground state wavefunction which turns out to be exact! The

ground state has quasi-long-range order and is a realization of a Luttinger liquid [Giamarchi,

2004]. However the great complexity of the ground state wavefunction makes it very difficult

to extract physical quantities especially where it comes to correlation functions [Giamarchi,

2004]. To illustrate the nature of 1D spin- 1
2 chain physics, we turn towards the simpler case

where we set Jz = 0. In this limit the model becomes the so-called XY model and can be solved

exactly in a simple fashion. Since the commutation relations for the spin operators are quite

inconvenient, a good idea is to find a mapping from spin operators to fermionic or bosonic

quasiparticles. We can set the vacuum of particles to be the completely polarized state

Sz
i |0〉 =−1

2
. (2.2.4)

As one can create many bosonic quasiparticles in the same state, we see that it would cor-

responds to successive raising of the spin which is not allowed for spin- 1
2 . Representing the

change in magnetization using bosons thus requires an additional constraint which prevents

to create two or more bosons on the same site. This is the so-called hard-core boson mapping.

Another idea is to use the Pauli exclusion principle to implement this constraint using spin-less

fermionic quasi-particles. The mapping

S+
i =c†

i (2.2.5)

Sz
i =c†

i ci − 1

2
(2.2.6)

fulfills the local spin commutation relation. However spin operators on different sites should

commute, while this is not the case using the simple mapping eq. 2.2.5 and 2.2.6. To solve this

issue one uses the Jordan-Wigner transformation [Jordan and Wigner, 1928]:

S+
i =c†

i exp
(
iπφi

)
(2.2.7)

Sz
i =c†

i ci − 1

2
(2.2.8)

where φi is the string operator:

φi =
i−1∑

j=−∞
c†

j c j (2.2.9)

The XXZ model Hamiltonian becomes:

HX X Z = Jx y

2

∑
i

[
c†

i+1ci + c†
i ci+1

]
+ Jz

∑
i

(
c†

i+1ci+1 − 1

2

)(
c†

i ci − 1

2

)
(2.2.10)
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which, upon the gauge transformation ci → (−1)i ci becomes

HX X Z =−t
∑

i

[
c†

i+1ci + c†
i ci+1

]
+V

∑
i

(
c†

i+1ci+1 − 1

2

)(
c†

i ci − 1

2

)
(2.2.11)

describing spinless fermions hopping on a chain with amplitude t = Jx y

2 subjected to a nearest

neighbor repulsion V = Jz . In the XY limit the Hamiltonian is quadratic and can be diagonal-

ized by a Fourier transform:

HX Y =∑
k
εk c†

k ck (2.2.12)

εk =−2tcos(ka) (2.2.13)

which describes free fermions on a chain. The Sz
tot sector defines the fermion filling with

Sz
tot = 0 corresponding to half-filling. The ground state is then a half-filled Fermi sea up to the

Fermi energy εF . The most important outcome of this calculation is the fractional nature of

the excitations which, in the so-called longitudinal channel where excitations do not change

the Sz
tot sector, will be made of particle-hole spinless fermion pairs. We show in fig. 2.2 the

evolution of a local particle-hole excitation c†
i ci+1 applied on a Néel ordered cluster. This

allows to identify the particle-hole excitation as the creation of two domain walls which will

propagate freely on the chain as their movement does not change the overall energy of the

system. Another important outcome is that, for a given momentum transfer q , there will be

many particle-hole pairs which one can create with this net momentum. It follows that the

excitations will not be like for instance a harmonic oscillator mode where for each momentum

there corresponds a discret number of bosonic excitations. Instead, a continuum of excitations∣∣k, q
〉

will correspond to each momentum:∣∣k, q
〉=c†

k ck−q |GS〉 εk−q < εF < εk (2.2.14)

|GS〉 = ∏
{k|εk≤εF }

c†
k |0〉 . (2.2.15)

Because of the simplicity of the Sz operator in the spinless fermion representation (eq.

2.2.8), the dynamic spin structure factor is identical to the particle-hole excitation density of

states [Imambekov et al., 2012]:

D(q ,ω) = ∑
{k|εk−q<εF<εk }

δ(ω−εk−q +εk ) (2.2.16)

which we show in fig. 2.3 for the half-filled case where the delta-functions are widened by a

gaussian with a finite width. Of course the XY model is strongly anisotropic and the dynamic

spin structure factor will be different for instance in the transverse excitation channel where

the total spin is increased by ∆S = 1. However because of the string operator entering the

spinless fermion representation of the S±
i operators, the calculation of the transverse dynamic

spin structure factor is more complicated and can be looked up for instance in Imambekov

et al. [2012].
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2 Heisenberg chain

Figure 2.2 – Real space representation of a spinon particle-hole pair. Arrows are for spin
representation and plain and hollow dots for spinless fermion representation. The particle-
hole fermionic pair flips two neighbouring spins creating two domain walls. The Hamiltonian
applied on this state will move away the domains walls which behave like free quasiparticles.

Figure 2.3 – Particle-hole excitation density of states for the XY model in the half-filled case.
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Turning on the longitudinal coupling Jz → Jx y in a perturbative way, the interaction between

spinless fermions will mix higher order n-particles n-holes into the longitudinal dynamic

structure factor. In the Heisenberg limit Jz = Jx y the exactly calculated two-spinons contri-

bution amounts for 73% of the total spectral weight [Karbach et al., 1997] while including

4-spinon excitations produces 98% [Caux and Hagemans, 2006]. These theoretical predictions

have been confirmed experimentally [Mourigal et al., 2013].

2.2.2 Experimental realizations

There have been many physical realizations of the 1D spin- 1
2 chain. We can mention KCuF3[Tennant

et al., 1995], Sr2CuO3[Walters et al., 2009] and CuSO4 ·5D2O [Mourigal et al., 2013]. All these ma-

terials features nearly isolated spin- 1
2 chains. Below some critical temperature, the inter-chain

couplings will become relevant. The system thus turns into a three-dimensional one which

will realize some magnetic order. Above this temperature however, the thermal fluctuations

will effectively decouple the chains while leaving the chain physics itself nearly unaffected,

thus realizing an effective one-dimensional system. We show in fig. 2.4 a comparison between

an inelastic neutron scattering measurement of the dynamic spin structure factor and the pre-

dicted spectrum. This figure is taken from Mourigal et al. [2013]. The one-dimensional spin- 1
2

Heisenberg chain is a great example where a theoretically exact theory could be successfully

confronted to experimental measurements in great details.

Figure 2.4 – Figure from Mourigal et al. [2013]. Experimental colormap of the dynamic spin
structure factor of the spin- 1

2 chain material CuSO4 · 5D2O (left) compared to a two- plus
four-spinons excitation calculation from the isotropic Heisenberg model.
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2.3 The square lattice Heisenberg model

The Quantum spin-1/2 Heisenberg Square lattice Anti-Ferromagnetic model (QHSAF) is

probably the simplest Heisenberg model one can think of in two dimensions. We only consider

a nearest-neighbour antiferromagnetic coupling J such that the model is usually written as

H = J
∑
〈i , j 〉

Si ·S j (2.3.1)

where i = (ix , i y ) and j index the sites of the lattice and the sum runs over the 〈i , j 〉 nearest-

neighbours bonds. Since the system still has a continuous rotational symmetry and is two-

dimensional, the Mermin-Wagner theorem still applies and predicts that the system should

be disordered at any finite temperature. However there is theoretical and numerical agree-

ment [Manousakis, 1991] that the zero-temperature system should be ordered. Since in real

materials there always is some weak inter-plane coupling making the system marginally three-

dimensional, physical realizations will order at some finite temperature.

At a first glance, this renders the problem simpler since its ground state seems to be close

to a classical state with a local order parameter. However there is to date no exact solution

such as in the one-dimensional case and approximations must be used. To allow compari-

son between the different theoretical approaches and experimental results, one resorts on

instantaneous and dynamical quantities respectively relating to the ground state and to the

excitations properties. The quantities which will be thoroughly studied in this work are:

– the staggered magnetization:〈
Sz

Q

〉
= 1

N

∑
i

e i Ri ·Q 〈
Sz

i

〉
(2.3.2)

where Q = (π,π) is the antiferromagnetic ordering vector (in reciprocal unit cell units),

– the longitudinal (α = z) and transverse (α ∈ {x, y}) instantaneous spin correlation in real

and reciprocal space:

Sαα(r ) =〈
Sαi+r Sαi

〉
(2.3.3)

Sαα(q) =
〈

Sα−q Sαq
〉

, (2.3.4)

– and the longitudinal and transverse dynamic spin structure factor:

Szz (q ,ω) =
∫

d te iωt
〈

Sz
−q (t )Sz

q (0)
〉

(2.3.5)

S±(q ,ω) =
∫

d te iωt
〈

S−
q (t )S+

q (0)
〉

. (2.3.6)

Probably the most established theory to tackle the QHSAF is SWT which we quickly review in

section 2.4.1. Before going into a review of the experimental results available, it is useful to

point out a few SWT results for comparison.

– The staggered magnetization: For spin- 1
2 , SWT predicts a T = 0 ordered phase with a stag-

gered magnetization reduced to 62% of its classical value.
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– Transverse instantaneous spin correlation functions: in linear SWT one can calculate S±(q)

and the corresponding alternating real space transverse spin-spin correlation S±(r ) =∫
e i (q+Q)r S±(q). An important outcome for the coming discussion is that the alternated real

space transverse spin-spin correlation decays algebraically with distance (fig. 2.5). This is a

long wave-length property and we will see that the spin-wave approximation is the most

robust in this regime.

Figure 2.5 – Instantaneous transverse correlation function S±(r ) = e iQr 〈S−
i S+

i+r 〉 from linear
SWT. The log-log plot evidences the algebraic decay of the correlation function.

– Transverse dynamic spin structure factor: In linear SWT, the transverse dynamic structure

factor consists only of a magnon modeωq gapless at q = (0,0) and q = (π,π). The important

facts are that i) the spin-wave magnon mode energy ωq is constant along the Magnetic

Brillouin Zone Boundary (MBZB) |qx |+ |qy | =π and ii) its intensity I (q) in the transverse

dynamic structure factor S±(q ,ω) = I (q)δ(ω−ωq ) is also constant along the MBZB. We

show these observations in fig. 2.6 along the high-symmetry directions.

2.3.1 Physical realizations and statement of the problem

There exists many realizations of the QHSAF: the metal-organics CFTD [Burger et al., 1980;

Yamagata et al., 1981; Clarke et al., 1992; Rønnow et al., 1999; Christensen et al., 2007] and

Cu(pz)2(ClO4)2 [Tsyrulin et al., 2009], the vanadate K2V3O8 [Lumsden et al., 2006], the in-

sulating parent compound of the high-temperature superconducting cuprate materials for

instance LCO[Coldea et al., 2001a; Headings et al., 2010], Sr2Cu3O4Cl2 [Kim et al., 1999], SCOC

or Bi2Sr2YCu2O8 (BSYCO)[Guarise et al., 2010; Dalla Piazza et al., 2012] and the monolayer
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Figure 2.6 – Linear SWT magnon dispersion ωq and intensity I (q) in the dynamic structure
factor S(q ,ω) = I (q)δ(ω−ωq ). The inset shows the chosen high-symmetry path q = (qx , qy ).

iridate Sr2IrO4 [Kim et al., 2012]. A key quantity which is accessible to neutron scattering

experiments is the dynamic spin structure factor. Overall the SWT predictions proved to

be surprisingly accurate, but a few experiments nonetheless reported significant deviations

[Rønnow et al., 2001; Christensen et al., 2007; Headings et al., 2010; Kim et al., 2001]. These

deviations occur at the high-energy/short wavelength part of the excitation spectrum which

coincides with the MBZB, where SWT is consistently expected to be less robust. Dubbed

hereafter "quantum effects", the observed deviations can be summarized as follow:

1. A downward dispersion of the magnon mode energy of 7% along the MBZB from q =
(π/2,π/2) (highest) to q = (π,0) (lowest).

2. A reduction of the magnon intensity of 50% at q = (π,0) compared to q = (π/2,π/2).

3. The emergence of a continuum of excitations extending towards higher energies above

the magnon line at q = (π,0). This feature results in an asymmetrical lineshape of the

dynamic spin structure factor peak for this momentum as a function of energy.

Feature 1 has been observed in CFTD and Sr2Cu3O4Cl2[Rønnow et al., 2001; Christensen

et al., 2007; Kim et al., 2001] but not in LCO. This can be explained by the extended magnetic

couplings present in the cuprate materials, in particular the cyclic ring exchange, which qual-

itatively modifies the SWT prediction for the magnon dispersion (see chapter 3). Therefore

feature 1 is rendered unobservable in LCO due to these extended magnetic coupling. Other-

wise features 2 and 3 could both be observed in CFTD[Christensen et al., 2007], LCO[Headings

et al., 2010] and Cu(pz)2(ClO4)2 [Tsyrulin et al., 2009] while we are not aware of an experimen-

tal work evidencing it in Sr2Cu3O4Cl2. These effects thus appear in very different materials
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Figure 2.7 – Unpolarized INS spectrum for the CFTD materials from Mourigal [2011] as a
function of momentum and energy.

supporting the idea that they are intrinsic quantum effects of the nearest-neighbour QHSAF.

The dispersion quantum effect 1 could be numerically reproduced by series expansion around

the Ising limit of the QHSAF[Zheng et al., 2005] and quantum Monte Carlo [Syljuåsen and Røn-

now, 2000; Sandvik and Singh, 2001] strengthening the proposal of its QHSAF intrinsic nature.

3rd order 1/S SWT also predicted a dispersion along the MBZB but only of 3% [Syromyatnikov,

2010] as a result of an apparently very slowly, if at all convergent 1/S perturbative expansion.

The intensity and the continuum quantum effects 2 and 3 are linked in the sense that the

energy-integrated intensity is almost constant along the MBZB such that the intensity go-

ing into the continuum at q = (π,0) necessarily lowers the main magnon peak intensity.

Series expansion could reproduce a 20% reduction of the q = (π,0) intensity with respect

to q = (π/2,π/2). Quantum Monte Carlo on the other hand is a difficult tool when going to

dynamical properties as the analytical continuation of noisy numerical data either results

in an insufficient frequency resolution or requires some a-priori knowledge/postulate of the

lineshape [Sandvik and Singh, 2001].

To illustrate the experimental quantum effect, we will focus on experimental data coming

from CFTD due to i) the absence of extended magnetic interactions, ii) the availability of

extended time-of-flight neutron data and iii) the availability of polarized neutron scattering

data for the q = (π,0) and q = (π/2,π/2) momenta which importantly allow to disentangle

the longitudinal Szz (q ,ω) from the transverse S±(q ,ω) experimental contributions. This yet

unpublished data can be found in Martin Mourigal PhD thesis [Mourigal, 2011]. We show

a colormap of the unpolarized neutron scattering data along the high-symmetry directions

in fig. 2.7 which nicely evidences features 2. The 7% dispersion feature 1 is better seen in

fig. 2.8, data extracted from ref. Christensen et al. [2007]. We now take a closer look at the

specific momenta q = (π,0) and q = (π/2,π/2) from polarized neutron scattering in fig. 2.9.

The measurement by polarized neutron scattering from two different Brillouin zones allowed

to decouple the transverse (fig. 2.9 B and F) and longitudinal (fig. 2.9 C and G) channels. In the

transverse channel, the q = (π,0) (fig. 2.9 B) and the q = (π/2,π/2) (fig. 2.9) nicely evidence all

the quantum anomaly features. The main peak is shifted down by 7% for q = (π,0) compared

to q = (π/2,π/2) and its intensity is reduced as more weight is pushed into the tail going to
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Figure 2.8 – Magnon-like dispersion relation (top) and intensity (bottom) as measured by INS
on the CFTD material [Christensen et al., 2007] (blue open circles) compared to linear SWT
(black solid line) with J adjusted such that ω(π/2,π/2) matches experiments.

higher energies. The longitudinal spectrum (fig. 2.9 C and G) also shows important differences

between the two momenta. If one subtracts from the transverse channel the magnon-like

peak as fitted by a resolution-limited gaussian, one obtains the blue open points in fig. 2.9 D

and H. The dashed red lines are twice the longitudinal lineshapes from fig. 2.9 C and G. While

the subtraction at q = (π/2,π/2) leaves almost no spectral weight, at q = (π,0) it results in a

lineshape which overlaps perfectly the longitudinal channel data. This surprising observa-

tion hints that the excitations found in the high energy tail of the q = (π,0) spectrum might

be spin-isotropic with Sxx (q ,ω) = Szz (q ,ω) = 1
2 S±(q ,ω). It is not possible to reconciliate the

observed lineshapes with SWT. In SWT, magnon-magnon interaction do push about 20%

of the MBZB magnon peak weight into a higher energy three-magnon continuum [Canali

and Wallin, 1993]. But the resulting lineshape is radically different, does not coincide with

the (two-magnon) longitudinal lineshape at q = (π,0) and more importantly is only weakly

momentum-dependent while the experimental data shows very important differences be-

tween the q = (π,0) and q = (π/2,π/2).

In this thesis, we propose that all these experimental deviations mark a departure from the

conventional SWT at short wavelengths/high energies and that the measured excitations must

be described differently. The total spin dynamic structure factor shown in fig. 2.9 A for q = (π,0)

is reminiscent of the one-dimensional spin- 1
2 chain dynamic structure factor. It inspired us

to consider the proposal that the excitations at q = (π,0) should in fact be understood as

emergent fractional quasiparticles-pair excitations just as in the one-dimensional case. In the
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Figure 2.9 – Polarized INS spectra for the q = (π,0) (A-D) and q = (π/2,π/2) (E-H) mo-
menta [Mourigal, 2011]. First line from the top indicate the total dynamic structure factor
S(q .ω) = Sxx (q ,ω)+S y y (q ,ω)+Szz (q ,ω), the Néel ordering axis taken along the z axis. Second
line shows the transverse spectra with solid blue line being resolution-limited gaussian fits.
Third line shows the longitudinal spectra with dashed red lines guides for the eye, and fourth
line shows together twice the longitudinal red dashed guide to the eye line with the transverse
spectrum where the fitted resolution-limited gaussian solid blue line have been subtracted.
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following we set up a formalism and numerical techniques to tackle this idea.

2.4 Analytical approaches

In this section we first set up the linear SWT and extract from it quantities that can be compared

to experiments and to our spinon-pair calculation. Then we move towards reviewing the

fermionic mean-field theories of the QHSAF and setup the mathematical foundations of our

later numerical work.

2.4.1 The Spin-Wave approximation

We quickly review linear SWT for the sake of the coming discussion. A more in depth discussion

in particular considering bi-layered materials and the first order quantum corrections is carried

out in chapter 3 section 3.5. We start by introducing a staggered rotation of the spin frame of

reference around the y axis:

Sx
i →e iQRi Sx

i , (2.4.1)

S y
i →S y

i , (2.4.2)

Sz
i →e iQRi Sz

i . (2.4.3)

In this rotated frame of reference the classical ground state is ferromagnetic. Using the Holstein-

Primakov transform we describe the deviations from this ground state using the bosonic

spin-wave creation and annihilation operators:

Sz
i =1

2
−a†

i ai (2.4.4)

S+
i =

[√
2S −a†

i ai

]
ai ≈

p
2Sai (2.4.5)

S−
i =a†

i

[√
2S −a†

i ai

]
≈
p

2Sa†
i (2.4.6)

where the approximation of the square root term prepares the 1/S approximation of the spin-

wave Hamiltonian. Neglecting the quartic boson operator terms (the 1/S approximation) we

obtain a quadratic Hamiltonian

H (2)
SW = JS2 1

2

∑
i

∑
τ

[
−1+ 1

S

(
a†

i ai +a†
i+τai+τ−a†

i+τa†
i −ai+τai

)]
+O

(
1

S0

)
(2.4.7)

which upon a Fourier transform

ai =
∑
k

e i kRi ak (2.4.8)

a†
i =

∑
k

e−i kRi a†
i (2.4.9)
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becomes

H (2)
SW =−S2z J

N

2
+S J

∑
k

∑
τ

a†
k ak − 1

2
e i kτa†

k a†
−k − 1

2
e i kτak a−k (2.4.10)

=−S2z J
N

2
+S J

∑
k

Ak a†
k ak + 1

2
Bk

(
a†

k a†
−k +ak a−k

)
. (2.4.11)

with z = 4 the number of nearest neighbors and

Ak =z (2.4.12)

Bk =∑
τ

cos(kτ). (2.4.13)

At last a standard Bogoliubov transform diagonalize the quadratic spin-wave Hamiltonian

with

αk =uk ak + vk a†
−k (2.4.14)

uk =
√

1

2

(
1+ Ak

ωk

)
(2.4.15)

vk =sign(Bk )

√
1

2

(
1− Ak

ωk

)
(2.4.16)

ωk =
√

A2
k −B 2

k (2.4.17)

giving

H (2)
SW =−JS(S +1)z

N

2
+S J

∑
k
ωk

(
α†

kαk + 1

2

)
. (2.4.18)

The ground state is the vacuum of the αk harmonic oscillator modes and the excitations

are the creation of one or more spin-waves through the α†
k creation operator. Inversing the

transformations, we can express the spin operators in terms of the αk operators thus we can

express the various zero-temperature physical quantities such as:

– The staggered magnetization:

MQ =
〈∑

i
Sz

i

〉
T=0

=1

2
−〈a†

i ai 〉 (2.4.19)

1

2
−∑

k
v2

k ' 0.3. (2.4.20)

– The transverse instantaneous spin-spin correlation:〈
S−

q S+
q

〉
= (uk − vk )2. (2.4.21)

We show the Fourier transform
〈

S−
i S+

i+r

〉=∑
q e i qr

〈
S−

q S+
q

〉
in the case of the spin- 1

2 QHSAF

in fig. 2.5
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– The transverse dynamic spin structure factor:

S±(q ,ω) =
∫

d te iωt
∑
i j

eq(R j−Ri )
〈

S−
i (t )S+

j (0)
〉

(2.4.22)

=(uk − vk )2δ(ω−ωk ). (2.4.23)

We see that the transverse excitations are made out of single spin-waves which corresponds

to a change of angular momentum ∆S = 1. In reality magnon-magnon interaction will give

rise to a continuum of three-magnons, five-magnons and so on. We show in fig. 2.6 the

one-magnon dispersion ωq along with its intensity Iq = (uk −vk )2 in the case of the spin- 1
2

QSHAF.

– The longitudinal dynamic spin structure factor:

Szz (q ,ω) = M 2
Qδ(q −Q)δ(ω)+ 1

2

∑
k

(uk vk−q −uk−q vk )2δ(ω−ωk −ωk−q ) (2.4.24)

whose inelastic part corresponds to the creation of two spin-waves giving rise to a longitudi-

nal continuum of excitations. We show this longitudinal continuum for the spin- 1
2 QHSAF

later on in fig. 3.22.

Magnon-magnon interaction

From equation 2.4.4 to 2.4.7 we truncated the expansion of the spin Hamiltonian in terms

of the ai and a†
i bosonic operators such that only the quadratic bosonic terms were left.

This corresponds to an expansion in 1/S where terms of order 1/S0, giving rise to quartic

bosonic terms, where disregarded. Introducing these terms can be done in various perturba-

tive schemes. In section 3.5.5 for instance we treat those through an Hartree-Fock procedure

which for nearest-neighbour coupling J leads to a uniform quantum renormalization of the

one-magnon energy ωk → Zcωk with Zc ' 1.15.

To calculate the effect of these magnon-magnon interactions on the various correlation func-

tions, the preferred approach is to rewrite the interacting part of the spin-wave Hamilto-

nian into the quasi-particle αk operators diagonalizing the quadratic part and to carry out

a perturbative expansion in the interaction through the Feynman diagram formalism for

instance [Igarashi, 1992; Canali and Wallin, 1993; Igarashi and Nagao, 2005; Syromyatnikov,

2010]. Following Igarashi [1992] the correlation functions can be written in terms of the Green

functions:

G11 =− i 〈Tαk (t )α†
k (0)〉 (2.4.25)

G12 =− i 〈Tαk (t )α−k (0)〉 (2.4.26)

G21 =− i 〈Tα†
−k (t )α†

k (0)〉 (2.4.27)

G22 =− i 〈Tα†
−k (t )α−k (0)〉. (2.4.28)
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The perturbed Green functions may be calculated from the Fourier-transformed unperturbed

ones G0
µν(k ,ω) through the Dyson equation:

Gµν(kω) =G0
µν(k ,ω)+ ∑

µ′ν′
G0
µµ′(kω)Σµ′ν′(k ,ω)Gν′ν(k ,ω) (2.4.29)

where Σµν(k ,ω) is the self-energy which quantifies how the magnon-magnon interaction will

mix together the unperturbed Green functions and is calculated through perturbation theory.

The reason we recall this calculation is that it has been shown that the self-energy Σµν(k ,ω)

vanishes for long wavelength k → 0[Igarashi, 1992] which justifies the SWT being accounted

for as a long wavelength theory. This is important for the coming discussion as some spin-

wave results are therefore robust such as for instance the long distance algebraic decay of

the transverse spin-spin correlation function
〈

S−
i S+

i+r

〉
. On the other hand the measured

anomalies precisely happen at the short wavelength/high energy part of the spectrum where

the convergence of the perturbation series is less robust. Indeed while Series Expansion [Zheng

et al., 2005] and Quantum Monte Carlo [Sandvik and Singh, 2001; Syljuåsen and Rønnow, 2000]

could obtain the 7% MBZ boundary dispersion, a 3rd order spin-wave expansion could only

recover a dispersion of about 3%, raising doubts about the convergence of the perturbation

series.

2.4.2 Fermionized Heisenberg model

In order to tackle the idea of fractional excitations in the QSHAF, we first need to somehow

express the Heisenberg Hamiltonian in a language with fractional spin-1/2 quasiparticle

creation and annihilation operators. Note that, in the XY model in 1D one could achieve this

using the Jordan-Wigner transformation and map the spin operators to spinless fermions.

But this mapping relied on the uniqueness of the string operator definition eq. 2.2.9 and the

nearest-neighbour restriction of the interaction [Giamarchi, 2004]. In 2D the string operator

attached to the Jordan-Wigner transformation may be defined in many ways and the “magic”

cancellation of the string operator found in the 1D XY model would not happen here anymore.

We thus turn towards a much less inspired transformation and simply express the spin- 1
2

operators in second-quantized form:

Sαi → ∑
σ,σ′

c†
iσ

(
Sαi

)
σσ′ ciσ′ . (2.4.30)
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The Heisenberg Hamiltonian then becomes:

H = ∑
〈i , j 〉

∑
α

∑
1234

c†
iσ1

(
Sαi

)
σ1σ2

ciσ2 c†
jσ3

(
Sαj

)
σ3σ4

c jσ4 (2.4.31)

= ∑
〈i , j 〉

[
1

4

(
ni↑n j↑+ni↓n j↓−ni↑n j↓−ni↓n j↑

)
+1

2

(
c†

i↑ci↓c†
j↓c j↓+ c†

i↓ci↑c†
j↑c j↓

)]
(2.4.32)

=− 1

2

∑
〈i , j 〉

[
ni

(
1

2
ni −1

)
+∑
αβ

c†
iαc jαc†

jβciβ

]
(2.4.33)

In this fermionic formulation, doubly occupied and empty sites now belong to the enhanced

Hilbert space. The Heisenberg Hamiltonian eq. 2.3.1 and its fermionized version 2.4.33 might

only be equivalent on the subspace corresponding to half-filling N↑ = N↓ = N /2 and D = 0

double occupancies or empty sites (note that in this subspace the first term in eq. 2.4.33 is

a constant and will be omitted hereafter). It turns out that eq. 2.4.33 commutes with D̂ =∑
i ni↑ni↓ thus the two formulations are equivalent on the physical Hilbert space. But when

applying approximations we might break this property. A way to enforce it a priori is to add

explicitly the constraint into the fermionic spin operators:

ciσ→ c̃iσ =ciσ(1−ni σ̄) (2.4.34)

c†
iσ→ c̃†

iσ =(1−ni σ̄)c†
iσ (2.4.35)

as one can verify that
[
c̃iσ,D̂

]= 0. Another way to enforce the constraint of no-double occu-

pancies is through the so-called Gutzwiller projection:

PD=0 =
∏

i

(
1−ni↑ni↓

)
. (2.4.36)

Applying this projector left-hand and right-hand side of an approximate of eq. 2.4.33 will cure

a posteriori the non-commuting parts of an approximated Hamiltonian such that[
PD=0HapproxPD=0,D̂

]= 0. (2.4.37)

Equivalently, the Gutzwiller projection may simply be applied to the eigenstates found in a

particular approximation. In the following we will heavily use the Gutzwiller projection which

we will implement numerically.

2.4.3 Projected Mean Field theories

The simplest approximation one can think of to diagonalize the fermionized Heisenberg

Hamiltonian is to define mean-fields such that it becomes quadratic in fermion operators.

There are many ways one can define the mean fields and we review some of those below. When

doing a mean-field approximation, we might break the no-double occupancies constraint
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introducing matrix elements between the half-filled D = 0 subspace and other D > 0 subspaces

which are not relevant for approximating the Heisenberg model. As a result, the obtained

eigenstates of the mean-field Hamiltonian will contain states belonging to D > 0 subspaces.

We cure this a-posteriori using the Gutzwiller projection such that a mean-field eigenstate∣∣ψM−F
〉

become∣∣ψM−F
〉→ PD=0

∣∣ψM−F
〉

. (2.4.38)

These kinds of projected wavefunctions were first used by Gutzwiller [Gutzwiller, 1963] to

study the Hubbard model in the metallic phase. They have been later put forward in the

context of high-temperature superconductivity along with the RVB proposal [Anderson, 1987].

When defining the mean-fields, we must be careful that they obey the symmetries present

in the Heisenberg model in particular we want the total z-component of the total spin to be

conserved. We define the three mean-fields:

hiσ =−hi σ̄ =〈c†
iσciσ〉 (2.4.39)

χi j =χ∗j i =2〈c†
iσc jσ〉 (2.4.40)

∆i j =∆ j i =〈ci↑c j↓〉. (2.4.41)

Introducing those in eq. 2.4.33 we obtain the following mean-field Hamiltonian where con-

stants have been omitted:

HM−F =−1

4

∑
〈i , j 〉

∑
σ

[
χi j c†

jσc jσ+∆i j εσσ̄c†
i σ̄c†

jσ+H.C.

+h jσc†
iσciσ+hiσc†

jσciσ

]
. (2.4.42)

The definition of the different mean-fields is then guided by physical insight and results in

various mean-field Ansätze. For instance as we know that the classical Heisenberg model

favours antiferromagnetism, we will choose for hiσ an antiferromagnetic order parameter:

hiσ =σhe iQ·Ri Q = (π,π) . (2.4.43)

The choice of a good form of the other two mean-fields is less obvious. The first one we present

is the so-called d-wave RVB Ansatz. It is inspired by the Bardeen-Cooper-Schrieffer mean-

field decoupling of the effective electron-phonon Hamiltonian found to govern conventional

superconductivity [Bardeen et al., 1957]. The ’d-wave’ name comes from the similarity of the

chosen mean-field symmetries with the one of a d-shell electronic orbital. It was inspired by

the superconducting gap symmetry found in the cuprate family by ARPES measurements [Lee
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et al., 2006]. The mean-fields Ansatz is:

χi j =χ0 ∈R (2.4.44)

∆i j =


∆0 j = i ± êx

−∆0 j = i ± ê y

0otherwise

. (2.4.45)

An alternative Ansatz is the so-called Staggered Flux (SF) mean-field as it describes free

fermions on a lattice with staggered fluxes threading the plaquettes (fig. 2.10). The mean-field

is parametrized by the two parameters t and θ0. While t only sets an energy scale, θ0 describes

the phase a fermion would acquire by circulating around a plaquette (±4θ0). This mean-field

decoupling was first proposed by Affleck and Marston [Marston and Affleck, 1989] as it turns

out it is the exact solution of eq. 2.4.33 in the limit where, instead of σ ∈ {↑,↓} the spin index

takes n →∞ flavors. The mean-fields definition is:

χi j =te iθi j θi j = θ0(−1)ix+ jy (2.4.46)

∆i j =0. (2.4.47)

Although it seems at first sight that these two mean-fields definitions are very different from

each others, it turns out that they produce exactly the same eigenvalues. This is explained in

the following section.

Figure 2.10 – representation of the staggered flux mean-field solution. Fluxes of ±4θ0 threads
the square lattice plaquettes in a staggered manner.
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2.4.4 Equivalences between mean field theories

When going to the fermionized version of the Heisenberg Hamiltonian, there are actually

many ways one can define the fermions in the new enhanced Hilbert space. For instance

an obvious transformation that leaves the Heisenberg model invariant is a local U(1) gauge

transformation:

ciσ→ e iωi ciσ. (2.4.48)

However there is more. Introducingψi

ψi =
(

ci↑
c†

i↓

)
(2.4.49)

we remark that the spin operators can be rewritten as [Lee and Feng, 1988]:

S+
i =1

2
ψT

i

(
0 1

−1 0

)
ψi (2.4.50)

Sz
i =1

2

[
ψ†

iψi −1
]

. (2.4.51)

such that it is easy to see that the SU(2) transformation

ψi →Wiψi Wi ∈ SU(2) (2.4.52)

does leave the spin operator unchanged since for a SU(2) matrix Wi

W T
i

(
0 1

−1 0

)
Wi =

(
0 1

−1 0

)
(2.4.53)

W H
i Wi =1. (2.4.54)

Therefore there are many ways to fermionize the Heisenberg Hamiltonian which, when consid-

ered on the half-filled with no double occupancies subspace, are equivalent. To be physically

relevant, the mean-field Ansatz must also exhibit this symmetry. If we introduce the ψi opera-

tors in the mean-field Hamiltonian eq. 2.4.42 then we obtain:

HM−F =−1

4

∑
〈i , j 〉

[
ψ†

i Ui jψ j +H.C.+ψ†
i H jψi +ψ†

j Hiψ j

]
(2.4.55)

with

Ui j =
(

χ∗i j −∆i j

−∆∗
i j −χi j

)
=−

〈
ψiψ

†
j

〉
(2.4.56)
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and

Hi =
(

hi↑ 0

0 hi↑

)
= 1

2

(〈
ψ†

iψi

〉
−1

)(
1 0

0 1

)
(2.4.57)

We now consider the local SU(2) transformations

ψi →Wiψi (2.4.58)

ψ j →W jψ j . (2.4.59)

We see that the mean-field Hamiltonian remains invariant. Using such an SU(2) transformation

it has been shown [Affleck et al., 1988] that the d-wave RVB and SF Ansätze are in fact equivalent

with

t =
√
χ2

0 +∆2
0 (2.4.60)

θ0 =tan−1
(
∆0

χ0

)
. (2.4.61)

2.4.5 Projected mean-field magnetic excitation spectrum

We shortly review here previous efforts into predicting the excitation spectrum of the square

lattice antiferromagnet based on the mean-field approach.

Following the mean-field decoupling of eq. 2.4.33 omitting the Gutzwiller projection, one can

simply diagonalize the Hamiltonian and write down self-consistent equations defining the

mean-fields. In the staggered flux gauge, it has been shown that the self-consistent flux is

4θ0 =π[Marston and Affleck, 1989] such that the staggered pattern from fig. 2.10 is lost since

the phase acquired by circulating around a plaquette is e iπ = e−iπ. Of course neglecting the

Gutzwiller projection renders the mean-field results doubtful at best. A strategy is to consider

the following Hamitlonian treated in the mean-field approach:

H =−Je f f

∑
〈i , j 〉,σ

[
e iθi j c†

iσc jσ+h.c.
]
+V

∑
i

ni↑ni↓ (2.4.62)

with θi j as defined in eq. 2.4.46 with θ0 = π/4. V is an added on-site repulsion, a strategy

to account to some level for the Gutzwiller projection. The mean-field solution gives the

eigenvalues as

Ek = Je f f

√
cos2kx +cos2ky +m2 (2.4.63)

where m is a Néel field. The self-consistent relation between m and V is given by

V −1 = N−1
∑

|k |<π
E−1

k (2.4.64)
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The strategy then is to find some scheme such that the choice of parameters Je f f and m (or

equivalently V ) reflects the effect of the Gutzwiller projection. In Hsu [1990], Je f f = J and

m is the optimal value from variational Monte Carlo while the Gutzwiller projection still is

accounted for in some approximate way. In Ho et al. [2001] the values of Je f f and m are

obtained from a self-consistent approach first developped in Laughlin [1995]. The effect of the

particle repulsion V is then accounted for in a Random Phase Approximation (RPA) fashion.

The generalized magnetic susceptibility is obtained as:

χ±(q ,ω) = χ±0 (q ,ω)

1−V χ±0 (q ,ω)
(2.4.65)

where χ±0 is the transverse susceptibility calculated in the mean-field solution. Importantly,

in both approach the excitations are made out of projected mean-field particle-hole pairs

which form a bound state with a dispersion similar to the magnon one from SWT. Additionally

the calculation in Ho et al. [2001] evidences the emergence of a continuum of high-energy

excitations which, at q = (π,0) merges with the otherwise sharp magnon mode.

However the approximate treatement of the Gutzwiller projection in the two approaches obvi-

ously is a source of uncertainties. In Hsu [1990], the complications induced by the approximate

Gutzwiller projection only allowed for the calculation of the poles of the excitation spectrum –

similar to a single-mode approximation – such that the question of the possibility of a contin-

uum could not be addressed. In Ho et al. [2001], the RPA treatment of the Gutzwiller projection

allows for a finite number of double occupancies such that the spin sum rule S2 = S(S +1) is

not fullfilled. In that case it is impossible to tell whether the calculated spectrum exhaust the

spectral weight.

2.4.6 The Staggered Flux + Néel Wavefunction

The coming numerical calculations will be based on the Staggered Flux plus Néel (SF+N) mean-

field Ansatz which we describe here. The staggered flux gauge is convenient because in the

mean-field Hamiltonian there are no pairing terms such as c†
iσc†

j σ̄. The resulting quasiparticle

operators diagonalizing it therefore do not contain superposition of creation and annihilation

operators such that the number of particles is conserved and the wavefunction can simply be

factorized such as∣∣ψ〉= ∏
k ,σ

γ†
k ,σ |0〉 . (2.4.66)
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The mean-field Hamiltonian is:

HSF+N =HSF +HN (2.4.67)

HSF =− 1

2

∑
i even,σ

(
e iθ0 c†

iσci+xσ+e−iθ0 c†
iσci+yσ+H.C.

)
− 1

2

∑
i odd,σ

(
e−iθ0 c†

iσci+xσ+e iθ0 c†
iσci+yσ+H.C.

)
(2.4.68)

HN =−hN
∑
σ
σ

( ∑
i even

c†
iσciσ−

∑
i odd

c†
iσciσ

)
(2.4.69)

Where σ ∈ {−1,1}. Using the Fourier transform of the creation and annihilation operators we

obtain a more compact form:

HSF+N = ∑
k∈MBZ,σ

−α†
kσ

(
σhN ∆∗

k
∆k −σhN

)
αkσ (2.4.70)

with

αkσ = 1p
2

(
ckσ+ ck+Qσ

ckσ− ck+Qσ

)
(2.4.71)

and

∆k = 1

2

(
e iθ0 cos(kx )+e−iθ0 cos

(
ky

))
. (2.4.72)

We thus look for a unitary transformation P−1
kσ = P H

kσ such that

Ωkσ = P−1
kσ

(
σhN ∆∗

k
∆k −σhN

)
Pkσ (2.4.73)

is a diagonal matrix. Defining the transformation matrix as

Pkσ =
(

ukσ− ukσ+
vkσ− vkσ+

)
(2.4.74)

we achieve this with the following definitions:

ukσ− =
√

1

2

(
1+ σhN

ωk

)
(2.4.75)

vkσ− = ∆k

|∆k |

√
1

2

(
1− σhN

ωk

)
(2.4.76)

ukσ+ =− v∗
kσ− (2.4.77)

vkσ+ =ukσ− (2.4.78)
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where ωk is the quasiparticle eigen-energy:

Ωkσ =
(
−ωk 0

0 ωk

)
(2.4.79)

ωk =
√

|∆k |2 +h2
N. (2.4.80)

We have thus diagonalized the SF+N Hamiltonian eq. 2.4.67 using a canonical transformation

which defines two quasiparticle bands. The reason there are two bands is because in eq. 2.4.67

the original lattice translation symmetry is broken. The resulting lattice has a doubled unit

cell containing two sites thus the obtained two bands with the corresponding quasi-particle

operators. We note that the doubling of the unit cell is uniquely due to the Néel mean field.

While HSF eq. 2.4.68 seems to break the translational symmetry (along with some 90◦ crystal

rotation symmetry), this transformation can in fact be written as an SU(2) transformation

which is a symmetry of the mean-field Hamiltonian in the physical Hilbert space. However

the same is not true for HN eq. 2.4.69. There an SU(2) transformation cannot account for a

translation by one unit cell resulting into the changing the sign of the hN mean-field parameter.

With respect to the original Hamiltonian creation and annihilation operators ckσ, the canonical

transform reads:(
γkσ−
γkσ+

)
= 1p

2

(
ukσ− v∗

kσ−
u∗

kσ+ vkσ+

)(
ckσ+ ck+Qσ

ckσ− ck+Qσ

)
(2.4.81)

where k is restricted to the Magnetic Brillouin Zone (MBZ) |k | ≤ π. Expressed with the new

quasi-particle operators the real space fermion operators are

ciσ =
p

2
∑

k∈MBZ
e i kRi

[(
εRi ukσ−+ ε̄Ri vkσ−

)
γkσ−+ (

εRi ukσ++ ε̄Ri vkσ+
)
γkσ+

]
(2.4.82)

where εRi and ε̄Ri tell whether site i is even or odd:

εRi =
1

2

(
1+e iQRi

)
(2.4.83)

ε̄Ri =
1

2

(
1−e iQRi

)
. (2.4.84)

We show in fig. 2.11 the obtained energy bands. For hN = 0 the bands are gapless with Dirac

cones at k = (±π/2,±π/2). The effect of the Néel mean field hN is to gap the two bands turning

the Dirac cones into minima/maxima of the bands. We note that the canonical transformation

is ill-defined at k = (±π/2,±π/2) since the phase ∆k /|∆k | has no well-defined limit when

k → (±π/2,±π/2). This will have technical consequences when implementing the numerical

calculation.

The ground state of the SF+N mean field Hamiltonian at half-filling and in the Sz
tot = 0 sector

corresponds into completely filling the bottom band. The mean-field ground-state is thus:∣∣ψGS
〉= ∏

k∈MBZ
γ†

k↑−γ
†
k↓− |0〉 . (2.4.85)
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Looking at the definition of the quasi-particle operators eq. 2.4.81, one immediately sees that

the mean-field ground state will contain many double occupancies and thus cannot be as

such an approximation of the Heisenberg model ground state. Only the Gutzwiller-projected

mean-field ground-state is significant:

|GS(θ0,hN)〉 = PD=0
∣∣ψGS(θ0,hN)

〉
(2.4.86)

where we have explicitly put back the mean-fields definition dependence. How good an

approximation of the Heisenberg model ground state is it and for which parameters θ0 and

hN? To answer this we can try to calculate the variational energy of this state:

EGS(θ0,hN) = 〈GS|H |GS〉
〈GS|GS〉 =

〈
ψGS

∣∣PD=0H PD=0
∣∣ψGS

〉〈
ψGS

∣∣PD=0
∣∣ψGS

〉 . (2.4.87)

Due to the complexity of the Gutzwiller projection, there is no simple way to evaluate eq. 2.4.87.

Analytically one can use further approximation such as the Gutzwiller approximation [Gros,

1989]. In this thesis we choose to treat exactly the Gutzwiller projection using the variational

Monte Carlo numerical technique presented in the following section.

Figure 2.11 – Quasi-particle bands from the SF+N mean-field Hamiltonian.
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2.5 Variational Monte Carlo

In a broad context Variational Monte Carlo (VMC) is a numerical technique to calculate the

zero-temperature quantum average of some quantities using a motivated approximation of

the ground state called the trial wavefunction
∣∣ψtrial

〉
. If we are able to calculate the overlap of

the trial wavefunction with some complete basis of the Hilbert space {|α〉} and also are able in

this basis to calculate the matrix elements of the quantity under interest 〈α|O ∣∣β〉
, then the

quantum average is:

〈O〉trial =
∑
αβ

〈
ψtrial

∣∣α〉〈α|O ∣∣β〉〈
β
∣∣ψtrial

〉〈
ψtrial

∣∣ψtrial
〉 . (2.5.1)

As the sum over the states {|α〉} surely is much too large to be evaluated by some regular

sampling, we turn towards a Monte Carlo approach. For a quantity F

F =∑
α
ρ(α) f (α) (2.5.2)

where ρ(α) is a normalized probability distribution, one can design a Markov chain Monte

Carlo using the Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970] to

evaluate the sum. In the case of eq. 2.5.1, it is simple to turn it into a form suitable for a

Metropolis Monte Carlo evaluation [Gros, 1989; Foulkes et al., 2001]:

〈O〉 =∑
α

∣∣〈α∣∣ψtrial
〉∣∣2〈

ψtrial
∣∣ψtrial

〉︸ ︷︷ ︸
ρ(α)

(∑
β

〈α|O ∣∣β〉 〈
β
∣∣ψtrial

〉〈
α

∣∣ψtrial
〉)

︸ ︷︷ ︸
f (α)

(2.5.3)

where

ρ(α) =
∣∣〈α∣∣ψtrial

〉∣∣2〈
ψtrial

∣∣ψtrial
〉 (2.5.4)

is a normalized probability distribution and

f (α) =∑
β

〈α|O ∣∣β〉 〈
β
∣∣ψtrial

〉〈
α

∣∣ψtrial
〉 (2.5.5)

is the quantity of interest for the point or state α. We give a short description of the Metropolis

Monte Carlo in the appendix A.1.

The quantity thus sampled will be for instance the variational energy 〈H 〉trial of a state
∣∣ψtrial

〉
which may depend on some undetermined set of parameters. An associated problem often is to

find the proper set of parameters such that the variational energy is minimized, thus providing

an approximate of the system ground state. An important aspect of the VMC technique is

that the sampled quantities entirely rely on the trial wavefunction. Thus if one seeks exact

numerical estimates of physical quantities for a given problem, the VMC technique might
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not be the most suitable approach as it introduces an explicit bias by choosing a more or less

well motivated trial wavefunction. But this disadvantage can be turned around in the case we

actually are focused on the trial wavefunction per se. There are many cases where the choice of

a trial wavefunction contains deep physical motivations. This choice then is a physical Ansatz

and the VMC technique allows to draw its consequences in term of physical, and potentially

measurable, quantities. In this perspective, the VMC technique is not aimed at providing a

numerical way of simulating the physics of some problem. Rather it may be understood as

a semi-analytical tool which allows to draw the physical consequences of some theoretical

hypotheses as encompassed in the trial wavefunction. The focus therefore is more about

establishing an effective theory for a system than about simulating its physical properties.

2.5.1 Average quantities for projected wavefunctions

In the context of projected wavefunctions, the trial wavefunction is simply the projected

mean-field ground state
∣∣ψtrial

〉 = PD=0
∣∣ψGS

〉
, or any other filling of the mean-field bands

PD=0
∣∣ψ〉

. The idea is to deal with the projection by simply considering the Hilbert space of

singly occupied sites when introducing the projector
∑
α |α〉〈α|. More precisely the |α〉 are

states where spin- 1
2 particles are arranged on the system sites without double occupancies:

|α〉 = |(R1,σ1), (R2,σ2), . . . , (RN ,σN )〉 Ri 6= R j ∀i , j (2.5.6)

where σi ∈ {↑,↓} is the spin index. The Gutzwiller projection then takes the simple form:

PD=0 =
∑
α

|α〉〈α| . (2.5.7)

On the other hand the mean field wavefunction can be written as∣∣ψ〉= |(k1,σ1,b1), (k2,σ1,b2), . . . , (kN ,σN ,bN )〉 (2.5.8)

where bi ∈ {+,−} is the band index. In using the spin σi in these notations we assume that Sz
tot

is a good quantum number in the mean-field theory. From eq. 2.5.3 we see that the random

walk probability distribution is

ρ(α) =
∣∣〈α∣∣ψ〉∣∣2〈
ψ

∣∣ψ〉 . (2.5.9)

A nice feature of the Metropolis random walk is that the normalization must not be known as

only ratios of the probability distribution enter the transition matrix eq. A.1.2. The averaged

quantities calculated that way also are implicitly normalized as well. The key-quantity is then

the amplitude
〈
α

∣∣ψ〉
. The states eq. 2.5.6 and 2.5.8 are written in a particles state basis, not

in Fock space. The random walk in the |α〉 states will consist into moving these particles

respecting the no-double occupancies condition. But because the particles are fermions, the

states written in the particles state basis must be anti-symmetrized. As a result the amplitudes
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α

∣∣ψ〉
must be calculated as a Slater determinant:〈
α

∣∣ψ〉= Deti j
〈

Ri ,σi
∣∣k j ,σ j ,b j

〉
(2.5.10)

where
〈

Ri ,σi
∣∣k j ,σ j ,b j

〉
are the single-particle amplitudes. Because Sz

tot is a good quantum

number, the determinant can be further split in two since it is block-diagonal as
〈

Ri ,↑∣∣k j ,↓,b j
〉=

0: 〈
α

∣∣ψ〉= (
Deti↑ j↑

〈
Ri↑ ,↑∣∣k j↑ ,↑,b j↑

〉)(
Deti↓ j↓

〈
Ri↓ ,↓∣∣k j↓ ,↓,b j↓

〉)
. (2.5.11)

The numerical calculation of a N × N determinant is of complexity O (N 3). We explain in

appendix A.2 how one can improve the determinant calculation complexity.

The projected SF+N wavefunction

For the specific case of the staggered flux mean-field wavefunction, the unprojected ground

state trial wavefunction simply is
∣∣ψGS

〉
and depends upon two parameters (θ0,hN). An ap-

proximate of the ground state may then be obtained by optimizing the variational energy of

the trial wavefunction with respect to those parameters. We come back at the issue that the

magnetic Brillouin zone does contain special points – the nodes – q = (±π/2,±π/2) where

the quasi-particles are ill-defined (see eq. 2.4.75-2.4.78). If we take a finite square system of

L×L sites with periodic boundary conditions, then the reciprocal wavevector will be of the

form k = (
nx

2π
L ,ny

2π
L

)
and if L is even then the wavevectors corresponding to the nodes will

be included leading to numerical difficulties. A solution is to choose a finite system slightly

tilted which results in tilted wavevectors avoiding the nodal points [Gros, 1989]. This has the

disadvantage to break some of the lattice symmetries in particular the four-fold rotational

symmetry of the square lattice. The approach we chose is to consider a finite square system of

L ×L sites but with anti-periodic boundary conditions. For the single-particle Bloch waves

this means:

ψkn(r ) =e i kr ukn(r ) (2.5.12)

ψkn(r +Lêα) =−ψkn(r ) (2.5.13)

which leads to the definition of the wavevector:

kα =
(
nα+ 1

2

)
2π

L
. (2.5.14)

The anti-periodicity thus leads into shifting the wavevectors by π
L which will make them

avoid the nodes. We show a real space/reciprocal space finite system pair in fig. 2.12 where

antiperiodic boundary conditions are taken in both the êx and ê y directions.
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Figure 2.12 – Real space/reciprocal space pair where doubling of the unit cell is assumed. The
boundary conditions are anti-periodic in both the êx and ê y directions. Red points indicate
the position of the SF+N nodes.

2.5.2 Monte Carlo Random Walk

We specifically describe here the Metropolis Monte Carlo random walk for half-filled Sz
tot = 0

mean-field wavefunctions. The |α〉 states have no empty sites and a simple choice for the

proposal function generating the random walk is to simply swap neighbouring spins if they are

anti-parallel and do nothing if they are parallel. The conditional probability from the proposal

function has therefore the property:

P (α|α′) =P (α′|α) (2.5.15)

which simplifies the definition of the transition matrix eq. A.1.2. A slight disadvantage is that it

artificially increases the acceptance rate as many proposed states are actually identical to the

previous one. Another proposal matrix would be to only generate states by swapping nearest

neighbour anti-parallel spins, then the conditional probability would be:

P (α′|α) = 1

N ↑↓
α

(2.5.16)

where N ↑↓
α is the number of nearest-neighbour anti-parallel spins in the state |α〉. Defined that

way the proposal matrix requires to keep track of N ↑↓
α . In our implementation we do not tune

the proposal function in order to optimize the acceptance ratio thus use the first proposal

function.

What does the swap of to anti-parallel spins mean for the amplitude
〈
α

∣∣ψ〉→ 〈
α′∣∣ψ〉

. Labeling

the moving spin-↑ particle l↑ and the moving spin-↓ particle l↓, we see that the swap only
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means a change if the l↑’th line in the
〈

Ri↑ ,↑∣∣k j↑ ,↑,b j↑
〉

spin-↑ Slater matrix and the same thing

for the spin-↓ Slater matrix. We then use a determinant update formula to efficiently calculate

the new amplitude from the old one exploiting this fact. This procedure is explained in details

in appendix A.2. Here we will only mention that the calculation of the new determinant will

only be of O (N ) complexity if N is the size of the matrix instead of the cubic complexity for

calculating the determinant from scratch. Due to additional book-keepings of the determinant

update formula, the acceptance of a proposed state also has a numerical cost and will be of

order O (N 2).

The random walk can thus be efficiently generated and samples of the measured quantity will

be collected every L2 steps in order to make them independent. The measurement will also

have a significant computational cost. Considering the specific case of the Heisenberg model:

H = ∑
〈i , j 〉

Sz
i Sz

j +
1

2

(
S+

i S−
j +S−

i S+
j

)
(2.5.17)

we see that the off-diagonal part will generate new states
∣∣β〉 6= |α〉 for which a new amplitude〈

β
∣∣ψ〉

must be calculated according to eq. 2.5.5. The associated determinant update with the

sum over nearest-neighbour will make the measurement cost of quadratic complexity O (N 2).

Finally important quantities like the transverse spin-spin correlation function will turn out to

be pretty expensive:〈
S−

q S+
q

〉
=∑

i j
e i q(R j−Ri )

〈
S−

i S+
j

〉
(2.5.18)

as they must then be of cubic complexity due to the double sum.

2.5.3 Jastrow factors

We mention here another degree of freedom into defining a variational wavefunction, the

so-called Jastrow factor [Jastrow, 1955]. The idea is to allow for more correlation into the trial

wavefunction Ansatz than the one directly induced by the Gutzwiller projection. In practice

the Jastrow factor is an operator diagonal into the sampling subspace, that is the real space

spin configuration in our case. A popular generic form [Edegger et al., 2007] is for instance the

spin-spin correlator:

Js = exp

[∑
i j

V
(
ri j

)
Sz

i Sz
j

]
(2.5.19)

where the different components of V (r ) potential are independent variational parameters. In

the context of the square lattice Heisenberg antiferromagnet, an interesting simple Jastrow

factor would be for instance using a staggered potential

V (r ) =λe iQ·r (2.5.20)

42



2.5. Variational Monte Carlo

where as usual Q = (π,π) and λ is a variational parameter. The staggered potential will cause

antiferromagnetic order in the wavefunction and will artificially break the spin rotation sym-

metry as is the case in the SF+N trial wavefunction. In the process of this work, we also looked

at the even simpler antiferromagnetic Jastrow factor:

JAFM = exp

[
λ

∑
i

e iQRi Sz
i

]
(2.5.21)

which, in contrast to eq. 2.5.19 with a potential of the form of eq. 2.5.20 will favor only one

of the two sublattice magnetization. That is, if λ > 0 even sites e iQRi = 1 will have negative

magnetization while odd e iQRi =−1 will have positive magnetization. We will briefly mention

later in section 2.7.1 and in section 2.7.2 how such Jastrow antiferromagnetically ordered

wavefunctions compare to the SF+N mean-field one.

2.5.4 Other numerical methods

We review here only two other numerical methods mainly because our results will often be

compared to those. In strong contrast these two methods provide a way to give an estimate

of various quantities corresponding to a physical model while our approach does find those

as corresponding to an Ansatz for the ground state wavefunction. Agreement between these

approaches strengthen the validity of a given ground state Ansatz, but in the following dis-

cussion it is ultimately agreement with experimental results that will be the most important.

Although we did not develop yet our formalism for calculating dynamical quantities we will

briefly mention how adequate these other numerical techniques are in that respect.

Perturbative Series Expansion

The series expansion technique takes some known limit of the model Hamiltonian and uses

it as the basis for a perturbation expansion. The most relevant one for the square lattice

Heisenberg model is the Ising limit:

H = ∑
〈i , j 〉

Sz
i Sz

j +∆
(
Sx

i Sx
j +S y

i S y
j

)
. (2.5.22)

In the limit where ∆= 0 the model has a classical Néel ground state. One might then attempt

to treat the transverse part of the Hamiltonian in a perturbative way for finite ∆. A so-called

cluster expansion allows a systematic derivation of the expansion which can be carried out

computationally [Gelfand et al., 1990]. Of course, being a perturbation expansion, this tech-

nique cannot predict quantum phase transition as a function of∆ as it relies on the assumption

one can adiabatically relate the perturbed ground state with the unperturbed one although

divergences in the correction might indicate the proximity to a phase transition [Gelfand

et al., 1990]. This is probably not an issue in the case of the Heisenberg model on the square

lattice as its ground-state does have long-range Néel order and as such should be adiabatically
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connected to the classical Néel order state.

The system excitations may be also calculated either using the single mode approxima-

tion [Singh, 1993] or in a perturbative way [Singh and Gelfand, 1995]. However the excitations

obtained perturbatively also rely on the assumption that the perturbed excited states can be

adiabatically connected to those of the unperturbed system. In the case of the Ising limit, the

unperturbed excitations of the Néel classical ground state are local spin-flips with a constant

energy over the whole magnetic Brillouin zone. Calculating the excitation spectrum from there

naturally leads to spin-waves but it has to be noted that it does carry an explicit bias from the

adiabaticity assumption.

Stochastic Series Expansion Quantum Monte Carlo

The stochastic series expansion (SSE) quantum Monte Carlo method is a finite temperature

method based on an expansion of the partition function. Finite temperature quantum Monte

Carlo starts from the thermal average formula:

〈A〉 = 1

Z
Tr

(
Ae−βH

)
(2.5.23)

Z =Tr
(
e−βH

)
(2.5.24)

and expand it in order to turn it into a form suitable for Monte Carlo sampling such as eq.

2.5.2. Probably the most famous expansion scheme is the imaginary time-slicing:

〈A〉 = 1

Z

∑
α

〈α|e−βH |α〉 (2.5.25)

= 1

Z

∑
α0,...,αL−1

〈α0|e−∆τH |α1〉〈α1| . . . |αL−1〉〈αL−1|e−∆τH A |α0〉 (2.5.26)

with∆τ =β/L which, when∆τ→ 0 leads to the path integral formulation of quantum statistical

mechanics. The expansion used in SSE Monte Carlo is a simple Taylor expansion:

∑
α0

〈α0|e−βH A |α0〉 =
∞∑

n=0

(−β)n

n!

∑
{α}n+1

〈α0|H |αn〉〈αn | . . . |α2〉〈α2|H |α1〉〈α1| A |α0〉 (2.5.27)

and uses the fact quantum models on lattices are expressed in terms of bond operators:

H =∑
pb

Hp,b (2.5.28)

where b index the bonds and p some "parts" of the Hamiltonian. One can then formulate the

above expansion in terms of a sum overα0 and over bonds operators products Sn =∏n
i=1 Hpi ,bi

and use importance sampling to carry it out [Sandvik, 1999]. An important prerequisite is that

it must be possible to make the matrix elements of the Sn operators positive definite which is

generally the case on non-frustrated lattices.

In principle this method is exact modulo the numerical uncertainties thus can provide many
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of the physical properties of lattice quantum models. In particular for the Heisenberg model

it provides important quantities such as the ground state energy and the staggered magne-

tization. However when turning towards dynamical quantities, important difficulties arise.

For instance the dynamic spin structure factor is the space and time Fourier transform of the

dynamical spin-spin correlation function:

Sαβ(r , t ) = 〈SαRi+r (t )SβRi
(0)〉 (2.5.29)

where the time-dependant operator is

SαR (t ) = e i t H SαR e−i t H . (2.5.30)

Introducing this quantity in eq. 2.5.23 might be done using some expansion scheme but then

the complex exponent i t H will break the positive definite condition. The work-around is to

consider the dynamical quantity in imaginary time τ= i t :

Gαβ(q ,τ) =∑
i j

e i q(R j−Ri )〈SαRi
(τ)SβR j

(0)〉. (2.5.31)

The imaginary-time spin-spin correlation function can now be sample through a quantum

Monte Carlo method and the dynamic spin structure factor is linked to it by a Laplace trans-

form:

Gαβ(q ,τ) = 1

π

∫ ∞

−∞
dωSαβ(q ,ω)e−τω. (2.5.32)

In principle one should then invert this relation, a problem which is known as the analytical

continuation. But in practice this inversion is rendered highly unstable by the numerical

noise contained within the sampled quantity G(q ,τ) and schemes to regularize the trans-

form must be designed [Jarrell and Gubernatis, 1996] which will be costly in terms of fre-

quency resolution [Sandvik and Singh, 2001]. Fine details such as the square lattice Heisenberg

model zone boundary anomaly will prove very difficult to reproduce with an acceptable confi-

dence. Another approach is to assume some functional form of S(q ,ω) allowing to invert eq.

2.5.32[Syljuåsen and Rønnow, 2000; Sandvik and Singh, 2001]. Although the results obtained

this way are numerically stable, they are then tied to the assumption chosen for the lineshape

and are therefore explicitly biased.

2.6 Dynamical Spin Structure Factor in the Variational Monte Carlo

method

The dynamic spin structure factor is a fundamental quantity in the context of quantum

magnetism both theoretically and experimentally. Experimentally because it turns out to be

very accessible through the inelastic neutron scattering technique. Theoretically because it is

linked to probably the simplest quantity describing the dynamical properties of a spin system,
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the spin-spin correlation function:

Sα(r , t ) = 〈SαRi+r (t )SαRi
(0)〉. (2.6.1)

It asks the simple question of the time and space correlation of two successive spin mea-

surement. Since the system under study are usually space and time-translation invariant, it

is natural to study the time and space Fourier transform of this quantity which defines the

dynamic spin structure factor:

Sα(q ,ω) =
∫

d t
∑
i ,r

e i qr+iωt 〈SαRi+r (t )SαRi
(0)〉. (2.6.2)

An elementary calculation then leads to the zero-temperature expression:

Sα(q ,ω) =∑
λ

∣∣∣〈λ|Sαq |GS〉
∣∣∣2
δ (ω−Eλ+EGS) (2.6.3)

with λ the system eigenstates. This quantity thus has a form quite different from the quantum

averages we based the VMC technique on. We will see below that it is still suitable for VMC as

evidenced in Li and Yang [2010].

2.6.1 Excitation subspace

The first thing to do is to define what the system eigenstates |λ〉 are. In that respect it is

instructive to look at the state:∣∣q ,+〉= S+
q PD=0

∣∣ψGS
〉

(2.6.4)

and write it in the basis of the mean-field eigenstates. Written in fermionic operators, S+
q is:

S+
q =∑

k
c†

k↑ck−q↓ (2.6.5)

and can be expressed in the mean-field quasiparticle basis using the canonical transform eq.

2.4.81. This gives:∣∣q ,+〉= PD=0
∑
k
φ

q+
k γ†

k↑+γk−q↓−
∣∣ψGS

〉
(2.6.6)

where we have used the fact that [S+
q ,PD=0] = 0 and where k −q means folding back in the

MBZ. The coefficients φq+
k are:

φ
q+
k = u∗

k↑+uk−q↓−+ v∗
k↑+vk−q↓−. (2.6.7)
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The excited state
∣∣q ,+〉

can thus be written as a sum of the particle-hole excitations
∣∣k ,↑↓, q

〉
(fig. 2.13):∣∣k ,↑↓, q

〉= PD=0γ
†
k↑+γk−q↓−

∣∣ψGS
〉

(2.6.8)

and suggests that the transverse ∆S = 1 eigenstates |λ〉 = ∣∣n, q ,+〉
might as well be expressed

the same way:∣∣n, q ,+〉=∑
k
φ

q+
kn

∣∣k ,↑↓, q
〉

(2.6.9)

where the φq+
kn are some coefficients that remains to be determined. We can in the same way

define longitudinal ∆S = 0 particle-hole excitations:∣∣k ,σσ, q
〉= PD=0γ

†
kσ+γk−qσ−

∣∣ψGS
〉

(2.6.10)

and find that the state
∣∣q ,0

〉= Sz
q PD=0

∣∣ψGS
〉

can be written as

∣∣q ,0
〉= 1

2

∑
k

∑
σ
φ

q0
kσ

∣∣k ,σσ, q
〉+δqQ

∑
k

hN

ωk
PD=0

∣∣ψGS
〉

(2.6.11)

with

φ
q0
kσ =σ(

u∗
kσ+uk−qσ−+ v∗

kσ+vk−qσ−
)

. (2.6.12)

which also suggests we can look for longitudinal eigenstates
∣∣n, q ,0

〉
of the form:∣∣n, q ,0

〉=∑
kσ
φ

q0
kσn

∣∣k ,σσ, q
〉

. (2.6.13)

In the end considering the Sz
tot sector and the momentum q , we see that we can construct

subspaces of particle-hole excitations:

Ωq ,∆S=+1 =
{∣∣k ,↑↓, q

〉∣∣k ∈ MBZ
}

(2.6.14)

Ωq ,∆S=0 =
{∣∣k ,σσ, q

〉∣∣k ∈ MBZ,σ ∈ {↑,↓}
}

. (2.6.15)

While the unprojected particle-hole excitations are true eigenstates of the mean-field Hamilto-

nian, the projected ones are probably very far from being eigenstates from the Heisenberg

model itself. Therefore the individual states in themselves may not really have physical rele-

vance but we will show later on that the subspace they span in fact does.

In principle we could also construct higher order excitations by considering multiple particle-

hole pairs. We choose here to restrict ourselves to the one particle-hole pair under the assump-

tion that the number of particle-hole pair is approximately a good quantum number of the

Heisenberg model, as it is the case for its SF+N mean-field version. But this claim might be

challenged, although carrying out calculations containing these higher order terms becomes

numerically intractable.
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Figure 2.13 – Representation of the transverse particle-hole pair excitation. A spin-↓ is taken
from the filled spin-↓ band, flipped and put in the spin-↑ empty band. The integrated density
of states D(ω) =∑

q∈MBZ D(q ,ω) is calculated from the (gapped) SF+N state.

2.6.2 The Heisenberg Hamiltonian on the Excitation Subspace

With the excitation subspaces defined, we can now define the variational eigenstates |λ〉
entering the definition of the dynamic spin structure factor. For the

∣∣n, q ,∆S
〉

to be eigenstates

we require that:〈
n, q ,∆S

∣∣H ∣∣n, q ,∆S
〉=E k∆S

n

〈
n, q ,∆S

∣∣n, q ,∆S
〉

(2.6.16)〈
n′, q ,∆S

∣∣n, q ,∆S
〉=δnn′ (2.6.17)

where H is the Heisenberg model eq. 2.1.2. For the transverse excitations, this defines the

following generalized eigenvalue problem:∑
kk ′

φ
q+∗

k ′n H q+
k ′kφ

q+
kn = E q+

n

∑
kk ′

φ
q+∗

k ′n Oq+
k ′kφ

q+
kn (2.6.18)

where

H q+
kk ′ =

〈
k ,↑↓, q

∣∣H ∣∣k ′,↑↓, q
〉

(2.6.19)

Oq+
kk ′ =

〈
k ,↑↓, q

∣∣k ′,↑↓, q
〉

(2.6.20)
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and in a similar way for the longitudinal excitations:∑
kk ′σσ′

φ
q0∗

k ′σ′n H q0
k ′kσ′σφ

q0
kσn = E q0

n

∑
kk ′σσ′

φ
q0∗

k ′σ′nOq0
k ′kσ′σφ

q0
kσn (2.6.21)

where

H q0
kk ′σσ′ =

〈
k ,σσ, q

∣∣H ∣∣k ′,σ′σ′, q
〉

(2.6.22)

Oq0
kk ′σσ′ =

〈
k ,σσ′, q

∣∣k ′,σ′σ′, q
〉

. (2.6.23)

Finding the particle-hole excitations eigenstates therefore amount into diagonalizing the

Heisenberg model projected into the non-orthonormal basesΩq ,∆S . Once the matrices Oq∆S

and H q∆S are known, this is a simple numerical problem that can be solved with standard

diagonalization routines. Indeed the size of these matrices is small being simply the number of

particle-hole pair one can form. For a L×L system, there are only L2/2 particle-hole excitations

in the transverse channel and L2 in the longitudinal one. The matrices size thus grows linearly

with the number of sites considered. Li and Yang showed how these matrices can be evaluated

through the VMC technique [Li and Yang, 2010] as we will show below.

2.6.3 Modified Monte Carlo Random Walk

In order to perform the Gutzwiller projection, the idea still is to expand the quantities H q∆S

and Oq∆S into the basis of spin- 1
2 particles in real space positions with no double occupancies.

This can be readily done for instance in the transverse channel:

H q+
kk ′ =

∑
αβ

〈
k ,↑↓, q

∣∣α〉〈α|H ∣∣β〉〈
β
∣∣k ′,↑↓, q

〉
. (2.6.24)

which can simply be put back in a form suitable for Metropolis Monte Carlo using the same

approach than before:

H q+
kk ′〈

k ,↑↓, q
∣∣k ,↑↓, q

〉 =∑
α

∣∣〈k ,↑↓, q
∣∣α〉∣∣2〈

k ,↑↓, q
∣∣k ,↑↓, q

〉︸ ︷︷ ︸
ρ(α)

∑
β

〈α|H ∣∣β〉 〈
β
∣∣k ′,↑↓, q

〉〈
α

∣∣k ,↑↓, q
〉︸ ︷︷ ︸

f (α)

. (2.6.25)

This formulation allows to calculate H q+
kk ′ but normalized to the

∣∣k ,↑↓, q
〉

wavefunction. If

one aims at doing exact diagonalization of the H q+ then we would need all matrix elements

normalized to the same arbitrarily chosen wavefunction
∣∣k0,↑↓, q

〉
leading to

H q+
kk ′〈

k0,↑↓, q
∣∣k0,↑↓, q

〉 =∑
α

∣∣〈α∣∣k0,↑↓, q
〉∣∣2〈

k0,↑↓ q
∣∣k0,↑↓, q

〉︸ ︷︷ ︸
ρ(α)

∑
β

〈
k ,↑↓, q

∣∣α〉〈
k0,↑↓, q

∣∣α〉 〈α|H ∣∣β〉 〈
β
∣∣k ′,↑↓, q

〉〈
α

∣∣k0,↑↓, q
〉︸ ︷︷ ︸

f (α)

. (2.6.26)
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This formulation is however rather unstable. Suppose
〈

k0,↑↓, q
∣∣α〉→ 0 and

〈
k ,↑↓, q

∣∣α〉
finite.

Then we have the problem that ρ(α) → 0 and f (α) →∞ which will render a good the Monte

Carlo sampling impossible. The arbitrary choice of a wavevector k0 obviously is the problem.

To solve this Li and Yang [2010] developed a reweighing technique, which simply redefines the

Monte Carlo random walk weight to avoid such problems: For any weight definition W (α) one

can in principle define the weighted sum:

H q+
kk ′∑

αW (α)
=∑

α

W (α)∑
αW (α)︸ ︷︷ ︸
ρ(α)

〈
k ,↑↓, q

∣∣α〉〈α|H ∣∣β〉〈
β
∣∣k ′,↑↓, q

〉
W (α)︸ ︷︷ ︸

f (α)

(2.6.27)

which will be good-behaved if
〈

k ,↑↓, q
∣∣α〉〈

β
∣∣k ′,↑↓, q

〉
/W (α) is a slowly varying function of α

and β. Choosing the following weight we see this will indeed be the case:

W q+(α) = ∑
k∈MBZ

∣∣〈α∣∣k ,↑↓, q
〉∣∣2 . (2.6.28)

Defining the sum W q+ =∑
αW q+(α) we have the following weighted sum defining the Monte

Carlo random walk in the transverse channel:

H q+
kk ′

W q+ =∑
α

W q+(α)

W q+
∑
β

〈
k ,↑↓, q

∣∣α〉〈α|H ∣∣β〉〈
β
∣∣k ′,↑↓, q

〉
W q+(α)

(2.6.29)

Oq+
kk ′

W q+ =∑
α

W q+(α)

W q+

〈
k ,↑↓, q

∣∣α〉〈
α

∣∣k ′,↑↓, q
〉

W q+(α)
. (2.6.30)

In the longitudinal channel the formulas are almost the same with a weight defined as:

W q0(α) = ∑
k∈MBZ,σ

∣∣〈α∣∣k ,σσ, q
〉∣∣2 (2.6.31)

W q0 =∑
α

W q0(α). (2.6.32)

To finish the discussion about the modified Monte Carlo random walk, we come back to the

problem of efficiently calculating the overlaps
〈
α

∣∣k ,↑↓, q
〉

. To do so we must calculate the

determinant of the Slater matrices:

M〈α|k ,↑↓,q〉
i↑ j↑

=〈
Ri↑ ,↑∣∣k j↑ ,↑,b j↑

〉
(2.6.33)

M〈α|k ,↑↓,q〉
i↓ j↓

=〈
Ri↓ ,↓∣∣k j↓ ,↓,b j↓

〉
(2.6.34)

for which we know that an exchange of an up-spin and a down-spin |α〉→ ∣∣β〉
corresponds to

a single row change in both M〈α|k ,↑↓,q〉
i↑ j↑

and M〈α|k ,↑↓,q〉
i↓ j↓

for which the determinant can be effi-

ciently updated through the formulas derived in appendix A.2. Suppose now that we already

know the amplitude
〈
α

∣∣k ,↑↓, q
〉

. Is there a simple way to calculate
〈
β
∣∣k ′,↑↓, q

〉
? In fact the tran-

sition
∣∣k ,↑↓, q

〉→ ∣∣k ′,↑↓, q
〉

simply corresponds to moving the excited spin-↑ from wavevector

k to k ′ and the spin-↓ hole from k −q to k ′−q . This corresponds into changing a column in
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both the up and down Slater matrices. We therefore need an efficient way to calculate the

determinant update upon simultaneous row and column change. Looking into the longitu-

dinal channel we see we actually require more. Indeed the transition
∣∣k ,σσ, q

〉→ ∣∣k ′,σσ, q
〉

corresponds to two simultaneous column changes in the σ-Slater matrix. To efficiently treat

all those cases in a manageable way, we derive in appendix A.2 a determinant update formula

for an arbitrary number of simultaneous row and column changes. We also expose in greater

details the modified random walk in appendix A.3.

2.6.4 Evaluation of the Dynamical Spin Structure Factor

With all the above developments, we are now in a position to evaluate the dynamic spin

structure factor through a VMC technique. In eq. 2.6.3, in the transverse case we have:

|λ〉 = ∣∣n, q ,+〉
(2.6.35)

S+
q |GS〉 = ∣∣q ,+〉

(2.6.36)

and in the longitudinal channel:

|λ〉 = ∣∣n, q ,0
〉

(2.6.37)

Sz
q |GS〉 = ∣∣q ,0

〉
(2.6.38)

such that the dynamic structure factors are:

S±(q ,ω) =∑
n

∣∣〈n, q ,+∣∣q ,+〉∣∣2
δ

(
ω−E q+

n +EGS

)
(2.6.39)

Szz (q ,ω) =∑
n

∣∣〈n, q ,0
∣∣q ,0

〉∣∣2
δ

(
ω−E q0

n +EGS

)
. (2.6.40)

Expanding the
∣∣n, q ,∆S

〉
and

∣∣q ,∆S
〉

states into the particle-hole basesΩq∆S we obtain:

S±(q ,ω)

W q+ =∑
n

∣∣∣∣∣∑
kk ′

φ
q+∗

kn

Oq+
kk ′

W q+φ
q+
k ′

∣∣∣∣∣
2

δ
(
ω−E q+

n +EGS

)
(2.6.41)

Szz (q ,ω)

W q0 =∑
n

∣∣∣∣∣ ∑
kk ′σσ′

φ
q0∗

kσn

Oq0
kk ′σσ′

W q0 φ
q0
k ′σ′

∣∣∣∣∣
2

δ
(
ω−E q0

n +EGS

)
(2.6.42)

where we have explicitly written down the normalization from the weights W q∆S as the

matrices Oq∆S obtained from the variational Monte Carlo will necessarily be normalized to it.

We thus see that the sampling of the (H q∆S ,Oq∆S) is all that is needed to obtain the dynamic

structure factor. A slight issue is that the normalization W q∆S is q-dependent. In principle this

renders a direct comparison of the spectral weight across different q momenta impossible.

We will see in next section how the so-called sum rules will allow to solve this issue.
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2.6.5 Sum Rules

By integrating the dynamic structure factor over energy, it is simple to see that one recovers

the corresponding instantaneous correlation functions:∫
dωS±(q ,ω) =

〈
S−

q S+
q

〉
(2.6.43)∫

dωSzz (q ,ω) =
〈

Sz
−q Sz

q

〉
. (2.6.44)

In our formalism, using the property:

1

W q+
∑
nk
φ

q+∗

nk1
Oq+

k2kφ
q+
nk = δk1k2 (2.6.45)

we consistently get

∫
dω

S±(q ,ω)

W q+ =∑
n

∣∣∣∣∣φq+∗

nk

Oq+
kk ′

W q+φ
q+
nk ′

∣∣∣∣∣
2

(2.6.46)

= 1

W q+
∑
kk ′

φ
q+∗

k Oq+
kk ′φ

q+
k ′ (2.6.47)

= 1

W q+
〈
ψGS

∣∣PD=0S−
q S+

q PD=0
∣∣ψGS

〉
(2.6.48)

=
〈

S−
q S+

q

〉
Ωq+

(2.6.49)

We then see that using the sum rule will solve the issue of the q-dependent normalization of

the dynamic structure factor. We can thus evaluate the instantaneous transverse spin-spin

correlation function in two ways, either using the groundstate wavefunction eq. 2.6.50 or the

particle-hole excitation subspace eq. 2.6.51.

〈
S−

q S+
q

〉
ψGS

=
〈
ψGS

∣∣PD=0S−
q S+

q PD=0
∣∣ψGS

〉〈
ψGS

∣∣PD=0
∣∣ψGS

〉 (2.6.50)

〈
S−

q S+
q

〉
Ωq+

=
〈
ψGS

∣∣PD=0S−
q S+

q PD=0
∣∣ψGS

〉
W q+ . (2.6.51)

We can carrying out both numerical evaluation, we can thus obtain the proportionality con-

stant 〈
S+

q S−
q

〉
Ωq+〈

S+
q S−

q
〉
ψGS

=
〈
ψGS

∣∣PD=0
∣∣ψGS

〉
W q+ . (2.6.52)

which can then be used to renormalize the dynamic structure factor such that it becomes

normalized to the groundstate wavefunction for every q . This reasoning can be carried out

exactly the same way for the longitudinal channel. In the following, every numerical evaluation
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of the dynamic structure factor is normalized such that:∫
dω

∑
q

〈
Szz (q ,ω)+ 1

2
S±(q ,ω)

〉
= N S(S +1). (2.6.53)

2.7 Numerical results

The variational Monte Carlo algorithm modified for measuring dynamical quantities has been

implemented in the C++ programming language. The most computationally demanding part

is the calculation of the determinant updates. The many matrix-matrix, matrix-vector and

scalar products implied by the determinant update formulas exposed in appendix A.2 are

calculated using the Basic Linear Algebra Subroutines (BLAS) interface to highly optimized

platform-dependent implementations. The Monte Carlo algorithm being just about collecting

statistics, it is very easy to parallelize simply by running many simultaneous random walks.

The parallelization has been implemented using the standard Message Passing Interface (MPI)

making the program suitable for massively parallel supercomputers. So far calculations have

been performed on the EPFL Institute of Theoretical Physics cluster "itplc1", on the Swiss

National Supercomputing Center (CSCS) Monte Rosa Cray XE6 cluster and on our home-made

"Quantum Wolf" cluster made out of consumer parts (appendix C). Single calculations have

so far used as much as 3200 computational cores simultaneously on the CSCS Monte Rosa

cluster and the total CPU-time spent in the context of this project amounts for more than

5 ·106 CPU-hours. We discuss the Monte Carlo thermalization process and the calculation

CPU-time scaling in the appendices A.4 and A.5.

In the numerical results shown below we will first establish the properties of the trial wave-

functions as a function of its parameters and then move on into the analysis of the dynamic

quantities. The discussion comparing our results to other numerical or analytical techniques

and to experiments will be carried out in parallel with the results presentation.

2.7.1 Ground State Average quantities

The ground state properties of the trial wavefunction are probably the easiest to obtain through

the variational Monte Carlo method and have been calculated before. First of those is the

ground state energy calculated as:

EGS(θ0,hN) =
〈
ψGS(θ0,hN)

∣∣PD=0H PD=0
∣∣ψGS(θ0,hN)

〉〈
ψGS(θ0,hN)

∣∣PD=0
∣∣ψGS(θ0,hN)

〉 (2.7.1)

We show in figure 2.14 a colormap of this variational energy as a function of θ0 and hN. Since

4θ0 describes the phase acquired by a particle circulating around a square plaquette, The SF+N

variational energy is periodic in θ0 → θ0 + π
2 . At zero Néel field, moving along the θ0 axis, the

energy has two minima at θ0 = 0.075π and θ0 = π
2 −0.075π with a reduction of 18% compared

to the θ0 = 0 and hN = 0 case. On the other hand considering no flux and moving along the
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Néel mean field axis, we see a broad minima about hN = 0.06 with a reduction of of the energy

by 19%. We took (θ0 = 0.1π,hN = 0.055) with EGS =−0.664J as the optimal flux and Neel field

hereby referred as |SF+N〉. This is only 4% better than the pure flux state and only 3.5% better

than the pure Néel mean-field state. Thus we see that all these groundstate energies are quite

close. While there is experimentally no doubts that the system ground state is ordered, the

Figure 2.14 – Variational energy of the wavefunction PD=0
∣∣ψGS

〉
as a function of the parame-

ters θ0 and hN. The dashed contour indicates the region where the variational energy varies by
less than 0.5%

proximity of QSL groundstates corresponding here to the pure flux states suggests that the

system excitations may not always share the spontaneously broken spin-symmetry of the

groundstate.

Another elementary quantity to look at is the staggered magnetization:

S̃z
GS(θ0,hN) =

〈
ψGS(θ0,hN)

∣∣PD=0Sz
Q PD=0

∣∣ψGS(θ0,hN)
〉〈

ψGS(θ0,hN)
∣∣PD=0

∣∣ψGS(θ0,hN)
〉 (2.7.2)

which we also show on the (θ0,hN) plane (fig. 2.15). For a given Néel mean field, turning

on the flux results into a reduction of the staggered magnetization evidencing that the flux

induces additional quantum fluctuations competing with the classical Néel order. The best

groundstate energy corresponds to a staggered magnetization of S̃z
GS(0.1,0.055) = 0.71S. This

corresponds to a 29% reduction from the classical value and may be compared to SWT which

predicts a 38% reduction. The energy and staggered magnetization from various numerical

methods are shown in table 2.1. Regarding the above results, it seems obvious the optimal flux

and Néel field, hereby denoted SF+N, is the best trial wavefunction: it has the lowest energy,
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Figure 2.15 – Staggered magnetization of the wavefunction PD=0
∣∣ψGS

〉
as a function of the

parameters θ0 and hN.

〈H 〉 〈Sz
Q〉

Green function Monte Carlo −0.6692J 0.62S
Optimal flux −0.638J 0S
Optimal flux and Néel field −0.664J 0.71S

Table 2.1 – Comparison of the groundstate energies and staggered magnetization from various
numerical approaches. Green function Monte Carlo from Trivedi and Ceperley [1989]; Runge
[1992]; Calandra Buonaura and Sorella [1998]. Optimal flux VMC from Yokoyama and Ogata
[1996] and coincide with our results for the SF state. Optimal flux and Néel field from Lee and
Feng [1988] and coincides with our results for the SF+N state.
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reasonably close to the Green function Monte Carlo one, and shows a staggered magnetization

also in good agreement. With respect to experiments, the observed finite ordered moment

also seems to favour the SF+N wavefunction. To settle the notations for the wavefunctions, let

us define again the QSL state |SF〉 and the Néel ordered state |SF+N〉:

|SF〉 −→θ0 = 0.1π, hN = 0 (2.7.3)

|SF+N〉 −→θ0 = 0.1π, hN = 0.055. (2.7.4)

The minimum of the energy is quite broad and many sets of variational parameters will have

very comparable energies. In the area highlighted in fig. 2.14, the groundstate energy varies at

most by 0.5%. We will show later that, while the Néel mean-field parameter hN is critical to

shape the excitation spectra, these only weakly depend on the flux θ0 in the region of minimum

variational energy (see fig. 2.27 and 2.22). We quickly mention that we also have tried to use

Jastrow factors to induce in a different way the Néel order into the trial wavefunctions. We

defined the two different wavefunctions:∣∣SF+VQ
〉=JQ |SF〉 (2.7.5)

|SF+AF〉 =JAF |SF〉 (2.7.6)

where JQ is eq. 2.5.19 with the staggered potential eq. 2.5.20 and JAF the antiferromagnetic

Jastrow factor eq. 2.5.21. Once optimized, the two Jastrow wavefunctions essentially gave

the same results as the |SF+N〉 state both when looking at the variational energy and the

staggered magnetization.

We now turn towards the instantaneous spin-spin correlation function. We show in fig. 2.16 the

instantaneous correlation functions 〈Sx−q Sx
q 〉 and 〈Sz−q Sz

q 〉 in both the SF and the SF+N case.

The SF case has the full spin-symmetry but the introduction of the Néel mean field depletes

the transverse Q = (π,π) peak in the transverse correlation function and develops a strong

Magnetic Bragg peak in the longitudinal channel (cut out from the plot in fig. 2.16 top right

panel). By Fourier-transforming with a shift of Q , we get the real space staggered spin-spin

correlation function:

Sαα(r ) = 1

N

∑
q

e i (q+Q)r 〈Sα−q Sαq 〉 (2.7.7)

=1

2

∑
i

eQr 〈Sαi Sαi+r 〉 (2.7.8)

It is interesting to look at the transverse component, recalling that SWT predict an algebraically

decay of Sx (r ) ∼ |r |a . We show it along both the r = (x,0) and r = (x, x) directions on a log-

log plot in fig. 2.17 again in the SF and SF+N cases. Interestingly we see that the SF trial

wavefunction does have an algebraic decay of the transverse (or longitudinal) spin-spin

correlation as found previously [Ivanov, 2006]. But the SF+N trial wavefunction does not and

has in fact an exponential decay of the transverse spin-spin correlation. Thus the Néel mean-

field, while resulting into a Néel ordered state, does not have the correct long-wavelength
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Figure 2.16 – Instantaneous longitudinal and transverse spin-spin correlation functions for
both the SF and SF+N cases. In the longitudinal SF+N case the magnetic Bragg peak has been
cut out of the plot.
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properties expected from SWT. We recall that the spin-wave prediction should be robust

as the residual magnon-magnon interaction should become negligible for long wavelength

[Igarashi, 1992]. It is thus not so obvious which wavefunction between the SF and SF+N is the

most physical. In the following we will therefore study both and see that they seem to capture

different aspects of the square lattice Heisenberg model excitation spectrum.

Figure 2.17 – Transverse spin-spin correlation function Sxx (r ) as defined by eq. 2.7.7 on a log-
log scale. Blue (green) dots and blue (green) squares are for r = (x,0) and r = (x, x) respectively
for the SF (SF+N) state calculated on a 32×32 lattice size.

2.7.2 Transverse dynamic spin structure factor

We now turn to the most important numerical results from our VMC calculation which, for the

half-filled square lattice Heisenberg model, are the true new results of this work. Solving the

generalized eigenvalue problem eq. 2.6.18, we obtain the transverse particle-hole excitations

eigen-energies E q+
n and eigenstates

∑
k φ

q+
kn

∣∣k ,↑↓, q
〉

. We first show in fig. 2.18 the density of

states of the transverse particle-hole excitations:

D(q ,ω) =∑
n
δ(ω−E q+

n +EGS) (2.7.9)

'∑
n

1p
2πσ2

exp

[
−1

2

(
ω−E q+

n +EGS

σ

)2]
(2.7.10)
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where we broaden the δ-function with a gaussian of variance σ= 0.1J for better visualization.

The density of states is plotted along the high-symmetry directions:

(
π

2
,
π

2
) → (π,0) → (π,π) → (0,0) → (π,0). (2.7.11)

The numerical data is the result of 106 samples of the projected Hamiltonian and the overlap

matrix for a 24×24 system size. In the SF+N case it is immediately visible that the lowest-energy

states follow a magnon-like dispersion with a gap at the q = (0,0) and q = (π,π) momenta of

0.38J . In the same way as the exponentially decaying transverse spin correlations, the opening

of a gap is a result of artificially breaking the spin symmetry adding the Néel mean-field

hN. There are higher-lying eigenstates gapped every-where from the magnon-like branch.

Especially at q = (π,0) there is no trace of a continuum of excitations.

From the obtained eigenstates and eigen-energies, we can now take look at the transverse

Figure 2.18 – Density of states of the transverse particle-hole excitations of the |SF+N〉 state
for a 24×24 system.

dynamic structure factor using formula 2.6.41 and making sure that it is correctly normalized

using eq. 2.6.52. The result is shown in fig. 2.19. We see that most of the high-energy states

have no spectral weight while the magnon-like mode intensity is almost constant along the

magnetic Brillouin zone, diverges at q = (π,π) and almost vanishes at q = (0,0). Again the

reason it does not completely vanish is due to the artificial breaking of the spin-symmetry. For

instance in linear SWT, a similar gapped magnon branch with a finite intensity at q = (0,0)

can be obtained by including a staggered longitudinal field to the Heisenberg model.

We briefly note that, using the alternate Néel ordered wavefunctions
∣∣SF+VQ

〉
eq. 2.7.5 and

|SF+AF〉 eq. 2.7.6 we essentially recovered the same results. The high-energy excitations above
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Figure 2.19 – Transverse dynamic structure factor for the particle-hole excitations of the
|SF+N〉 state for a 24×24 system.

Figure 2.20 – Transverse dynamic structure factor for the projected particle-hole excitations
of the

∣∣SF+VQ
〉

state on a 16×16 lattice.
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the magnon mode were slightly different, but still gapped from the magnon mode. We show

this in the case of the optimal
∣∣SF+VQ

〉
for a 16×16 lattice in fig. 2.20

Coming back to the |SF+N〉 wavefunction, we first take a closer look at the magnon-like

Figure 2.21 – Comparison of the magnon-like mode obtained from the |SF+N〉 wavefunction
on a 24×24 system along the high-symmetry directions (right panel) and zoom-in of the
MBZB (left panel). Blue squares: unpolarized inelastic neutron scattering from Christensen
et al. [2007]. Black solid line: Spin-wave theory with first 1/S corrections. Green triangles:
Spin-wave theory with third 1/S corrections [Syromyatnikov, 2010]. Dashed magenta line:
Perturbation series expansion around the Ising limit [Zheng et al., 2005]. Cyan diamonds:
Stochastic series expansion quantum Monte Carlo [Sandvik and Singh, 2001]. Red dots: The
transverse particle-hole eigenstates from the |SF+N〉 variational wavefunction.

branch in fig. 2.21 where we compare it with unpolarized inelastic neutron scattering on the

CFTD material [Christensen et al., 2007], with SWT with first and with third [Syromyatnikov,

2010] order 1/S corrections, with series expansion [Zheng et al., 2005] and with stochastic series

expansion quantum Monte Carlo [Sandvik and Singh, 2001]. Overall the different theories

agree very well with the experimental data. But taking a closer look at the MBZB, we see

that the transverse particle-hole magnon-like mode we calculated, series expansion and

quantum Monte Carlo agree very well with the 7% downward dispersion (π/2,π/2) → (π,0)

found in the experiment while third order SWT only obtains a 3% dispersion. This remarkably

good agreement of the calculated transverse particle-hole magnon-like mode comes about

without any tuning parameter and is the anchor for the physical validity of our variational

approach of dynamical quantities. In contrast, quantum Monte Carlo results rely on an explicit

choice for the lineshape in order to carry out the analytic continuation (see section 2.5.4).

In Syljuåsen and Rønnow [2000] and Sandvik and Singh [2001] the lineshape was chosen to

match experiments making this approach explicitly biased. We note that in our approach

the dispersion from q = (π/2,π/2) to q = (π,0) is only very weakly dependent on the fine
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Figure 2.22 – Transverse dynamic structure factor for q = (π,0) (left) and q = (π/2,π/2) (right)
for the optimal Néel mean-field hN and various fluxes θ0. The calculations were carried with a
16×16 lattice size.

optimization of the variational parameter θ0. We show in fig. 2.22 the transverse dynamic

structure factor at q = (π,0) and q = (π/2,π/2) for the optimal Néel mean-field hN = 0.055 but

with various fluxes θ0. In the region of lowest variational energy θ0 ∈ [0.06π,0.12π], the spectra

appear to be only very weakly flux-dependent.

Looking at the magnon-like mode intensity and comparing it to experiments (fig. 2.23), we see

that the 50% reduction of the (π,0) intensity compared to (π/2,π/2) is not reproduced by the

transverse particle-hole excitations of the |SF+N〉 state. Instead we find a small 6% reduction

of the magnon intensity. This simply relates to the other important discrepancy between our

variational theory and the experiments: the fact the SF+N spectrum largely misses the (π,0)

continuum, although the high-energy excitations above the q = (π,0) magnon-like mode are

stronger than at q = (π/2,π/2).

We then turn towards the SF case. Looking at the density of states we see that a magnon-like

branch is still visible but that a strong continuum of states appears everywhere above it. Close

to q = (0,0) and q = (π,π), the eigen-energies become negative, meaning some "excitations"

have a lower energy than the groundstate. This is due to the fact the wavefunction |SF〉 is

energetically sub-optimal, linked to the fact there is a magnetic ordering instability. The

corresponding dynamic structure factor is shown in fig. 2.25. We see that the continuum

of states above the magnon-like branch has almost no spectral weight except at q = (π,0)

where a continuum of states clearly appears. However since the calculation is based on a

finite size system, the continuum appears as a collection of discrete modes. To support the

interpretation of the q = (π,0) states as being part of a continuum we show in fig. 2.26 the

effect of increasing system size: The particle-hole excitation subspace size is of L2/2 where

L2 is the total number of sites. Then for larger systems there are more states "available" to
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Figure 2.23 – Comparison of the magnon-like mode intensity obtained from the |SF+N〉 wave-
function on a 24×24 system. Red dots: the transverse particle-hole excitation intensity. Black
solid line: Linear SWT. Blue error bars: unpolarized inelastic neutron scattering [Christensen
et al., 2007]. The linear spin-wave intensity and the experimental intensity are scaled to match
the q = (π/2,π/2) transverse particle-hole intensity. The transverse dynamic structure factor
as obtained from our variational approach is itself normalized such that

∑
q

∫
dωS±(q ,ω) = N

2 .
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Figure 2.24 – Density of states of the transverse particle-hole excitations of the |SF〉 state for a
24×24 system.

Figure 2.25 – Transverse dynamic structure factor for the particle-hole excitations spectrum
of the |SF〉 state on a 24×24 system.
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populate the continuum. As a result we see that in fig. 2.26 left panel new excitations appear

at larger system size and move down in energy while gaining spectral weight. This finite-size

behavior is the milestone indicating the development of a continuum in the thermodynamic

limit. In contrast we show in fig. 2.26 right panel the evolution of the q = (π/2,π/2) mode.

It appears nearly size-independent and about twice as intense as the maximum intensity

at (π,0), in qualitative agreement with the experimental results and thus seems to retain a

magnon character even in the QSL case.

While we obtain a qualitative agreement for the appearance of the (π,0) continuum with the

Figure 2.26 – Size dependence of the dynamic structure factor for the |SF 〉 state at q = (π,0)
(left) and q = (π/2,π/2) (right). All spectra are normalized such that

∑
q

∫
dωS±(q ,ω) = L2

2 .

SF wavefunction, the magnon-like branch dispersion along the MBZB is now too pronounced

and it is also difficult, when moving close to (π,0), to clearly identify what the magnon mode

is. However as the excitation spectrum is strongly dependent on the system size, it is unsure

what the main magnon-like branch will look in the thermodynamic limit. Indeed in fig. 2.26

for q = (π,0), the lowest energy mode seems to loose spectral weight with increasing system

sizes while the dominant peak energy is 6% smaller than the sharp q = (π/2,π/2) peak energy.

Based on the available numerical data, one can thus not rule out that the projected particle-

hole spectrum of the QSL |SF〉 state does recover all of the experimentally observed features

at short wavelength/high energies in the thermodynamic limit. But for our discussion it is

already enough to simply state how the Néel field selects the different observed aspects of the

dynamical properties of the square lattice antiferromagnet. We show in fig. 2.27 the variation

of the q = (π,0) spectrum as a function of the Néel mean field. One can see it immediately

results in a gap between the magnon-like branch and the higher energy excitations. Along

with the experimental observation that the q = (π,0) continuum seems to be spin-rotationally

invariant, this would support the following interpretation of our theoretical results: The broken

spin-symmetry state |SF+N〉 recovers spin-symmetry broken excitations (the magnons) while
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Figure 2.27 – Evolution of the q = (π,0) transverse dynamic structure factor for a range of
different Néel mean fields hN. The spectra are obtained from a calculation on a 32×32 system
size.

the QSL |SF〉 state recovers spin-rotationally invariant excitations. We propose to put in parallel

the extinction of the continuum of excitations at q = (π,0) and the exponential decay of the

transverse spin correlations suggesting that the states composing the continuum are highly

sensitive to the long-distance spin correlation behavior. The relation between these two

aspects will be clarified in the next section 2.8. We summarize the pros and cons of the two

wavefunctions on table 2.2 highlighting their complementarity.

2.7.3 Longitudinal Dynamical spin structure factor

We present here the longitudinal dynamic structure factor obtained using the eigenstates of the

longitudinal particle-hole excitations of our trial wavefunction. In contrast with the transverse

|SF+N〉 |SF 〉
+ Néel order - QSL
+ Perfect MBZ magnon dispersion - MBZ dispersion seems too pronounced
- Exponential correlation function + Algebraic correlation function
- Weak MBZ magnon intensity variation + Good MBZ magnon intensity variation
- No continuum + (π,0) continuum

Table 2.2 – Comparison of the SF+N and SF wavefunctions in terms of phenomenological
aspects.
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channel, these results must be taken as preliminary as much less work and CPU-time was

dedicated to it. We will only consider the case of the |SF+N〉 trial wavefunction as the |SF〉
one has no breaking of the spin-symmetry thus the longitudinal spectrum is identical to the

transverse one. Indeed using the definition of the global rotation operator
∑

i S−
i in terms of

the mean-field theory quasi-particles we find that∑
i

S−
i

∣∣k ,↑↓, q
〉= ∣∣k ,↑↑, q

〉+ ∣∣k ,↓↓, q
〉

(2.7.12)

which are the triplet states of the longitudinal channel. But when the Néel mean-field is

introduced, the breaking of the spin-symmetry makes the longitudinal channel dynamic

structure factor different as is the case in SWT. We show only here the result for the 24×24

|SF+N〉 system in fig. 2.28 top panel. Longitudinal particle-hole excitations appear gapped

above the transverse magnon-like mode (dashed white line) reproduced as a guide to the eye.

At q = (π,π), the magnetic Bragg peak appears at negative energy of −0.4J . To explain it, we

recall that at q = (π,π) and at q = (0,0) the mean-field groundstate itself must be included

into the excitation subspace such that longitudinal particle-hole excitations can mix with the

groundstate. This leads to a further optimization of the variational groundstate, although it

will be barely noticeable when considering the energy per site.

From the analysis of the transverse dynamic structure factor, it was apparent that a particle-

Figure 2.28 – Top: The longitudinal particle-hole dynamic structure factor in the |SF+N〉 state
for a 24×24 system. Dashed white line indicates the position of the transverse particle-hole
magnon-like dispersion. Bottom: The longitudinal dynamic structure factor in the linear spin-
wave approximation. The dashed white line indicates the position of the (not renormalized)
transverse magnon dispersion.
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hole bound state reproduces a magnon-like excitation. But it shouldn’t be inferred that the

fractional particle and hole are simply internal degrees of freedom of magnons. In fact as seen

in the longitudinal channel, particle-hole states do overlap with what SWT would interpret

as two-magnon excitations and it is reasonable to postulate that they will overlap with states

which SWT would interpret as even higher order multi-magnons. There is thus no simple

relation between the SWT bosonic excitations and the particle-hole one from the projected

mean-field theory. To ease the comparison with the spin-wave predictions, we show in fig.

2.28 bottom panel the longitudinal dynamic structure factor from linear SWT, thus neglecting

magnon-magnon interaction.

Compared to the polarized neutron scattering data shown in fig. 2.9 panels C and G, we note

the following: At q = (π/2,π/2), the calculated spectrum shows a rather sharp peak at ω= 3J

which might be compared to the lower energy ω= 2.6J peak found in the experimental data.

At q = (π,0), while the calculated spectrum is broader than at q = (π/2,π/2) in agreement with

experiments, it also has a too high energy. The calculated spectrum thus shows significant

differences from the experimental data. But for the experimental interpretation of the q = (π,0)

continuum as spin-rotationally invariant, it is not expected to match with our spin-rotation

broken symmetry calculations based on the |SF+N〉 state. However in the |SF〉 state, the

longitudinal spectrum must be identical to the transverse one. The numerical validation of

this statement still requires some work. Comparing for instance fig. 2.26 to the longitudinal

experimental spectrum fig. 2.9 panels C and G, we see that the sharp q = (π/2,π/2) excitation

and the broad q = (π,0) continuum is reproduced by the calculations.

2.8 Bound/Unbound spinon pair analysis

The possibility to obtain numerical predictions of dynamical quantities such as the dynamic

structure factor is one great achievement of the VMC technique in the context of Gutzwiller-

projected mean-field wavefunctions. Another great advantage is that, from the Monte Carlo

sampling of the projected Hamiltonian eq. 2.6.29 and overlap matrix 2.6.30 and their diagonal-

ization, we do obtain variational particle-hole eigenstates which we can further scrutinize. In

our study so far of the transverse excitation spectrum, we mentioned dispersing excitations

as "magnon-like". In the SF case, we also would like to link the collection of spin-isotropic

modes forming the continuum to fractional "spinon"-like particle pairs. We will show below

how the knowledge of these excitations eigenstates can lead to a firmer physical interpretation

of their nature.

2.8.1 The spinon pair wavefunction

In the context of the fermionized Heisenberg model eq. 2.4.33, the unprojected spin- 1
2 fermion

particle creation and annihilation operators are simply the bare electronic c†
iσ and ciσ opera-

tors. The projected mean-field particle-hole excitations we defined in section 2.6.1 may also
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simply be written in the basis of the real space projected particle-hole states∣∣R ,r ,σσ′〉= PD=0c†
R+rσcRσ′

∣∣ψGS
〉

(2.8.1)

with R a real space position on the lattice and r what we will hereby mention as the spinon

pair separation. Since the system is translation-invariant, whether with doubled unit cell or

not, it is convenient to define the two-spinons in crystal momentum space:∣∣r ,σσ′, q
〉= PD=0

∑
R

e i qR c†
R+rσcRσ′

∣∣ψGS
〉

(2.8.2)

which may be understood as propagating spinon pair with momentum q and spinon separa-

tion r . In this language, the spin-flip state
∣∣q ,+〉= PD=0S+

q

∣∣ψGS
〉

is rewritten as

PD=0S+
q

∣∣ψGS
〉= ∣∣0,↑↓, q

〉
(2.8.3)

therefore a local spin-flip is understood as a local transverse spinon-pair with zero separation.

Of course the spinon pair states
∣∣r ,σσ′, q

〉
are not eigenstates but will be used as a reference

set of states to quantify the degree of spinon delocalization of the eigenstates. By inversing the

quasiparticle definition 2.4.81, we can relate the spinon pair wavefunction to the mean-field

particle-hole excitations. For instance in the transverse channel we have:∣∣r ,↑↓, q
〉=∑

k
φ

q+
k (r )

∣∣k ,↑↓, q
〉

(2.8.4)

with

φ
q+
k (r ) = e i kr

[
εr

(
u∗

k↑+uk−q↓−+ v∗
k↑+vk−q↓−

)
+εr

(
v∗

k↑+uk−q↓−+u∗
k↑+vk−q↓−

)]
(2.8.5)

and

εr =1

2

(
e iQr +1

)
(2.8.6)

εr =1

2

(
e iQr −1

)
. (2.8.7)

While the set of state Ωq+ = {∣∣k ,↑↓, q
〉}

is a basis of the transverse particle-hole excitations,

the set of states
{∣∣r ,↑↓, q

〉}
is not as it is linearly dependent spanning the same space asΩq+

but containing twice as much states. This originates from the simple definition of
∣∣r ,σσ′, q

〉
in

eq. 2.8.2 which is not symmetric upon r →−r . A symmetric definition could simply be chosen

as: ∣∣r ,σσ′, q
〉′ = 1p

2

(∣∣r ,σσ′, q
〉+ ∣∣−r ,σσ′, q

〉)
(2.8.8)
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and the set of states {
∣∣r ,σσ′, q

〉′} is a basis of the projected particle-hole excitation subspace

provided we only consider half of the plane for the spinon separation r . In the following

we nonetheless chose the set
{∣∣r ,↑↓, q

〉}
but we note that the results presented below are

essentially the same in the two formulations.

2.8.2 A real space picture of the projected spinon pair excitations

In the one-dimensional spin chain in the XY limit, we saw in section 2.2 that it was possible

to give a simple physical interpretation of the spinless particle-hole excitations as unbound

pairs of domain walls. It is an important question to know to which extent a simple picture of

the particle-hole excitations can be found in two dimensions. The unprojected mean-field

particle-hole excitations by themselves have little significance as it is difficult to see what they

become in real space after being Gutzwiller-projected. It is more tractable to look for instance

directly at the wavefunction |R ,r ,↑↓〉. To simplify we will consider the QSL groundstate but

in the d-wave RVB gauge equivalent to the SF state through a SU(2) transformation (section

2.4.4). The groundstate can be represented as a superposition of various lengths singlets

arrangements on the lattice. For simplicity we only represent in fig. 2.29.A arrangements with

nearest-neighbours singlets. Along with the singlets arrangements, the unprojected d-wave

RVB state will also contain several states with one or more double occupancies.

We now consider the effect of creating particle-hole excitations on these states. When applying

a local spin-flip, we will simply promote a singlet into a triplet (fig. 2.29.B). This leaves a new

state with the same number of double occupancies, thus the one previously containing double

occupancies will be projected out.

The picture for the non-local spinon pair |R ,r 6= 0〉 is quite different and relies heavily on

the fact the creation of the particle-hole is made before the Gutzwiller projection. In strong

contrast with the local spin-flip, creating a non-local particle-hole state will only work on

states which contain exactly one double occupation and one hole. Indeed in the case where R

and r are such that the particle-hole excitation annihilates the double occupancy and the hole,

then the resulting state is one where a singled out pair of spins sit in the singlet sea separated

by r (fig. 2.29.C).

2.8.3 Eigenstates spinon-pair analysis

Using the set of states
{∣∣r ,↑↓, q

〉}
, we will now characterize the transverse particle-hole ex-

citation eigenstates. An important aspect of our results is that some of the excitations we

find seem to have a magnon character, at least when looking at their dispersion relation and

intensity. A magnon, considering the simple ferromagnetic groundstate, is simply a Fourier

sum of local spin-flips. In an antiferromagnet it is also the case if considering the linear SWT

solution. Including further orders of 1/S corrections will change this picture as a local spin-flip

can now overlap with the multi-magnon continuum. But considering the corrections are small

even up to third order 1/S perturbation [Syromyatnikov, 2010], it is reasonable still to consider
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Figure 2.29 – Pictorial representation of the local spin-flip states and the non-local spinon
pairs. A: The unprojected ground state in the d-wave RVB gauge represented by a superposition
of singlets arrangements. Some of the states contain double occupancies and are discarded by
the Gutzwiller projection. B: A local spin-flip corresponds into creating a particle-hole pair
on the same site. It promotes a singlet into a triplet and the resulting states have the same
number of double occupancies. C: The non-local transverse particle-hole pair will contribute
from the unprojected ground state components containing exactly one double occupancy
(and one hole) resulting into well separated single spins. Artwork courtesy of Martin Mourigal.
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the magnon excitation based on the Fourier sum of local spin-flip picture.

In our variational approach, the Fourier sum of the local spin-flip state is:∑
R

e i qR S+
R |GS〉 = ∣∣0,↑↓, q

〉
(2.8.9)

thus expressed as a superposition of local particle-hole pairs. We thus expect the magnon-like

excited states to have a strong overlap with this state. We define

P q+(r ,n) = ∣∣〈r ,↑↓, q
∣∣n,↑↓, q

〉∣∣2 , (2.8.10)

the overlap of the n-th transverse eigenstate with the transverse spinon pair separated by r .

P q+(r ,n) gives the spinon-pair separation distribution of the state
∣∣n,↑↓, q

〉
. This quantity

then provides a picture of the spinon pair separation envelope of some eigenstate
∣∣n,↑↓, q

〉
.

For instance we expect the magnon-like modes to have most of their overlap contained in

the r = 0 component and the finite r contributions to decay rapidly. The quantity also allows

to quantify how far the spinon-pair states are from being eigenstates. For instance if some

eigenstates were to correspond to delocalized spinon pairs – the
∣∣r ,↑↓, q

〉
states being as far

from being eigenstates as possible – then we expect P q+(r ,n) to be a very broad distribution

of weights as a function of r . We also define the following overlap quantity in term of the

eigenstates frequency:

P q+(r ,ω) =∑
n

∣∣〈r ,↑↓, q
∣∣n,↑↓, q

〉∣∣2
δ

(
ω−E q+

n +EGS

)
(2.8.11)

where in practice the delta-function will be widened by a gaussian with a finite width as was

done for the dynamic structure factor. This quantity is in practical terms the most handy as

what we ultimately want is to link features (i.e. "peaks") of the dynamic structure factor to a

corresponding spinon-pair separation distribution. If some eigenstates are nearly degenerate,

it defines an average of their spinon separation distribution. Numerically, truly degenerate

eigenstates will always crystallize into non-degenerate states chosen at random by the nu-

merical algorithm in the degenerate subspace. This is the motivation behind the definition

eq. 2.8.11 as now P q+(r ,ω) is independent of such random choices. We incidentally also note

that, for r = 0 case, it is actually the same as the transverse dynamic structure factor:

P q+(r = 0,ω) =∑
n

∣∣∣〈GS|S+
q

∣∣n,↑↓, q
〉∣∣∣2

δ(ω−E q+
n +EGS) = S±(q ,ω) (2.8.12)

such that P q+(r ,ω) might be understood as a generalization of the dynamic structure factor.

In the following figures, the quantity P q+(r ,ω) is normalized such that∑
r

P q+(r ,ω) = 1 (2.8.13)

We can now come back at the previously obtained results in the transverse channel. We first

consider the Néel ordered case in the SF+N groundstate. We show in fig. 2.30 the transverse

dynamic structure factor with some regions highlighted. For the highlighted q and ω, we
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show the corresponding spinon pair separation distribution using eq. 2.8.11. It is immedi-

ately visible that all the modes consist essentially of the spin-flip state
∣∣0,↑↓, q

〉
with a small

envelope of finite spinon pair separation. We thus conclude that in the Neel ordered case,

the particle-hole pairs form a bound state which we might refer to as a magnon. We note

that even higher energy states (feature "B" in fig. 2.30) are also two-spinons bound states

such that the magnon interpretation relies not only on the bound spinons argument but also

on the observed magnon-like dispersion and intensity. We note that the spinon separation

distribution in fig. 2.30 panel lacks an inversion symmetry. This is due to the definition 2.8.2.

Using the symmetric states 2.8.8 would simply corresponds into symmetrizing the spinon

separation distribution upon the inversion r → r .

The situation is very different in the isotropic disordered SF state case. We show in fig. 2.31

Figure 2.30 – Inspection of the transverse dynamic structure factor features in terms of
corresponding spinon pair separation distribution. Bottom: the transverse dynamic structure
factor along the high symmetry directions for the Néel SF+N state on a 24×24 lattice. Top: the
spinon pair distribution eq. 2.8.11 corresponding to the highlighted features in the transverse
dynamic structure factor.

bottom panels the transverse structure factor at the q = (π,0) and q = (π/2,π/2) points again

highlighting some features for which the spinon pair separation distribution is shown on the

top panels. Note that the color-scale is identical to fig. 2.30 to allow comparison. While the

sharp mode still present at q = (π/2,π/2) still dominantly overlaps with the spin-flip state

with a small envelope, the excited states composing the continuum at q = (π,0) are much

more spread out. In fact the spread is such that it is the system size that bounds the maximum

separation, hinting that in the thermodynamic limit the states composing the continuum are

made of delocalized, unbound spinon pairs. This last affirmation cannot be made firm without
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Figure 2.31 – Inspection of the transverse dynamic structure factor features in terms of
corresponding spinon pair separation distribution. Bottom left (right): the transverse dynamic
structure factor at q = (π,0) (q = (π/2,π/2)) for the QSL SF state on a 32× 32 lattice. Top:
the spinon pair distribution eq. 2.8.11 corresponding to the peaks in the transverse dynamic
structure factor.

finite-size analysis which we will develop in section 2.8.5. It is thus seen that our variational

calculation yields the two different aspects observed in experiments. The SF+N case allows

to recover precisely the observed magnon dispersion, the magnon mode being made out of

bound spinons pairs. The SF case on the other hand also recovers a state we might characterize

as magnon-like at (π/2,π/2) but, in strong contrast, finds a continuum at (π,0) seemingly

corresponding to unbound spinon pairs.

2.8.4 spinon-pair analysis of the S+
q |GS〉 state

Linking the observation of a continuum of excitations to delocalized spinon physics is the most

important part of this study. While eq. 2.8.11 seems very suitable to inquire about well-defined,

sharp modes, it is not so good for characterizing a continuum. In our finite system calculation

the continuum will always appear as a collection of modes growing bigger with system size

and eq. 2.8.11 can be used to study the different contributions of the modes. But this has

the disadvantage that, the collection evolving with system size, comparing the results across

different system sizes is difficult. To allow this comparison we thus need a quantity which is

not dependent on a particular collection of modes. We define the following weighted average:

ρq+(r ) =∑
n

∣∣〈r ,↑↓, q
∣∣n,↑↓, q

〉〈
n,↑↓, q

∣∣0,↑↓, q
〉∣∣2 , (2.8.14)
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normalized such that
∑

r ρ
q+(r ) = 1. In this quantity, we weight the eigenstates’ spinon sep-

aration distributions P q+(r ,n) = ∣∣〈r ,↑↓, q
∣∣n,↑↓, q

〉∣∣2 with the corresponding mode intensity

found in the transverse dynamic structure factor
∣∣〈n,↑↓, q

∣∣0,↑↓, q
〉∣∣2. This allows to character-

ize the degree of spinon delocalization attached to the modes proportionally to their intensity

in the transverse spectrum at a given momentum q . While this definition is simple and func-

tional per se, we give below another interpretation of this quantity.

In the interpretation of the continuum as caused by spinon pair delocalization, the local spin-

flip S+
q , caused for instance by a probing neutron, delocalizes into more and more extended

spinon pairs. This is a dynamic process thus we might be interested into looking at:

ρq+(r , t ) =
∣∣∣〈r ,↑↓, q

∣∣e−iH t
∣∣0,↑↓, q

〉∣∣∣2
(2.8.15)

which is the probability, at time t , to find the time-evolved spin-flip state e−iH t
∣∣0,↑↓, q

〉
into

the spinon pair state
∣∣r ,↑↓, q

〉
. To resolve the time evolution operator, we simply introduce

the eigenstates projector
∣∣n,↑↓, q

〉〈
n,↑↓, q

∣∣. One might then ask the question of knowing, over

all times, how much does the spin-flip state delocalizes? This can be answered by averaging

over time the probability distribution ρq+(r , t ):

lim
T→∞

1

T

∫ T

0
ρq+(r , t ) = lim

T→∞
1

T

∫ T

0

∣∣∣∣∑
n

〈
r ,↑↓, q

∣∣n,↑↓, q
〉〈

n,↑↓, q
∣∣0,↑↓, q

〉
e−i En t

∣∣∣∣2

=∑
n

∣∣〈r ,↑↓, q
∣∣n,↑↓, q

〉〈
n,↑↓, q

∣∣0,↑↓, q
〉∣∣2

=ρq+(r ). (2.8.16)

ρq+(r ) can thus also be interpreted as the time-averaged spinon pair separation distribution

of the spin-flip state
∣∣0,↑↓, q

〉
. This interpretation carries the message that, while the spin-

flip does naturally overlap with spinon pairs with a small separation, it is the dynamics

of the Hamiltonian that might or might not cause delocalization. In other word, while the

overlap
〈

r ,↑↓, q
∣∣0,↑↓, q

〉
will decay quickly with r at any momenta, the matrix elements〈

r ,↑↓, q
∣∣H ∣∣0,↑↓, q

〉
might not, which will be evidenced by the ρq+(r ) quantity.

We show this quantity again for the SF+N (fig. 2.32) and the SF (fig. 2.33) states for the q = (π,0)

and q = (π/2,π/2) momenta. Similarly to the previous section, we see that the q = (π/2,π/2)

momentum spectrum corresponds to bound spinon pair physics in both the SF+N and SF

cases. The q = (π,0) momentum displays a contrasted behavior showing again bound spinon

pairs physics for the SF+N case and unbound spinon pairs in the SF case. To further quantify

the extent of the spinon delocalization as a function of the Néel mean field, we define the

disk-integrated spinon-pair separation distribution:

Rq+(r ) = ∑
|r ′|≤r

ρ̃q+(r ′), (2.8.17)
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Figure 2.32 – The spinon pair separation quantified using eq. 2.8.14 for q = (π,0) (left) and
q = (π/2,π/2) in the SF+N case on a 24×24 lattice.

Figure 2.33 – The spinon pair separation quantified using eq. 2.8.14 for q = (π,0) (left) and
q = (π/2,π/2) in the SF case on a 32×32 lattice.
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where ρ̃q+(r ) is the same quantity than ρq+(r ) but restricted to |r | ≤ L/2 and normalized such

that ∑
|r |≤L

ρ̃q+(r ) = 1 (2.8.18)

in order to work-around the fact that, in a square L×L lattice, full disks can only have a radius

as large as L/2. We also define the Root Mean Square (RMS) spinon separation

r q+ =
√∑

r
ρ̃q+(r ) |r |2. (2.8.19)

We note that for these two quantities, whether we use the state
∣∣r ,↑↓, q

〉
as defined in eq. 2.8.2

or
∣∣r ,↑↓, q

〉′ in eq. 2.8.8 to calculate ρ̃q+(r ) will bring exactly the same result due to the fact

that in both quantities ρ̃q+(r ) and ρ̃q+(−r ) are averaged.

We show these two quantities at q = (π,0) in fig. 2.34 for different strengths of the Néel mean

field. Consistently with the overall picture, the Néel mean field gives the disk-integrated

separation distributions more weight at short spinon separations and reduces the RMS spinon

separation.

To summarize, we thus get a consistent picture for the effect of the artificial symmetry breaking

Figure 2.34 – Analysis of the Néel mean field effect on the spinon pair separation. Left panel,
the spinon pair separation profile as defined in eq. 2.8.17 for increasing Néel mean fields. Right
panel: The root mean square spinon separation eq. 2.8.19 as a function of the Néel mean field.
All data is obtained for a 32×32 lattice.

induced by the Néel field. It induces:
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– A change from algebraic to exponential decay of the instantaneous transverse spin-spin

correlation functions.

– A well-defined magnon-mode.

– A binding of the spinon pairs at q = (π,0).

2.8.5 Finite size-effect analysis

We provide here what we consider the strongest support in favor of spinon delocalization at

q = (π,0) in the SF state. If the spinon pairs are indeed unbound, then they are allowed to

separate as much as the finite L×L system size permits. We thus expect a linear dependence of

the RMS spinon separation eq. 2.8.19 on system size L. The disk-integrated spinon separation

distribution eq. 2.8.17 should also show a constantly changing profile as a function of L. In

the opposite case where spinons form a bound state, then the RMS spinon separation and

the disk-integrated spinon separation distribution should stay unchanged once a sufficiently

large system size to contain the full bound spinon pair envelope is reached.

With these expectations in mind we show the system size dependence of the q = (π,0) and

q = (π/2,π/2) in the SF case in fig. 2.35. While the transverse spectrum size dependence

was already shown in fig. 2.26, we show again this size-dependence in fig. 2.35 top panels as

we believe the parallel with the spinon separation size-dependence in the bottom panels is

remarkable: At q = (π/2,π/2) all quantities plotted quickly converge with increasing system

size, indicating that already at modest sizes the solution we obtain is representative of the

thermodynamic limit.

In strong contrast at q = (π,0) the continuous changes against system size observed both in

the transverse excitation spectrum and in the spinon separation quantities hints at completely

deconfined spinon physics. In particular the linear size-dependence of the RMS spinon sepa-

ration brings strong support to the unbound spinons interpretation of the observed transverse

continuum.

2.9 Conclusion

To conclude this chapter we will state again the results shown in the preceding sections. A

strong axis in this work is to explain theoretically the observed magnetic zone boundary

anomaly and to provide a physical interpretation. This is covered into section 2.9.1. The

success of the variational approach for characterizing the magnetic excitations of the square

lattice antiferromagnet calls for further research topics for which we provide a tentative list in

section 2.9.2.

2.9.1 Magnetic zone boundary anomaly

The initial motivation for this work was the unambiguous characterization of the magnetic

zone boundary quantum anomaly found in the transverse dynamic structure factor. This
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Figure 2.35 – Size dependence of various quantities in the SF case at q = (π,0) and q =
(π/2,π/2). A and B: the transverse dynamic structure factor at q = (π,0) and q = (π/2,π/2)
respectively for sizes ranging from 8×8 (dark blue) to 32×32 (dark red). C and D: for the same
momenta the disk-integrated spinon separation distributions eq. 2.8.17. Same color-code
as in A and B. E: The RMS spinon separation eq. 2.8.19 for q = (π,0) (red error bars) and
q = (π/2,π/2) (blue error bars) as a function of system size. The error bars are evaluated as
explained in appendix A.6.
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anomaly is characterized by i) a 7% reduction of the magnon-like mode energy from q =
(π/2,π/2) to q = (π,0), ii) a 50% of the q = (π,0) maximum intensity with respect to q =
(π/2,π/2) and iii) an asymmetric broadening of the q = (π,0) peak towards higher energies,

referred to as the continuum. All these observations mark a strong contradiction with the SWT,

even when accounting for high-order corrections [Canali and Wallin, 1993; Syromyatnikov,

2010]. On the other hand numerical calculations could reproduce the 7% magnon-like mode

energy reduction [Sandvik and Singh, 2001; Zheng et al., 2005] strengthening the hypothe-

sis that the magnetic zone-boundary quantum anomaly is an intrinsic aspect of the square

lattice antiferromagnet. An unbiased numerical determination of the transverse dynamic

structure factor lineshape at q = (π,0) is still missing due to the limitations of exact numerical

approaches, especially the so-called analytical continuation problem [Jarrell and Gubernatis,

1996].

In this context our work brings important contributions by linking the magnetic zone bound-

ary quantum anomaly aspects i)-iii) to physically meaningful variational Ansätze for the

square lattice Heisenberg antiferromagnet ground-state and low-energy excitations. Namely

we provide two complementary pictures through the Néel ordered SF+N and the QSL SF

variational Ansätze.

The SF+N variational Ansatz reproduces the spontaneously broken spin symmetry of the

square lattice Heisenberg antiferromagnet by artificially breaking it through a Néel mean field.

It has a very good variational energy, only 0.7% higher than the best numerical groundstate

energy estimate [Trivedi and Ceperley, 1989; Calandra Buonaura and Sorella, 1998; Runge,

1992] and a staggered magnetization of 0.71S, higher by 12% from aforementioned references.

These groundstate aspects of the SF+N variational Ansatz have been studied before [Gros,

1988; Lee and Feng, 1988; Ivanov and Lee, 2003; Ivanov, 2004]. The completely new result

is that this Ansatz perfectly reproduces the observed short wavelength magnon-like excita-

tion energy including the 7% dispersion along the magnetic zone boundary. But it also has

limitations tied to the artificial breaking of the spin symmetry. The transverse instantaneous

spin-spin correlation function decays exponentially instead of the expected power-law decay

(fig. 2.17). Along with the slightly too high staggered magnetization, this shows that the SF+N

state underestimates the transverse quantum fluctuations of the true square lattice Heisen-

berg antiferromagnet groundstate. The most striking aspect of the magnetic zone-boundary

quantum anomaly is not reproduced by the SF+N Ansatz: Everywhere on the magnetic zone-

boundary, higher energy excitations stay gapped from the magnon-like mode such that there

is no trace of a transverse continuum of excitations at q = (π,0). Looking in parallel at the

evolution of the transverse dynamic structure factor evolution at q = (π,0) and at the evolution

of the transverse instantaneous spin-spin correlation function suggests that the extinction

of the transverse quantum fluctuation in the SF+N variational Ansatz is responsible for the

disappearance of the transverse continuum.

This leads to the second complementary variational Ansatz we studied, the spin-liquid SF state.

With respect to variational energy and staggered magnetization, it is a sub-optimal Ansatz as it

has a 5% higher energy than the best numerical estimate and no staggered magnetization. But

it also has interesting properties. In particular it is a critical state as the isotropic instantaneous
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spin-spin correlation decay as a power-law, in agreement with robust long wave-length SWT

prediction. Being a spin-liquid the quantum fluctuations are very large as there are no finite

classical order parameter. We found that this state reproduces the magnetic zone boundary

quantum anomaly aspects ii) and iii), that is it finds a continuum of excitations at q = (π,0)

as evidenced by the finite-size effect analysis in fig. 2.26. Moreover it also finds that at the

q = (π/2,π/2) the magnon-like mode stays sharp as observed in experiments.

The two SF+N and SF Ansätze thus provide a complementary description of all of the experi-

mental aspects of the short wavelength excitations of the square lattice Heisenberg antiferro-

magnet. It has to be noted however that we presently do not provide a complete picture as

it seems we cannot reproduce all the aspects in a single Ansatz. The mean-field approach to

describe the spontaneously broken spin symmetry seems to suffer from the strong limitation

that it effectively extincts the transverse quantum fluctuations present in the square lattice

Heisenberg antiferromagnet groundstate.

Following the achievements of the SF+N and SF Ansätze into reproducing the experimen-

tally established aspects of the magnetic zone boundary quantum anomaly, we developed

their physical interpretation based on the complete knowledge of the variational excitation

wavefunctions allowed by the variational Monte Carlo approach. Namely we could describe

all of the excitations as projected mean-field particle-hole excitations and showed that, in

the physical Hilbert space they can be understood as superpositions of spatially-separated

spinon-pairs. This naturally lead to the question of knowing whether these spinon-pairs

must be seen as a bound-state identifiable to a magnon or if the two spinons are in fact truly

independent degrees of freedom. The development of meaningful quantities to tackle this

important section allowed to unambiguously link the calculated SF Ansatz continuum of

excitations at the q = (π,0) momentum to a deconfinement of the spinon-pairs while, at the

q = (π/2,π/2) momentum the SF Ansatz variational excitation is found to be a spinon-pair

bound state. In the SF+N case, all excitations including the magnon-like mode were found to

be spinon-pair bound states.

Deconfined fermionic excitations have been observed and predicted in 1D systems. In 2D,

deconfined fermionic degrees of freedom has so far mainly been pursued in highly frustrated

models such as the triangular model [Coldea et al., 2001b] or the Kagomé lattice [Han et al.,

2012; Jeong et al., 2011]. The unambiguous experimental characterization of the square lattice

Heisenberg antiferromagnet magnetic zone boundary quantum anomaly and its interpreta-

tion in our work in terms of bound and unbound spinon pairs is the first attempt at establishing

the existence of deconfined fractional degrees of freedom in the experimentally measured

excitation spectrum of an unfrustrated 2D magnetic system with a Néel ordered groundstate.

2.9.2 Further research

The success of the variational Monte Carlo approach at calculating the magnetic excitations

of the square lattice Heisenberg antiferromagnet calls for more applications. We list here a

tentative list of interesting topics where this approach might be useful.
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– Transverse field effect: Experimentally applying an external field is one of the most obvious

approaches to add some controlled parameter into the system and might help to uncover

new physics. Early unpublished neutron scattering results from the Laboratory for Quan-

tum Magnetism seem to indicate that, upon applying a magnetic field transverse to the

Néel ordering direction, the magnetic zone boundary quantum anomaly disappears and a

conventional magnon mode is recovered. While in zero field the magnon mode is two-fold

degenerate, the uniform field will split it into an "antiferromagnetic" and a "ferromagnetic"

component.

It is in principle simple to introduce such external magnetic fields into the variational

calculation. First, the projected Heisenberg model matrix will need to include a Zeemann

term, a simple modification of the calculation. But to truly take account of the effect of the

applied field one would also need to introduce it at the projected mean-field wavefunction

level. Indeed to be physically relevant the variational wavefunction should be able to get

polarized by the applied field. A new wavefunction must therefore be introduce which allow

a polarization along the axis where the field is applied. This is a rather trivial modification

but will add a new variational parameter – the polarization – which will need to be optimized

for each value of the applied magnetic field.

An interesting aspect is that, in the case where a magnetic field does break the spin rotational

symmetry, it is possible that the SF+N becomes a better variational Ansatz since its broken

spin symmetry now is a physical ingredient of the system under study. In particular it seems

like the exponential decay of the transverse instantaneous spin-spin correlation might be

physical in the case where we apply a transverse field and would be consistent with the

extinction of the q = (π,0) continuum.

– Excitation spectra for doped systems: The interest into the square lattice Heisenberg anti-

ferromagnet physics obviously was in a large part motivated by the discovery of the high-

temperature cuprate materials. The projected mean-field wavefunction approach originally

was also motivated by the high-Tc problematic following Anderson’s proposal of the RVB

theory [Anderson, 1987]. It is thus an obvious route to take to try to obtain the magnetic

excitation spectrum of doped square-lattice antiferromagnet. There are indeed many exper-

imental results available which the variational approach could or could not reproduce. The

development of the reweighing technique by Li and Yang [Li and Yang, 2010] was primarily

geared towards describing the so-called q = (π,π) neutron resonance as a function of dop-

ing. The q-dependence of the magnetic excitation spectrum was not looked at. Therefore it

remains an important question to know if for instance the hour-glass excitation spectrum

could be reproduce by a mean-field Ansatz. The interest of variationally reproducing such

a feature goes beyond simply reproducing numerically some experimental feature. The

fact the calculation is tied to a variational Ansatz brings a strong physical significance by

strengthening the Ansatz.

– ARPES spectra: If extending the variational calculation to undoped systems, it is then

completely possible to calculate variationally the spectral function:

A(q ,ω) =∑
nσ

∣∣〈n, q ,σ
∣∣cqσ |GS〉∣∣2

δ(ω−E qσ
n +EGS) (2.9.1)
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where
∣∣n, q ,σ

〉
is an eigenstate calculated by diagonalizing the generalized eigenvalue

problem defined by the Heisenberg Hamiltonian projected on a suitable projected mean-

field excitations subspace.

– Jastrow factor optimization: An obvious weakness of our work is that we could not, using

the Néel mean field approach, reproduce neither the long wavelength properties (the

magnon mode we found is gapped) or one of the most important short wavelength property:

the development of the q = (π,0) continuum. But the introduction of a Néel mean-field

arguably is a rather primitive approach. A much more versatile one is to use an optimized

Jastrow factor (see section 2.5.3) to the wavefunction which might introduce non-trivial

many-body physics into the variational Ansatz. Of course it has the drawback that one must

now numerically optimize a large number of variational parameters. Techniques to perform

such an optimization have been devised and might bring interesting results [Sorella, 2005].

– Extended magnetic interactions (ring-exchange): If focusing on the relevance of our cal-

culation in the context of the cuprate materials, it is probably interesting to include further

magnetic interactions into the physical model. Introducing second- and third-neighbor

magnetic interaction should be very simple if one does not account for those at the mean-

field level. The four-spin ring-exchange term (see the second chapter of this thesis) might

also be introduced, first only into the physical model without modifying the mean-field

wavefunction Ansatz. A difficulty is that the ring-exchange term will exchange a pair of up

spins with a pair of down spins which, in the variational Monte Carlo technique, correspond-

ing into changing simultaneously two rows or columns of the up and down Slater matrices.

But this technical difficulty can now be easily overcome by the use of the generalized rank-r

determinant and inverse matrix update formulas we developed in appendix A.2.

The magnetic zone boundary quantum anomaly has been observed in the cuprate material

La2CuO4 [Headings et al., 2010]. The ring-exchange term effect seems to kill the 7% mag-

netic zone boundary dispersion by increasing the q = (π,0) magnon energy compared to

q = (π/2,π/2). It is interesting to see whether, by introducing this ring-exchange term we

also get the increased q = (π,0) magnon energy while keeping the continuum above.

– Raman scattering spectrum: The asymmetric line shape of the Raman spectrum measured

on realizations of the QHSAF is a long standing puzzle which originally inspired to look for

fractional excitations [Ho et al., 2001]. In principle this spectrum can as well be calculated

using our variational approach. In the so-called B1g geometry, the interaction of light with

the magnetic degrees of freedom is [Canali and Girvin, 1992]

Λ∝∑
j

S j ·
(
S j+ŷ −S j+x̂

)
(2.9.2)

such that the scattering intensity will be a function of the four spin operator correlation

function

I (ω) =
∫

d te iωt 〈Λ(t )Λ〉. (2.9.3)
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In our formalism, this could be written in the longitudinal projected particle-hole excitation

subspace as:

I (ω) =∑
n

∣∣〈n, q ,0
∣∣Λ |GS〉∣∣2

δ(ω−E q0
n +EGS). (2.9.4)

But this last equation overlooks the fact that, writing theΛ |GS〉 state into the projected mean-

field states will not only generate particle-hole states, but also two-particles two-holes states.

This will therefore dramatically increasing the excitation subspace to be considered. The

prospect of increasing the size of the considered projected mean-field excitation subspace

is treated in the next point.

– Higher order spinon excitations: While calculating the magnetic excitation spectrum we

restricted the subspace of excited states to the particle-hole pairs in the transverse and the

longitudinal channels. This is of course an approximation and these subspaces are only as

much "sufficient" for describing the real system excitations as the variational wavefunction

is close to the real groundstate. In fact we already checked that the Gutzwiller projection

results in a finite overlap between particle-hole pair excitations and two-particles two-holes

excitations, thus in the projected Hilber space four-spinons excitations. These four-spinons

excitations have been shown to be responsible of about 30% of the 1D spin chain magnetic

spectrum [Mourigal et al., 2013]. It is thus an interesting question to know if this is the

case as well in 2D. While adding 4-spinons excitations is simple formally, it does bring

significant technical difficulties. Indeed for instance the transverse 4-spinons excitations

subspace now has L6/2 states instead of L2/2 for the 2-spinon state (L2 being the system

size). In practice the first technical limitation to come will be the memory problem as the

projected Heisenberg model and overlap matrices will likely be too large to hold on a stan-

dard computer memory. But we would like to mitigate this issue. In fact the computationally

expensive part is to calculate the overlaps
〈
ψ

∣∣α〉
and

〈
β
∣∣ψ′〉 where

∣∣ψ〉
and

∣∣ψ′〉 are two

different variational excitations. The number of
∣∣β〉

states depends on the quantity being

sampled. For the Heisenberg model, this is of order L2. Each of the overlap calculation still

is only of cubic complexity in the system size O
(
L6

)
. Thus one can imagine a computational

scheme where the random walks only calculate the vectors of overlaps
〈
ψ

∣∣α〉
and

〈
β
∣∣ψ′〉

and delegate the construction of the large projected Heisenberg and overlap matrices to an

other process with access to a large permanent storage to hold the full matrices. There are

thus possible ways to push the technical limits.

Other axes would be to concentrate on quantities which do not require the explicit cal-

culation of the projected matrices. Without much inquiring, we would like to mention

information theory quantities which could be used to quantify the degree of entanglement

between the two-spinons and four-spinons excitation subspaces. This could potentially indi-

cate how “good” is the approximation of truncating the excitation subspace to two-spinons

only.

– Extrapolation to 1D chain: This research suggestion aims at giving a more solid footing to

the analogy between the 1D spinon excitations and the 2D ones. An interesting question is

to know how, upon weakening for instance the magnetic coupling Jy along the y-axis of the
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square lattice, the continuum of excitations would evolve towards the exactly known 1D

limit. If the 2D spinon excitations are adiabatically connected to the 1D ones, then we should

see for Jy → 0 the continuum of excitations at q = (π,0) expand such that it reproduces the

1D two-spinons excitation spectrum (see for instance the XY spectrum fig. 2.3).

It is possible for the variational Monte Carlo approach to bring valuable insight with respect

to this problematic. Indeed it has been shown that the projected wavefunction with no flux

(θ0 = 0) and no Néel mean field is a very good variational Ansatz for the 1D spin chain with

an energy only 0.2% higher than the exact groundstate energy from the Bethe Ansatz [Gros

et al., 1987; Gebhard and Vollhardt, 1987]. It thus would be quite desirable to generalize the

SF mean-field wave function such that it can extrapolate to the 1D case. The most likely

modification will be to differentiate the two mean-fields:

〈c†
iσci±êxσ〉 =tx e iθi ,i±êx (2.9.5)

〈c†
iσci±ê yσ〉 =ty e iθi ,i±ê y (2.9.6)

and then carry out the optimization of these mean-fields for each ratio Jy /Jx . Therefore this

only amounts into redefining the mean-field Ansatz while the computational framework

would stay unmodified.

– other lattices: The variational procedure we used can in principle be used on any lattice

geometry provided a motivated mean-field variational Ansatz exists. It could possibly make

sense for instance to go back to the triangular lattice for which the RVB Ansatz was conceived

in the first place and calculate its excitation spectrum.

2.9.3 Summary

In summary we have developed a variational Monte Carlo approach to give a variational

determination of the magnetic spectrum of the square lattice Heisenberg antiferromagnet.

Using the Néel ordered SF+N variational Ansatz, we could reproduce perfectly the short wave-

length magnon-like excitations dispersion, including the 7% zone boundary dispersion. The

observed continuum at q = (π,0) however is not found with this Néel ordered wavefunction

but could be obtained from the spin-liquid SF Ansatz. Detailed analysis of the obtained

variational excitations lead to characterize them as bound and unbound spinon pairs. The

short wave-length magnon-like mode in the SF+N case corresponds to bound spinons forming

the magnon while the continuum at q = (π,0) found in the SF Ansatz is found to correspond

to deconfined spinon pairs.
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3.1 introduction

The discovery of high-temperature superconductivity in the cuprate compounds family by

Bednorz and Müller [1986] lead to a renewed interest into the quantum magnetism topic as it

was soon realized that high-Tc superconductivity was arising in the vicinity of magnetically

ordered phases. To address theoretically the physics of the cuprate materials, the Hubbard

model was proposed to encompass the most relevant aspects of the CuO2 square lattice

plane physics [Anderson, 1987]. Despite its simplicity, the Hubbard model contains all the

ingredients that make the task of describing the physics of high-Tc cuprate materials a great

challenge: It mixes spin and charge degrees of freedom and, for the regime relevant to cuprates,

lacks a small variational parameter which would allow some simple perturbative approach.

These ingredients are nicely represented as the model parameters, respectively the electron

filling and the ratio between the electron hopping matrix element and the on-site Coulomb

repulsion t/U . This ratio is though to be moderately small for the cuprate materials t/U ∼ 1/10.

Thus a first approach is to consider the states where two electrons with opposite spin sit on

the same site as high-energy ones and to project them out from the Hilbert space. For the

half-filled case where there is one electron per site, this corresponds to getting rid of the charge

degrees of freedom of the model. However this projection cannot be carried out exactly and is

performed as an expansion in t n/U n−1. This leads to another difficult model, the t-J model

and its half-filled version, the Heisenberg model. In this last case, the Spin Wave Theory (SWT)

can be used to give an approximate solution which can be compared to experiments.

The problematic raised by high-Tc superconductivity lead to designing or dramatically improv-

ing experimental techniques. Perhaps the best example is the Angle-Resolved Photo-Emission

Spectroscopy (ARPES) technique able to directly probe the electronic physics of the CuO2

plane. Another whose realization was strongly motivated by the cuprate problem is the Reso-

nant Inelastic X-ray Scattering (RIXS) technique able to probe both magnetic and electronic

degrees of freedom. Adding to these the well-established Inelastic Neutron Scattering (INS)

and Raman scattering techniques, it appears that there are plenty of different available probes

to tackle the spectroscopic properties of the cuprate materials.

This work aims at addressing the conventional aspects of the magnetic excitation spectrum of

the insulating cuprate high-Tc parent compounds trying to bring a determination of some

microscopic parameters consistent with the constraints set by the ARPES, RIXS, INS and

Raman results. Looking at the ARPES and INS results for the La2CuO4 (LCO) compound, some

inconsistencies appear [Delannoy et al., 2009]: The Fermi surface as determined by ARPES

indicates that second and third nearest neighbour hopping matrix elements have a signif-

icant amplitude compared to the nearest neighbour hopping matrix element [Damascelli

et al., 2003]. On the other hand, the magnon dispersion measured by INS indicates that, in

the projection of the Hubbard model onto the no-double-occupancy Hilbert space, fourth

order t 4/U 3 correction bring important qualitative modifications of the magnetic excitation

spectrum [Coldea et al., 2001a]. The model parameters extracted from these two approaches

are incompatible [Delannoy et al., 2009]: In particular the Coulomb repulsion U found in INS

for La2CuO4[Coldea et al., 2001a] is too small compared to ARPES estimates. Importantly, the
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analysis of the INS magnetic spectrum did not include further neighbour hopping matrix

elements. New RIXS experimental results soon showed that these discrepancies were not

limited to the La2CuO4 compound but were in fact even worse considering for instance the

Sr2CuO2Cl2 (SCOC) or the bi-layer compound Bi2Sr2YCu2O8 (BSYCO).

In this work, we followed the derivation of a low-energy magnetic model as developed in

MacDonald et al. [1988] and extended in the case of Hubbard models with extended hoppings

in Delannoy et al. [2009] in order to consistently analyze the newly available magnetic spectra

as obtained by RIXS following the development of an unprecedented high-resolution spec-

trometer at the Swiss Light Source in the Paul Scherrer institute. The focus is to use established

theoretical techniques in order to extract a detailed determination of the microscopic model

parameters from the measurement of magnetic spectra and confront it in particular to the

electronic measurements determination.

3.1.1 Overview

We provide here a quick overview of this study.

– Experimental status: The cuprate materials LCO and SCOC have been measured by ARPES

and, for the former, by INS. The Fermi surface as measured by ARPES (see section 3.2.1)

indicates that second and third nearest neighbor hopping amplitudes must be considered in

the t − J model (see section 3.3). INS measurements on LCO showed that extended magnetic

couplings such as the ring-exchange term must be included in the microscopic magnetic

model to account for the magnon dispersion. This corresponds to fourth order terms in

the strong coupling perturbation theory of the Hubbard model. The constraints set by the

ARPES and INS measurements are inconsistent. For instance considering the t − J model

as the effective theory of the Hubbard model (see section 3.3.3), the Coulomb repulsion

as found from fitting the Fermi surface measured by ARPES is inconsistent with the one

found from fitting the magnetic excitation spectrum from INS. New results of the SCOC

material magnon dispersion from RIXS show an even larger discrepancy. In that last case the

Hubbard model parameters as found by fitting the magnon dispersion would inconsistently

put SCOC out of the Mott insulating phase.

– Low energy theory: To reconcile the microscopic parameter determinations from electronic

and magnetic excitation spectra, we develop an effective low energy theory for the extended

Hubbard model including second and third nearest neighbor hopping amplitudes (see

section 3.4). This calculation is carried out through the unitary transform technique to

fourth order in t/U . The resulting effective spin model at half filling is a Heisenberg model

including extended magnetic interactions. In particular a large family of ring exchange

couplings involving first, second and third nearest neighbor hopping amplitudes arise. The

effective spin Hamiltonian is approximately diagonalized using SWT including first order

1/S quantum corrections (see section 3.5).

– Experimental data fitting: Using the SWT result, we fit the dispersion relation of LCO from

INS measurements and of SCOC and BSYCO from RIXS measurements (see section 3.6.1

and 3.6.2). The fitting parameters are the microscopic model parameters of the extended
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Hubbard model. As the fit is under-constrained, we obtain a family of solutions, more

precisely a line of solutions. We choose to parametrize these solutions as a function of the

Coulomb repulsion U . The fitting results show that strong constraints are imposed on the

amplitude of U while the ratio t/U ∼ 1/10 stays rather constant for all solutions. These

results are then compatible with ARPES ones (see section 3.6.3).

– Predictions: Having determined consistent microscopic parameters, we then produce a

number of predictions and compare them with available ARPES, RIXS and Raman experi-

mental results (see section 3.6.4 and 3.6.5).

3.1.2 The cuprates materials

The cuprate material class regroups various ceramic compounds which share a layered struc-

ture of copper-oxides planes separated by various rare earth elements. A very large interest

arose when an unexpectedly high temperature superconductivity was discovered for the

compound Bax La5−x Cu5O5 [Bednorz and Müller, 1986] at 35K , about 15K above the high-

est superconducting temperature known at that point for Nb3Ge thin films [Muller, 1980].

Soon similar compounds were found to also achieve superconductivity at higher temperature

culminating at about 130K [Schilling et al., 1993] less than a decade later. These high critical

temperatures are well above 30K , traditionally accepted as an upper-bound for conventional

phonon-mediated superconductivity raising hopes that room temperature superconducting

materials could be discovered in the future. After two decades of intensive research, the mech-

anism driving the electron pairing, a prerequisite for superconductivity, still remains highly

controversial as the absence of isotope effect shed important doubts about the possibility of a

conventional phonon-based mechanism (for reviews see [Dagotto, 1994] or [Scalapino, 2012]).

The structure of the cuprate materials consists of layers of one or more CuO2 planes stacked

Figure 3.1 – Sketch of the oxygen (blue) octahedra surrounding the copper (orange) ions. Left:
edge-sharing octahedra. Right: corner-sharing octahedra.

together with large interstitial rare-earth ions which isolate the copper oxides layers from each

others. As a result the physics of the cuprate materials is dominantly two-dimensional. The
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copper oxides planes are made of copper embedded in a octahedral cage of oxygens ions. The

octahedra can be either edge- or corner-sharing the latter forming a checkerboard pattern

(fig. 3.1). The oxidation state of the copper ion is Cu2+ which means that 9 electrons populate

its 3d valence shell. The octahedral crystal field induced by the oxygens breaks the spherical

symmetry of the 3d shell and results in the splitting of the 3d energy levels into the two groups

of six (spin degree of freedom included) t2g and of four eg levels (fig. 3.3). In this reduced

symmetry, the electronic states are conveniently labeled by the cubic harmonics orbitals. The

slight elongation of the octahedra in the perpendicular direction from the plane further causes

a splitting between the eg 3dz2−r 2 and 3dx2−y2 orbitals, the latter having the highest energy

which can be understood simply considering where the lobes of the copper 3d orbitals point

with respect to the neighbouring oxygen 2p orbitals. Filling up the 9 electrons, one sees that

the state of the Cu2+ ions has a single electron in the 3dx2−y2 orbital with a spin- 1
2 degree of

freedom and all other orbitals are filled. The situation where every copper ion is in this local

state is referred as half-filling while situations where some copper ions have either more or

less electrons are referred as electron-doped and hole-doped, respectively. It is in the electron-

or hole-doped cases that superconductivity has been observed.

We reproduce in fig. 3.2 the generic cuprate phase diagram. A striking aspect of the cuprate

Figure 3.2 – Generic phase diagram for the cuprate materials. SC stands for the superconduct-
ing phase and AF for the antiferromagnetic one. The pseudogap phase is a badly metallic one
where the density of states close to the Fermi surface is strongly suppressed.

family is the proximity between the superconducting phase and the insulating antiferro-

magnetic phase where each copper ion hosts on average a spin-↑ or a spin-↓ in a staggered

manner. This proximity inspired the idea that the electron pairing mechanism might be of

magnetic origin [Anderson, 1987] in contrast with conventional superconductivity where it is

the electron-phonon interaction which results in electron pairing.

In this work we will focus on the antiferromagnetic phase of the cuprate materials seeking a
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Figure 3.3 – Splitting of the Cu2+ 3d orbitals in the reduced symmetry of the octahedral
environment.

microscopic model to account for available experimental data.

3.2 Electronic and Magnetic measurements

We give here a short description of some of the different techniques that allowed an experi-

mental insight into the electronic and magnetic properties of the cuprate materials. We also

give short reviews of some of the achieved experimental results that we will try to address in

the rest of the chapter.

3.2.1 Angle-Resolved Photo-Emission Spectroscopy

Angle-Resolved Photo-Emission Spectroscopy (ARPES) has been a very successful techniques

for characterizing materials including, for our topic, the cuprates (for a review see Damascelli

et al. [2003] or Lu et al. [2012]). The photoemission process is a fundamental manifestation of

the quantum nature of photons and electrons. Historically this effect lead to the discovery of

light quantization [Einstein, 1905], a prerequisite for the quantum mechanics revolution of

modern physics. In a photoemission event, light is absorbed by a material which as a result

emits excited electrons. ARPES additionally keeps track of the emitted electrons energy and

angle with respect to the incident light beam and sample orientation. This allows to resolve the

momentum of the electrons. The ARPES intensity is then a function of the electron momentum
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k and energy ~ω and can be expressed as:

I (k ,ω) = I0(k ,ν,A) f (ω)A(k ,ω) (3.2.1)

This formula is valid in the so-called sudden approximation, where the photoelectron do

not further interact with the material once excited away from its material equilibrium state.

I0 is the matrix element describing the light-matter interaction (the probe function), ν the

incident light frequency and A the electromagnetic vector potential. f (ω) is the Fermi function

which express the fact that only occupied electronic states can give rise to a photoemission

event. Finally A(k ,ω) is the spectral function associated with the one-particle retarded Green

function, an intrinsics property of the material unrelated to the probe

GR (k , t ) = iΘ(t )
〈{

ck (t ),c†
k (0)

}〉
(3.2.2)

whose time Fourier transform is related to the spectral function as

GR (k ,ω) =
∫

dε
A(k ,ω)

ω−ε+ i 0+ (3.2.3)

A(k ,ω) =− 1

π
Im

[
GR (k ,ω)

]
. (3.2.4)

More explicitly, the total spectral function is the sum of the electron removal and addition

spectral functions A−(k ,ω) and A+(k ,ω)

A(k ,ω) =A+(k ,ω)+ A−(k ,ω) (3.2.5)

A±(k ,ω) =∑
m

∣∣〈ΨN±1
m

∣∣c±k
∣∣ΨN

i

〉∣∣2
δ(ω−E N±1

m +E N
i ) (3.2.6)

where
∣∣ΨN

i

〉
is the initial material N particles state with initial energy E N

i ,
∣∣ΨN±1

m

〉
a possible

final material eigenstate indexed by m with N ±1 particles and energy E N±1
m , and c+k = c†

kσ
and c−k = ckσ are respectively the creation and annihilation operators of an electron with

momentum k and spinσ. While in eq. 3.2.1 the ARPES intensity thus seems to include both the

electron removal and addition contributions, the latter are formally extinguished by the fermi

function f (ω) at low temperature. Direct ARPES measures the electron removal probability

as a function of energy and momentum. If the matrix element I0(k ,ν, A) is known, it allows

to extract the electron removal spectral function A−(k ,ω) or equivalently at low temperature

the total spectral function multipied with the Fermi function f (ω)A(k ,ω). If the c±k operators

correspond to the system quasiparticle creation and annihilation operators so the initial and

final states could be written as∣∣ΨN
i

〉=∏
{k}

c†
k |0〉

∣∣ΨN−1
m=k

〉= ∏
{k ′ 6=k}

c†
k ′ |0〉 (3.2.7)

Then the ARPES signal would be essentially a delta function

I−(k ,ω) ∼ δ(ω−ωk ) (3.2.8)
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whereωk is the electron dispersion relation in the material. In this example the system is made

of non-interacting electrons forming bands. For a correlated electron system, the excited state∣∣ΨN−1
〉= ckσ

∣∣ΨN
i

〉
will not be an eigenstate and therefore overlap with many

∣∣ΨN−1
m

〉
resulting

in a broadening of the ARPES signal. This is often referred to as self-energy effects as the ARPES

results are commonly interpreted on the basis of a band picture (non-interacting electrons)

and the interaction introduced perturbatively in the Green function formalism. Considering a

system Hamiltonian with a diagonal kinetic term and some non-magnetic interaction treated

perturbatively:

H =∑
k
ωk c†

k ck + V̂ (3.2.9)

the Green function of the unperturbed system is

GR
0 (k ,ω) = 1

ω−ωk + i 0+ . (3.2.10)

Introducing the perturbation through the Feynman diagram technique leads to the Dyson

equation

GR (k ,ω) =
[(

GR
0 (k ,ω)

)−1 −Σ(k ,ω)
]−1

(3.2.11)

where Σ(k ,ω) is the self energy. Because the above system has only one band and the inter-

action is non-magnetic, GR (k ,ω), GR
0 (k ,ω) and Σ(k ,ω) are scalars. Introducing the Dyson

equation into eq. 3.2.4 leads to the popular form of the spectral function in terms of the

self-energy:

A(k ,ω) =− 1

π

Im(Σ(k ,ω))

[ω−ωk −Re(Σ(k ,ω))]2 + [Im(Σ(k ,ω))]2 . (3.2.12)

Thus if one can extract from ARPES the total spectral function, it might allow for a determi-

nation of the self-energy function, a key quantity encoding the many-body correlation. Of

course what direct ARPES really measures is I0(k ,ν,A) f (ω)A(k ,ω) and approximations must

be made to obtain the total spectral function [Norman et al., 1999]. We shortly review below

two important results from ARPES experiments on cuprates that will be referred to in the

following development.

Single hole dispersion in the antiferromagnetic phase

The motion of a single hole on top of the antiferromagnetic background of the undoped (half-

filled) cuprate Sr2CuO2Cl2 has been reported in various articles [Wells et al., 1995; LaRosa et al.,

1997] and compared to a t − t ′− t ′′− J model using the self-consistent Born approximation

[Tohyama and Maekawa, 2000]. A good agreement has been found for the model parameters

t = 0.35eV, t ′ =−0.12eV, t ′′ = 0.08eV and J = 0.14eV. We will discuss in section 3.3.3 and 3.6.4

how this result can be related to our work.
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Waterfall feature in the doped and undoped cuprates

The cuprates quasiparticle dispersion measured by ARPES displays a kink between 80 and

400meV [Ronning et al., 2005; Graf et al., 2007] that has been interpreted either as an ARPES

matrix element effect on top of a shallow quasiparticle bare band with t = 0.23eV [Inosov et al.,

2007] or as an intrinsics self-energy effect on top of strongly dispersing quasiparticle bare

band with t = 0.48eV [Chang et al., 2008]. In the section 3.6.4 we will address whether our

results can possibly shed light into this controversy.

3.2.2 Inelastic Neutron Scattering

Inelastic Neutron Scattering (INS) is an extremely successful technique able to probe detailed

properties of magnetic materials. Neutrons produced through nuclear events such as fission

or proton irradiation get scattered by the sample where the initial and final neutron energy

and momentum can be controlled in various experimental geometries. The scattering can

either result from nuclear interaction between the neutrons and the sample nuclei or from

the small dipole-dipole interaction between the neutron spin- 1
2 and the magnetic ions of the

sample. This last scattering process is the one of interest to us as it gives rise to a signal that

can be traced back to the intrinsic magnetic properties of the sample. Compared to other

techniques, magnetic INS has the special characteristic that there is nothing unknown about

the probing mechanism which is very accurately accounted for by the simple Fermi golden

rule. The signal is given by the neutron scattering differential cross-section:

d 2σ

dΩdω
= (γr0)2 k f

ki

∣∣∣ g

2
F (q)

∣∣∣2
exp(−2W (q))

∑
αβ

(δαβ− q̂αq̂β)Sαβ(q ,ω) (3.2.13)

where γ is the neutron dipole moment in units of nuclear magneton µN , r0 = e2

me c2 is the

classical electron radius, g is the Landé g -factor, F (q) is the magnetic form factor, W (q) is

the Debye-Waller factor and (δαβ − q̂αq̂β) is a geometric factor related to the form of the

dipole-dipole interaction. The most important part of the above formula is the dynamical

structure factor Sαβ(q ,ω) which is the material-intrinsic part of the INS signal while all the rest

broadly relates to the probing mechanism and is known more or less exactly. The dynamical

structure factor is given by:

S(q ,ω) = 1

2π

∫
d te iωt

∑
i j

e i q(R j−Ri )〈Sαi (t )Sβj (0)〉 (3.2.14)

=∑
λλ′

ρ(λ)
∑
i j

e i q(R j−Ri )〈λ|Sαi |λ′〉〈λ′|Sβj |λ〉δ(~ω−Eλ′ +Eλ) (3.2.15)

and can be understood as the time and space Fourier transform of the spin-spin correlation

function 〈Sαi (t )Sβj (0)〉. Through this quantity, the internal correlated structure of the local spins

can be both experimentally probed and theoretically predicted providing a unique platform

where experiments and theory can meet on solid ground.
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In the context of the cuprates, magnetic neutron scattering brought important information

both in the doped and undoped case. We focus here on the undoped results which characterize

the properties of the square lattice antiferromagnet. A detailed study of the square lattice

antiferromagnet INS magnetic spectrum is carried out in chapter 2 which was motivated

by important peculiarities of the INS spectrum which fall out of the scope of this part. The

dynamical structure factor takes a quite simple form when the system can be described in the

spin-wave approximation. It becomes

S(q ,ω) = I (q)δ(ω−ωq ) (3.2.16)

where I (q) is a q-dependent intensity and ωq is the dispersion relation of bosonic excitations

known as spin-waves, a propagating disturbance of the antiferromagnetic order. INS experi-

ments could accurately measure the spin-wave dispersion of the La2CuO4 cuprate material

[Coldea et al., 2001a; Headings et al., 2010] and consistently relate it to a microscopic one band

Hubbard model with parameters t = 0.3eV and U = 2.2eV. A striking aspect of the measured

spin-wave dispersion is the so called magnetic zone boundary dispersion, the variation of the

spin-wave energy along the line q = (l ,π− l ), l ∈ [0,π], which is as large as 20meV in La2CuO4.

This is in complete contradiction with spin-wave theory based on the Heisenberg model which

predicts no dispersion at all. This result was the proof that, in the case of the cuprates where

the interaction energies are large, more complicated interactions of the magnetic moments

must be included in the model. We will come back to this in section 3.6.

3.2.3 Raman scattering

The Raman scattering technique is a photon-in photon-out techniques which uses polarized

visible light produced with lasers. Light has the advantage to couple strongly to the valence

electrons and can thus probe a large spectrum of excitations ranging from phonons, electronic

excitations and magnons. The excitations have zero total momentum because the small

momentum carried by visible light photons. For magnetic scattering on the square lattice

antiferromagnet, the measurements are most often carried out in the so-called B1g geometry

where the incident light is linearly polarized with the electrical and magnetic components of

the field point at 45◦ in-between the square lattice x̂ and ŷ translation vectors [Devereaux and

Hackl, 2007]. In this geometry the interaction of light with the magnetic degrees of freedom is

[Canali and Girvin, 1992]:

Λ= B

2
P (Ei n ,Esc )

∑
j

S j ·
(
S j+ŷ −S j+x̂

)
(3.2.17)

where P (Ei n ,Esc is a function of the incident and scattered light electrical field vectors. We

see that, on top of momentum-conservation, the excitations also conserves the z component

of the total spin
∑

j Sz
j so the excitations must carry zero spin ∆S = 0. We can thus already

conclude that single magnon which are ∆S = 1 excitations cannot be observed. The lowest

order magnetic excitations which can be observed will therefore be two-magnons. We also see
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that the correlation functions probed by Raman scattering will be much more complicated as,

using the Fermi golden rule, the intensity will be

I (ω) ∼
∫

dωe iω(t ) 〈ψ0
∣∣Λ(t )Λ(0)

∣∣ψ0
〉

(3.2.18)

where, by comparison to the INS cross-section eq. 3.2.14, the operatorΛ(t )Λ(0) is quartic in

spin operators instead of quadratic. We follow here Canali and Girvin [1992] to give a brief

account of the two-magnon Raman peak. Expressing eq. 3.2.17 using the magnon operators

will produce two-magnons terms as well as higher order ones. Restricting to the two-magnons

part and neglecting magnon-magnon interaction gives:

I (ω) ∼∑
k

γ̃k
2

ε2
k

δ(ω−2εk ) (3.2.19)

where εk is the magnon dispersion and γ̃k = 1
2

(
cos(ky )−cos(kx )

)
. This is very similar to eq.

3.2.16 except that in the δ-function we have the joint energy of a k and −k magnon pair so

the formula looks like a weighted density of states of the zero momentum two-magnons pairs

which is peaked at twice the magnetic zone boundary energy 4Zc J . Including the magnon-

magnon interaction will, in a Random Phase Approximation (RPA)[Canali and Girvin, 1992],

effectively shifts to lower energies the Raman two-magnons peak to 3.37J , a 36.8% rather

large energy renormalization. By approximating the effective model for undoped cuprates

to the simple nearest-neighbour Heisenberg model, the position of the measured Raman

two-magnon peak then gives an approximate of the magnetic coupling J , found to be of about

124meV in La2CuO4, which is small if compared to the magnetic zone boundary energy found

by INS indicating JN N = 140meV [Coldea et al., 2001a; Headings et al., 2010]. This issue was

further resolved by extending the RPA procedure from Canali and Girvin [1992] including a

ring exchange term [Katanin and Kampf, 2003].

3.2.4 Resonant Inelastic X-ray Scattering

Resonant Inelastic X-ray Scattering (RIXS) is a technique made available by the improved

brilliance of X-ray radiation produced in third generation sychrotrons. The technique, similarly

to Raman scattering, is a photon-in photon-out technique but where the much higher photons

energy allows momentum transfer and is thus an angle-resolved technique. Another big

difference with Raman scattering is that the scattering event is produced by a second order

process (the resonance) not accounted for by the Fermi golden rule. In RIXS, the incoming

photon energy is tuned to an absorption edge of the sample material, that is a specific energy

which will bring a core electron to the valence shell for one of the elements in the sample.

In the context of the cuprates, the absorption edges considered are the Cu L3-edge and the

oxygen K-edge. The most successful experiments used the copper L3 edge as it allows single

magnon scattering. The RIXS process is illustrated on fig. 3.4. The incident photon creates a

copper core hole in the Cu 2p shell and an excited electron in the Cu 3d valence shell. During
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Figure 3.4 – Schematic cartoon of the RIXS second order scattering process. An incoming
photon promotes a Cu 2p core hole into the valence Cu 3d shell. During its life-time, the
core hole can exchange spin angular momentum for orbital angular momentum through
the spin-orbit interaction. A possible final state has a flipped spin in the Cu 3d valence shell
corresponding to a ∆S = 1 excitation.

its life-time the copper core hole can exchange spin angular momentum for orbital angular

momentum due to spin-orbit coupling. As a result, the core hole might decay with a valence

shell electron with opposite spin thus creating a ∆S = 1 excitation. This second order process

and the related RIXS intensity can be modeled by the Kraemer-Heisenberg formula [Forte

et al., 2008; Ament et al., 2009; Haverkort, 2010]

d 2σ

dΩdω
∼ lim
η→0+

∑
f

∣∣∣∣〈 f |T †
εo

1

ωi +Ei + iη/2−H
Tεi |i 〉

∣∣∣∣2

δ(ωi −ωo +Ei −E f ) (3.2.20)

where the εi (o) stands for the incoming (outgoing) photon polarization and Tε the optical

transition operator A ·p where A is the photon vector potential and p the electron momentum

operator. |i 〉 and | f 〉 respectively stand for the initial and final states. H is the intermediate

state Hamiltonian describing the excited system with a core-hole and excited electron pair.

Various theoretical approaches tackled the theoretical problem of giving practical estimates

for eq. 3.2.20[Forte et al., 2008; Ament et al., 2009; Haverkort, 2010; Nomura and Igarashi,

2005].

In the following, we are only interested in the magnon dispersion and not in the intensity nor

lineshape analysis of the RIXS spectrum. A typical RIXS spectrum for the Sr2CuO2Cl2 is shown

in fig. 3.5 (figure from Guarise et al. [2010]). Several energy scales are present. In the range

1.2−2.5eV are the d −d orbital excitations which are related to the octahedral crystal field.

Not shown on the left are the charge transfer excitations corresponding to creating a hole on

the oxygen 2p valence shell and a fully occupied Cu 3d valence shell. But the most interesting

energy scale for us is 0−1eV which shows a dispersing peak for q = (x,0) x ∈ [−π,π] which

we can identify with the magnon dispersion. In section 3.6 we will show various RIXS results
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which we will analyse with the theory developed below.

Figure 3.5 – RIXS spectra of the Sr2CuCl2O2 cuprate from Guarise et al. [2010]. The insert shows
the x-ray absorption spectrum which highlights the absorption edge for incident photons at
about ~ν∼ 930.8eV.

3.3 Microscopic Electronic Models

I describe here models that are the starting point of the effective theory derived below. These

models already are a drastic simplification of the physical system. The atoms position is

considered fixed to the lattice points, thus phonon physics is not considered. From all the

electronic degrees of freedom, it assumed that only the valence electrons participate in the

low-energy physics while the other electrons are left in their atomic orbital state.

3.3.1 The Hubbard model

The Hubbard model is one of the simplest microscopic model to describe electrons on a lattice.

The electrons state is written in the basis of one spin-degenerate local orbital per site. The

electrons may tunnel from adjacent sites orbital and are repelling each others whenever

two occupy the same site, therefore with opposite spins. In second quantized form, the
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Hamiltonian is:

H =−t
∑

〈i , j 〉,σ

(
c†

iσc jσ+h.c.
)
+U

∑
i

ni↑ni↓ (3.3.1)

with t the tunneling probability amplitude and U the on-site Coulomb repulsion. The model

parameters are electron filling and the ratio t/U . In this work we will only consider the half-

filled case with one electron per site. If t/U is large, then one might introduce the Coulomb

repulsion perturbatively. To zeroth order, the Hamiltonian is diagonalized simply by consider-

ing the canonical transformation:

ckσ = 1p
N

∑
i

e i Ri ·k ciσ (3.3.2)

c†
kσ = 1p

N

∑
i

e−i Ri ·k c†
iσ (3.3.3)

which leads to a metallic system with a single band:

H =∑
kσ
εk c†

kσckσ (3.3.4)

εk =− 1

2

∑
τ

tτe iτ·k (3.3.5)

where τ is the hopping translation vector. Turning on U can then be done by for instance the

Random Phase Approximation [Hirsch, 1985]. Without going so far, it is interesting to see the

case of the half-filled square lattice in the absence of Coulomb interaction. In that case the

electron dispersion relation is:

εk = 2t (cos(kx)+cos(ky)). (3.3.6)

Filling all spin-↑ and spin-↓ results in the Fermi level being at εF = 0 which results in a perfectly

nesting Fermi surface with the wave-vector Q = (π,π) (Fig. 3.6). As a result, already looking at

the non-interacting Lindhardt magnetic susceptibility:

χ0(q ,ω) = lim
δ→0

∑
k

f (εk )− f (εk+q )

~ω−εk +εk+q + iδ
(3.3.7)

we see that the system has an instability towards anti-ferromagnetic ordering since the diver-

gence of χ0(q = (π,π) indicates the linear response to an anti-ferromagnetically alternating

applied field.

We now turn to the strong coupling limit with t/U ¿ 1. In this limit, the number of Double Oc-

cupancys (DOs) defines sectors of the Hilbert space separated by the large Coulomb repulsion

energy U . Therefore at low temperature the number of double occupations should be a good

quantum number and the lowest energy subspace is obtained when there is the minimum of

DOs as permitted by the filling. The Coulomb interaction V =U
∑

i ni↑ni↓ is diagonal in this

subspace while the kinetic term K =−t
∑

〈i , j 〉,σ
(
c†

iσc jσ+h.c.
)

can be treated as a perturbation.
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Figure 3.6 – Band structure of the non-interacting Hubbard model on the square lattice. At
half-filling the Fermi surface is perfectly nesting with Q = (π,π).

If we denote |α〉 and |β〉 two states belonging to the lowest energy sector of the Hubbard model

we have:

〈α|H |β〉 = 0+〈α|K |β〉+∑
γ

〈α|K |γ〉〈γ|K |β〉
E0 −Eγ

+ . . . (3.3.8)

up to second order perturbation theory. In the case of half-filling, the first order correction

does not contribute since K |β〉 must have a DO while |α〉 has none. In the second order

correction,E0 and Eγ are the energy of the |α〉 (|β〉) and |γ〉 states in the unperturbed Hamil-

tonian V respectively. Since K necessarily creates a DO when applied on states without any

DO at half-filling, |γ〉 must have a DO to have a finite matrix element 〈γ|K |α〉 and Eγ =U . The

effective Hamiltonian up to second order perturbation theory is therefore

H (2)
eff = ∑

α,β

1

U
|α〉〈α|K 2|β〉〈β| (3.3.9)

As |α〉 and |β〉 have no DO or empty sites, this effective Hamiltonian works on the same Hilbert

space as spin operators. It can be "translated" from fermionic operators to spin operators
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giving the antiferromagnetic Heisenberg model

H (2)
eff =J

∑
〈i , j 〉

(
Si ·S j − 1

4

)
(3.3.10)

J =4t 2

U
. (3.3.11)

It is thus seen that adding the kinetic energy perturbatively will lift the degeneracy between

the different spin configurations favoring to first approximation an antiferromagnetic arrange-

ment. The reason for this is that the system can gain energy through the virtual hoppings

such as in eq. 3.3.9. But the virtual hoppings are only allowed when nearest-neighbors are of

opposite spin, due to the Pauli exclusion principle which forbids two fermions of same spin

state to occupy the same site.

Now turning to the doped case where holes are added, one can perform the same kind of

effective perturbation theory development. The first order perturbation 〈α|K ∣∣β〉
will now

contribute by exchanging an electron and a hole while the second order perturbation will gen-

erate more complex hops, the so called three-sites term. Altogether the effective Hamiltonian

of the Hubbard model in the strong coupling limit with finite doping is a t − J-like model:

H (2)
eff =− ∑

〈i , j 〉σ
PD=0

(
ti j c†

iσc jσ+h.c.
)

PD=0 + J
∑
〈i , j 〉

(
Si ·S j − 1

4
ni n j

)
− J

4

∑
j ,τ 6=τ′,σ

PD=0

(
c†

j σ̄c j σ̄c†
j+τσc j+τ′σ+ c†

j+τσ̄c j σ̄c†
jσc j+τ′σ

)
PD=0 (3.3.12)

where

PD=0 =
∏

i
(1−ni↑ni↓) (3.3.13)

is the Gutzwiller projector. This model, especially due to the presence of the Gutzwiller projec-

tion, constitutes a great theoretical challenge and is the starting point of many of the high-Tc

theoretical proposals [Lee et al., 2006].

3.3.2 The d-p model

In this model only the copper 3dx2−y2 and the oxygen 2px and 2py orbitals are considered. If

not considering overlaps between the orbitals, thus no hopping processes, the groundstate

has filled oxygen 2p orbitals and half-filled copper 3dx2−y2 orbitals (Fig. 3.7a and 3.7c). It is

highly degenerate as the half-filled copper orbital retains a spin degree of freedom. When

considering overlaps, the relative energy of the half-filled copper orbital with the filled oxygen

ones is important as it changes the nature of the lowest energy excitations. In the case where

the energy of the filled oxygen orbitals is lower than that of the half-filled copper, the lowest

energy excitation corresponds to making an electron hop from a copper site to an other,

creating a double occupancy with energy Ud (Fig. 3.7b). This is the Mott-Insulator scenario
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where the oxygen bands could simply be projected out in a further effective theory leading

to the Hubbard model (3.3.1) where the hopping amplitude t will be some function of the

copper-oxygen and oxygen-oxygen hopping amplitudes considered in the d-p model. On the

other hand, if the filled oxygen orbitals have a higher energy than the half-filled copper one by

∆p , then the lowest energy excitation corresponds to bringing an electron from the oxygen

to a neighbouring copper orbital. Relative to the previous scenario, the excitation energy

is thus Ud −∆p (Fig. 3.7d). This is the charge-transfer insulator scenario. X-ray absorption

spectroscopy [Tranquada et al., 1987] experiments showed that the cuprate materials belong

to the second case and are thus charge-transfer insulators such that the adequate effective

model is the d-p model [Zaanen et al., 1985; Emery, 1987]. Rather than looking at the electron

(a) (b) (c) (d)

Figure 3.7 – Schematics of the Mott insulator and charge transfer insulator scenario. (a):
Ground state of the Mott insulator. (b) Lowest energy excitation of the Mott insulator. The
oxygen orbital does not participate and can thus be integrated out of the model. (c) Charge
transfer insulator ground state. (d) Lowest energy excitation of the charge transfer scenario.
Compared to the direct copper-copper hop, this excitation energy is reduced by ∆p .

picture, it is also convenient to look at the hole picture on fig. 3.8. The ground state of both the

Mott insulator 3.8a and of the charge transfer insulator 3.8c have one hole per copper ion. In

the Mott insulator scenario, the lowest energy consists of putting two holes on a copper ion,

consequently creating a double occupancy of electrons on a neighbouring copper ion. In the

charge transfer scenario, the lowest energy excitation consists of putting a hole on an oxygen

ion. This leaves a doubly occupied copper ion costing an energy Ud but releases an energy

of ∆p by putting a hole on the oxygen ion. The total energy of putting a hole on the oxygen

ion from a copper one is thus ∆=Ud −∆p . Putting the energy reference at the singly occupied

copper ion, if ∆p is negative, then this is a higher energy excitation than the Mott one (Mott

scenario) but if ∆p > 0 it is lower (charge transfer scenario). The model is written in the hole

picture as:

Hd p =− td p

∑
〈i , j 〉σ

(
d †

iσp jσ+h.c.
)
− tp

∑
〈 j , j ′〉σ

(
p†

jσp j ′σ+h.c.
)
+ t ′p

∑
〈〈 j , j ′〉〉σ

(
p†

jσp j−σ+h.c.
)

+∆∑
jσ

np, jσ+Ud

∑
i

nd ,i↑nd ,i↓+Up
∑

j
np, j↑np, j↓+V

∑
〈i , j 〉

nd ,i np, j (3.3.14)

where diσ and p jσ are respectively the destruction operators of a hole with spin σ in copper

site i 3dx2−y2 orbital and oxygen site j 2px or 2py orbital, np, jσ = p†
jσp jσ counts the number
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(a) (b) (c) (d)

Figure 3.8 – Schematics of the Mott insulator and charge transfer insulator scenario in the
hole picture. (a): Ground state of the Mott insulator. (b) Lowest energy excitation of the Mott
insulator. Putting two holes on a Cu site means creating another doubly occupied site. The
oxygen orbital does not participate and can thus be integrated out of the model. (c) Charge
transfer insulator ground state. (d) Lowest energy excitation of the charge transfer scenario.
Compared to the direct copper-copper hop, this excitation energy is reduced by ∆p .

of spin σ holes on the 2px/y orbitals at site j , nd ,iσ = d †
iσdiσ the same for the copper 3dx2−y2

at site i and nd ,i = (nd ,i↑+nd ,i↓) and np,i = (np,i↑+np,i↓). Other than the constants already

defined in Fig. 3.7, we find: a 2p-orbital Coulomb repulsion Up is introduced, a neighbouring

copper and oxygen Coulomb repulsion V and the hopping amplitudes coming from the

orbitals overlap tpd , tp and t ′p (Fig. 3.9).

We now consider the strong coupling limit at half filling. This limit corresponds to Ud À tpd

Figure 3.9 – The CuO2 plane with the relevant orbitals and hopping parameters.

and Ud −∆p À tpd . In that case we can see that the state which has a double occupancy

on the copper ion and a hole on the oxygen (Fig. 3.7d) will be of high energy and should

be projected out in an effective theory. To the zeroth order, any copper spin configuration

is a groundstate. But introducing virtual hoppings in a perturbative manner in tpd /Ud and

tpd /(Ud −∆p ) leads to the following Hamiltonian which will lift the degeneracy between the
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different spin configurations [Zhang and Rice, 1988]:

H =J
∑
〈i , j 〉

Si ·S j (3.3.15)

J =
4t 4

pd

Ud −∆p +V

(
1

Ud
+ 2

2(Ud −∆p )+Up

)
(3.3.16)

which corresponds to the fourth order in perturbation series. The Hamiltonian 3.3.15, up

to a constant, is again the Heisenberg model seen previously as the strong coupling expan-

sion of the Hubbard model 3.3.10. Thus, at half-filling, the purely magnetic properties will

be independent on whether the underlying electronic model is that of a Mott Insulator or a

Charge-Transfer Insulator.

Let us now turn towards the situation where holes are doped into the system. Without con-

sidering the intra-orbital overlaps, the hole will simply go on the oxygen site. But turning on

the hopping matrix elements perturbatively will result in an effective model where the pure

doped hole on the oxygen is not the most favourable state. Zhang and Rice [Zhang and Rice,

1988] showed that rewriting this effective model using a special combination of the oxygen

2p orbitals surrounding a copper ion results in an effective magnetic interaction between the

copper ion and the surrounding oxygens. The lowest energy state diagonalizing this effective

magnetic interaction is called the Zhang-Rice singlet and can be schematically represented as

a hole delocalized between a copper ion and its four surrounding oxygen ions. Other terms

in the effective Hamiltonian written in the localized Zhang-Rice singlet basis will generate

hoppings of the local singlet across neighbouring sites, which may be equivalently regarded as

the exchange of a localized copper spin and a hole. The estimation of the hopping integral from

the d −p model parameters is quite complex [Matsukawa and Fukuyama, 1989a] such that it

may be better accounted for as a parameter which must be fixed by experiments [Tanamoto

et al., 1993]. Putting together the half-filled case and the doped case, we obtain the t − J model

H =− ∑
(i , j )σ

PD=0

(
ti j c†

iσc jσ+h.c.
)

PD=0 + J
∑
〈i , j 〉

Si ·S j (3.3.17)

where ciσ and c†
iσ are the destruction and creation operators of the localized copper spins. As

before, the operator PD=0 is the Gutzwiller projection which enforces the no double occupancy

constraint.

3.3.3 Relation between the d −p and the Hubbard model

In the Mott insulator scenario, the Hubbard model is simply the effective model one obtains

by projecting out the filled oxygen orbitals from the d −p model. But in the relevant case for

cuprates, the charge-transfer scenario, the relation between the two models is not so simple.

On the other hand, the two models, once taken in the strong coupling limit, both result in a

t − J-like model. The Hubbard model can nonetheless not be considered as an effective theory

of the d −p one. The t − J model eq. 3.3.17 and the strong coupling limit of the Heisenberg
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model differ by the two additional terms found in the latter:

J

4

∑
〈i , j 〉

ni n j (3.3.18)

and

− J

4

∑
j ,τ 6=τ′,σ

PD=0

(
c†

j σ̄c j σ̄c†
j+τσc j+τ′σ+ c†

j+τσ̄c j σ̄c†
jσc j+τ′σ

)
PD=0. (3.3.19)

At half filling the first term is a constant and the second term identically zero because of the

Gutzwiller projection. For small doping, the first term remains nearly a constant and it has

been shown by variational Monte Carlo that the second term hardly contributes [Yokoyama

and Ogata, 1996]. In this work we will thus consider the Hubbard model as a phenomenological

model. A drawback of this approach is that there is no direct link between the phenomenologi-

cal Hubbard model parameters and the d−p ones. For instance, linking the phenomenological

Hubbard model Coulomb repulsion to the d −p model parameters as determined by some

electronic measurements will prove to be difficult. In the following, we will take a simpler

approach. For instance we will mention ARPES data analysed in terms of a t − J model. To link

this analysis to a Hubbard model we will simply deduce the corresponding phenomenological

Hubbard model parameters t and U such that its strong coupling limit would result in the

same t − J model.

3.4 Effective low-energy theory

In this section we describe the development of the strong coupling effective low-energy theory

of the single band Hubbard model with an arbitrary set of hopping amplitudes tτ along τ

bonds defined as

H =− ∑
rστ

tτT̂rτσ+UV̂ (3.4.1)

T̂rτσ =c†
r+τσcrσ (3.4.2)

V̂ =∑
r

c†
r ↑cr ↑c†

r ↓cr ↓ (3.4.3)

where c†
rσ and cτσ are the creation and annihilation fermion operators. Practical choices for

the hoppings can for instance include first, second and third nearest neighbors on a square

lattice. This is the case further on when this theory will be applied for the specific case of the

cuprates. Here we develop a theory which is completely generic for any considered hoppings

on any lattice. As seen before in section 3.3.1, the strong coupling limit tτ/U ¿ 1 expresses the

fact that putting two fermions on the same site (therefore with opposite spins) costs a very

large energy due to the Coulomb repulsion U compared to the energy one gains by letting the

fermions delocalize with a bandwidth W ∼ tτ.

The number of double occupancies is given by the operator V̂ defining subspaces with very
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different energies. The Hubbard Hamiltonian in the strong coupling limit, if expressed in a

suitable basis, should thus commute with V̂ . Developing a low-energy theory for the Hubbard

model in the strong coupling limit thus only amounts to finding an approximate change of

basis Û such that the condition:[
ÛH Û †,V̂

]
= 0 (3.4.4)

is approximately fulfilled.

3.4.1 The unitary transformation

The change of basis operator Û defines the new basis states as

|α〉→|α′〉 = Û |α〉 (3.4.5)

〈α|→〈α′| = 〈α|Û †. (3.4.6)

In our case the states |α〉 are real space configurations of ↑, ↓, empty and doubly occupied

sites. A choice to enumerate them is, for instance on a two by two square lattice:∣∣∣∣∣ ↑ ↑↓
↓ −

〉
=| ↑ − ↑↓ − ↓ −− 〉 (3.4.7)

=| 1,0 1,1 0,1 0,0 〉. (3.4.8)

To be sure the transformation is isomorphic and leads to an new orthonormal basis set, we

require that

〈β′|α′〉 = 〈β|Û †Û |α〉 = δα,β (3.4.9)

which imply that the transformation Û must be unitary:

Û−1 = Û †. (3.4.10)

This is formally achieved by defining the unitary transformation in the following manner:

Û = e i Ŝ (3.4.11)

where Ŝ is a hermitian matrix. In the new basis set, the transformed Hamiltonian is then

written as

H ′ =e i ŜH e−i Ŝ (3.4.12)

=H + 1

1!

[
i Ŝ,H

]+ 1

2!

[
i Ŝ,

[
i Ŝ,H

]]+ . . . (3.4.13)
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where eq. 3.4.13 is a standard combinatorics result (proof in appendix B.1). In eq. 3.4.11-3.4.13,

i Ŝ is an unknown operator for which we ideally require that eq. 3.4.4 is fulfilled which would

mean that the transformed Hamiltonian H ′ conserves the number of double occupancies. Of

course it is doubtful we would find a way to exactly determine i Ŝ and are thus looking for an

approximation. If we suppose i Ŝ is proportional to a small parameter λ, then it might suffice

to only find an approximate transformation

Û (n) = e i Ŝ(n)
(3.4.14)

such that only the n first terms of eq. 3.4.13 do fulfill the conservation of the number of double

occupancy condition eq. 3.4.13.

In the original Hamiltonian eq. 3.4.1 it is immediatly visible that, applied on a state without

double occupancies, the kinetic term eq. 3.4.2 will create a double occupancy. To better tackle

the effect of the kinetic operator we split it in parts using the occupation number operators

nrσ =c†
rσcrσ (3.4.15)

hrσ =1−nrσ. (3.4.16)

Left- and right-mutliplying the kinetic term by respectively nr+τσ̄+hr+τσ̄ and nr σ̄+hr σ̄ results

in

T̂rτσ =T̂ 1
rτσ+ T̂ −1

rτσ+ T̂ 0
rτσ (3.4.17)

T̂ 1
rτσ =nr+τσ̄c†

r+τσcrσhr σ̄ (3.4.18)

T̂ −1
rτσ =hr+τσ̄c†

r+τσcrσnr σ̄ (3.4.19)

T̂ 0
rτσ =nr+τσ̄c†

r+τσcrσnr σ̄+hr+τσ̄c†
r+τσcrσhr σ̄. (3.4.20)

The new operators T̂ m
rτσ now have a more adequate meaning as it is easy to see that T̂ 1

rτσ

creates a double occupancy, T̂ −1
rτσ destroys one and T̂ 0

rτσ either move a double occupancy or a

hole. For instance taking σ=↑ we have:

T̂ 1
rτ↑|α〉 = T̂ 1

rτ↑
∣∣∣ . . .

r
↑ − . . .

r+τ
− ↓ . . .

〉
=εαrτσ

∣∣∣ . . . r−− . . .
r+τ
↑↓ . . .

〉
(3.4.21)

T̂ −1
rτ↑|α〉 = T̂ −1

rτ↑
∣∣∣ . . .

r
↑↓ . . . r+τ−− . . .

〉
=εαrτσ

∣∣∣ . . .
r
− ↓ . . .

r+τ
↑ − . . .

〉
(3.4.22)

T̂ 0
rτ↑|α〉 = T̂ 0

rτ↑
∣∣∣ . . .

r
↑↓ . . .

r+τ
− ↓ . . .

〉
=εαrτσ

∣∣∣ . . .
r
− ↓ . . .

r+τ
↑↓ . . .

〉
(3.4.23)

T̂ 0
rτ↑|α〉 = T̂ 0

rτ↑
∣∣∣ . . .

r
↑ − . . . r+τ−− . . .

〉
=εαrτσ

∣∣∣ . . . r−− . . .
r+τ
↑ − . . .

〉
(3.4.24)

where εαrτσ is the fermionic sign attached to the hop of a spin ↑ from site r to site r +τ
in the state |α〉. The calculation of the fermionic sign is tied to the arbitrarily chosen state

enumeration convention. Defining the index i = x(r ,σ), the fermionic sign attached to a hop
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of a fermion from state i = x(r ,σ) to j = x(r +τ,σ′) is

εαi j =(−1)Nα
i j (3.4.25)

Nα
i j =

max(i,j)−1∑
k=min(i,j)+1

〈α|c†
k ck |α〉. (3.4.26)

To ease the notations, we also define the more compact form of the hop operators

T̂ m = ∑
rτσ

tτT̂ m
rτσ (3.4.27)

and remark the following properties:[
V̂ , T̂ m]=mU T̂ m (3.4.28)(

T̂ m)† =T̂ −m . (3.4.29)

The determination of the approximate unitary transform is then performed iteratively. At order

n:

H (n) =H + [
i Ŝ(n−1),H

]+ 1

2!

[
i Ŝ(n−1),

[
i Ŝ(n−1),H

]]+ . . . (3.4.30)

such that terms that change the number of double occupancies are of order no less than

t n/U n−1 where t n is a shorthand notation for a nth order product of the various tτ hopping

amplitudes. To second order, we see that using

i Ŝ(1) = 1

U
(T 1 −T −1) (3.4.31)

will indeed result in

H (2) = V̂ + T̂ 0 + 1

U

([
T̂ 1, T̂ −1]+ [

T̂ 1, T̂ 0]+ [
T̂ 0, T̂ −1])+O (t 3/U 2) (3.4.32)

where the first terms changing the number of double occupancies are 1
U

[
T̂ 1, T̂ 0

]
and 1

U

[
T̂ 0, T̂ −1

]
.

We can further simplify this expression if considering only the subspace with the minimum

number of double occupancies allowed by the filling. If |αL〉 belongs to this lowest-energy

subspace, then

T̂ −1|αL〉 = 0 (3.4.33)

or more generally

T̂ m1 T̂ m2 . . . T̂ mk |αL〉 = 0 (3.4.34)
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if

k∑
i=1

mi < 0. (3.4.35)

Further on, if now considering specifically the half-filled case, we see that

T̂ 0|αL〉 = 0 (3.4.36)

or more generally

T̂ m1 T̂ m2 . . . T̂ mk |αL〉 ≡ 0 (3.4.37)

if

mk =0 or (3.4.38)

k∑
i=l

mi <0 ∀l ∈ {1, . . . ,k}. (3.4.39)

Applying all these simplifications, we end with

H (2) =− 1

U

(
T̂ −1T̂ 1 + T̂ 0T̂ 1) . (3.4.40)

A systematic scheme to calculate higher order approximates of i Ŝ can be devised (details in

appendix B.2) and leads to:

i Ŝ(3) = 1

U

(
T̂ 1 − T̂ −1)+ 1

U 2

([
T̂ 1, T̂ 0]− [

T̂ 0, T̂ −1])
+ 1

U 3

([
T̂ 0,

[
T̂ 0, T̂ 1]]− [

T̂ 0,
[
T̂ 0, T̂ −1]]

+ 1

4

[
T̂ 1,

[
T̂ 0, T̂ 1]]− 1

4

[
T̂ −1,

[
T̂ 0, T̂ −1]]

+2

3

[
T̂ 1,

[
T̂ 1, T̂ −1]]− 2

3

[
T̂ −1,

[
T̂ −1, T̂ 1]]) (3.4.41)

and to the effective low-energy Hamiltonian

H (4) =− 1

U
T̂ −1T̂ 1 + 1

U 2 T̂ −1T̂ 0T̂ 1

+ 1

U 3

(
T̂ −1T̂ 1T̂ −1T̂ 1 − T̂ −1T̂ 0T̂ 0T̂ 1

− T̂ −1T̂ −1T̂ 1T̂ 1/2
)

(3.4.42)

where terms of order t 4/U 3 creating one or more double occupancies have been omitted as

they will be destroyed at next order leaving the terms shown here unchanged.
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3.4.2 Effective Spin Hamiltonian

At half filling we thus obtain to t 4/U 3 order the Hamiltonian eq. 3.4.42 expressed as a sum of a

combination of hopping operators T̂ m which do not create any double occupancy. Therefore

the Hilbert space associated with eq. 3.4.42 has only the σ ∈ {↑,↓} spin- 1
2 degrees of freedom

per site. It follows that eq. 3.4.42 can be reformulated using the SU (2) invariant spin operators.

If we consider a system of N sites, the Hamiltonian eq. 3.4.42 can be represented as a 2N ×2N

matrix H in a given basis of states. The matrix itself can be seen as a superposition of matrices

with only one element:

H =∑
i j

Hi j∆i j
(
∆i j

)
kl = δi kδ j l (3.4.43)

or if we associate the matrix ∆i j to the unit vectors ~ei j of the basis spanning the complex

2N ×2N matricesΩ2N :

Ω2N = {
∆i j

}
(3.4.44)

we can equivalently write the matrix H in a vector form

~H =∑
i j

Hi j~ei j . (3.4.45)

In this language, reformulating H in terms of spin operators is identical to performing a change

of basis for ~H. Let us define the new basis of the 2N ×2N hermitian matricesΩH
2N :

ΩH
2N = {σ[m]} (3.4.46)

σ[m] =σ(1)
m1

⊗σ(2)
m2

⊗·· ·⊗σ(N )
mN

(3.4.47)

where σ(l )
ml

∈ {
1,σx ,σy ,σz

}
are the Pauli matrices plus the 2×2 identity 1 associated with the

site l spin- 1
2 degree of freedom. The unit vectors of the newΩH

2N basis can be written in the old

oneΩ2N as

~σ[m] = 1

2N /2

∑
i j

(σ[m])i j~ei j . (3.4.48)
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We can verify that the new vectors are indeed orthonormal as:

~σ[m] ·~σ[m′] = 1

2N

∑
i j

∑
i ′ j ′

(σ[m′])i ′ j ′(σ[m])∗i j~ei j ·~ei ′ j ′

= 1

2N

∑
i j

(σ[m′])i j (σ[m]) j i

= 1

2N
Tr

(
σ[m′]σ[m]

)
= 1

2N

∏
l

Tr(σ(l )
ml
σ(l )

m′
l
)

=∏
l
δml m′

l
. (3.4.49)

We can then rewrite ~H in terms of~σ[m]:

~H = 1

2N /2

∑
{m}

(
~σ[m] ·~H)

~σ[m] (3.4.50)

or in operator form,

HS = 1

2N

∑
{m}

σ[m]Tr(σ[m]H). (3.4.51)

To reformulate H (k) in terms of spin operators, we must therefore evaluate its matrix form on

a specific cluster of N sites large enough to support the different hopping processes contained

in H (k). This calculation is carried out using an exact computer implementation. To illustrate

how it works, let us study the case of the hopping process T̂ −1T̂ 0T̂ 0T̂ 1:

T̂ −1T̂ 0T̂ 0T̂ 1 = ∑
i1i2i3i4

∑
τ1τ2τ3τ4

∑
σ1,σ2,σ3,σ4

T̂ −1
i4τ4σ4

T̂ 0
i3τ3σ3

T̂ 0
i2τ2σ2

T̂ 1
i1τ1σ1

. (3.4.52)

Despite the apparent complexity from the many indices, only a very few subset of those

actually give a finite contribution. We consider the cluster of fig. 3.10 with the highlighted

spins participating an exchange process. The initial state is denoted

|α〉 =
∣∣∣∣∣ ↑ ↓
↓ ↑

〉
. (3.4.53)

Reading T̂ −1T̂ 0T̂ 0T̂ 1 from right to left we can illustrate one possible exchange process:
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Figure 3.10 – Example of a cluster with the four spins highlighted forming a closed path
through the hoppings τ1, τ2, τ3 and τ4.

T̂ −1T̂ 0T̂ 0T̂ 1

∣∣∣∣∣ ↑ ↓
↓ ↑

〉
=T̂ −1T̂ 0T̂ 0

∣∣∣∣∣ ↑↓ ↓
− ↑

〉
(3.4.54)

=T̂ −1T̂ 0

∣∣∣∣∣ ↑↓ ↓
↑ −

〉
(3.4.55)

=T̂ −1

∣∣∣∣∣ ↓ ↑↓
↑ −

〉
(3.4.56)

=
∣∣∣∣∣ ↓ ↑
↑ ↓

〉
. (3.4.57)

The last hop from eq. 3.4.56 to eq. 3.4.57, which must annihilate a double occupancy and

a hole, require that the double occupancy and the hole do not separate far enough that no

hopping is available for T̂ −1 to be able to operate. The translation vectors τi must therefore

form a closed path for the operator T̂ −1T̂ 0T̂ 0T̂ 1 to give a contribution. The complicated sum

of eq. 3.4.52 thus contains far less terms than apparent. The situation is identical for the

T̂ −1T̂ 0T̂ 1 and the T̂ −1T̂ 1 operators: they might only contribute on closed paths of three or

two sites respectively. The T̂ −1T̂ −1T̂ 1T̂ 1 and T̂ −1T̂ 1T̂ −1T̂ 1 operators on the other hand might

individually contribute on two disjoint pairs of sites. A close inspection of this situation reveals

that in that case, one can commute the T̂ m
iτσ which do not operate on the same bonds such

that the two operators are actually identical up to a combinatorial factor. In the end the sum of

their contribution in eq. 3.4.42 cancels out such that only their contributions on closed paths

remain.

Using an exact computer implementation to carry out the evaluation of H (4) on a given cluster
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in order to calculate eq. 3.4.51 finally gives the following effective spin Hamiltonian

Ĥ (4) = ∑
{ }

(
4t 2

12

U
− 16t 4

12

U 3

)(
S1S2 − 1

4

)
+ ∑

{ }4t 2
12t 2

23

U 3

(
S1S3 − 1

4

)

− ∑
{ }4t12t23t34t41

U 3

{ 4∑
i , j=1
i 6= j

Si S j −20
[

(S1S2) (S3S4)

+ (S1S4) (S2S3)− (S1S3) (S2S4)
]}

+E (4), (3.4.58)

where, following the previous discussion,
{ }

,

{ }
and

{ }
are the ensembles of

every closed loops with two, three and four sites respectively. Here we leave these ensembles

undefined as they depend on the specific lattice and hopping parameters {τ} considered. We

note that there are no three spins contributions which would come out from the operator

T̂ −1T̂ 0T̂ 1. The contribution of this operator is always null, which is non-trivial in the case of

the three site loops

{ }
. In that case for each hopping process going around the loop, one

can find another going in the other direction which will give the same contribution but with

an opposite sign of fermionic origin. We conclude this section emphasizing that eq. 3.4.58 is

the general effective spin Hamiltonian of the strong coupling Hubbard model at half filling for

any lattice and any ensemble of considered hoppings {τ}.

3.4.3 Spin operators in the effective theory

The low-energy effective theory defines a change of basis such that the number of double

occupancies is approximately conserved and it turns out the effective Hamiltonian can be

written in terms of spin operators. But these effective spin operators must not be confused

with the bare physical ones as defined in the original basis:

S̄z
i =1

2

(
c†

i↑ci↑− c†
i↓ci↓

)
(3.4.59)

S̄+
i =c†

i↑ci↓ (3.4.60)

S̄−
i =c†

i↓ci↑. (3.4.61)

In the same way as the Hamiltonian, the bare spin operators must be transposed in the new

effective basis using the formula:

S̄α(n)
i = S̄αi + [

i Ŝ(n−1), S̄αi
]+ 1

2

[
i Ŝ(n−1),

[
i Ŝ(n−1), S̄αi

]]+ . . . . (3.4.62)
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Looking at i Ŝ(3) in eq. 3.4.41, we can notice that all terms change the number of double

occupancies but on the other hand the bare spin operators do not. It follows that in eq. 3.4.62

the terms with odd power of 1/U will necessarily change the number of double occupancies so

they will not contribute in the low-energy subspace where double occupancies are forbidden.

On the other hand the even terms in 1/U will contribute so we expect a correction of order

(t/U )2. In the coming discussion, it is more useful to give the spin operator in reciprocal space

S̄αq =∑
i

e i q ·Ri S̄αi . (3.4.63)

In the effective theory this operator becomes

S̄α(4)
k = Reff(q)Sαq (3.4.64)

with the Reff(q) is a charge fluctuation renormalization factor:

Reff(q) = 1+∑
τ

(
tτ
U

)2 (
1−e i q ·τ

)
+O

(
t 4

U 4

)
(3.4.65)

3.5 Spin-Wave Theory

The previous sections were dedicated to produce a low-energy Hamiltonian for general lattices

and hopping ensembles. In this section we will restrict our discussion to the square lattice

as this development aims at fitting the magnetic excitation spectrum of the cuprate families.

While the size of the Hilbert space associated with our problem could already be dramatically

reduced by projecting out double occupancies, the spin Hamiltonian eq. 3.4.58 still is a

difficult problem. It is in fact difficult already without considering all the complicated terms

and restricting it for instance to the simple nearest neighbour Heisenberg model

H = ∑
〈i j 〉

Si ·S j , (3.5.1)

a model that has no known exact solution on 2-dimensional systems [Manousakis, 1991]. Here

we will use the overall very successful spin-wave theory to approximately diagonalize the

Heisenberg model and adapt it to the case of the more complicated effective spin Hamiltonian

eq. 3.4.58. The starting point is to note that the minimum classical energy for eq. 3.5.1 is

obtained for an antiferromagnetic arrangement of the spins hereafter referred as Néel order.

But now considering the complete effective Hamiltonian eq. 3.4.58, it is not the case for any U
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and any set of hoppings parameter. But in a situation where the nearest neighbor coupling is

dominant, there must be a region where the other parameters only affect the eigenenergies

but not the eigenstates. We therefore also start by assuming the classical groundstate of eq.

3.4.58 is the antiferromagnetic Néel order. The spin-wave theory assumes the quantum state

can be described as the classical groundstate plus zero-point quantum fluctuations [Bloch,

1930; Anderson, 1952; Kubo, 1952] and is written as an expansion in 1/S so is most justified

when S is large while we sit actually in the opposite situation with S = 1/2. We describe here

its application on the effective spin Hamiltonian eq. 3.4.58 in the case of the single and double

layer square lattice where the classical groundstate is postulated to be antiferromagnetic.

As the magnetic lattice has doubled unit cell compared to the nuclear lattice, we apply a

staggered rotation of the frame of reference around the spin y-axis:

Sx
i =e iQ·Ri S̃x

i (3.5.2)

S y
i =S̃ y

i (3.5.3)

Sz
i =e iQ·Ri S̃z

i (3.5.4)

In the case of a double layer, we proceed similarly but shift the staggered rotation by one unit

cell between the layers so they sit antiferromagnetically with respect to each others:

Sx
i 1 =e iQ·Ri S̃x

i 1 Sx
i 2 =e−iQ·Ri S̃x

i 2 (3.5.5)

S y
i 1 =S̃ y

i 1 S y
i 2 =S̃ y

i 2 (3.5.6)

Sz
i 1 =e iQ·Ri S̃z

i 1 Sz
i 2 =e−iQ·Ri S̃z

i 2 (3.5.7)

where Q = (π/a,π/a) with a the square lattice parameter and, for the spin operators Sαi l , i and

Ri index the unit cell and l ∈ {1,2} index the layers. In the staggered frame of reference the

classical ground state is now ferromagnetic. It simplifies the formalism in the following. We

further introduce the Holstein-Primakov transformation [Holstein and Primakoff, 1940]:

Sz
i l =S −a†

i l ai l (3.5.8)

S+
i l =

√
2S −a†

i l ai l ai l (3.5.9)

S−
i l =a†

i l

√
2S −a†

i l ai l . (3.5.10)

The classical ground state being ferromagnetic in the staggered frame of reference, we do

not need to introduce two species of bosons to represent the even Q ·R = 2nπ from the odd

Q ·R = (2n+1)π sites. The different terms in the effective spin Hamiltonian eq. 3.4.58 are either

quadratic or quartic products of spin operators. We develop below their formulation in terms

of spin-waves.
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3.5.1 Quadratic products of spin operators

The quadratic spin operators products in eq. 3.4.58 written in the staggered frame of reference

eq. 3.5.2-3.5.4 and 3.5.5-3.5.7 is:

Si l ·Si+τl ′ = (2ετl l ′ −1)S̃z
i l S̃z

i+τl ′ +
1

2

[
ετl l ′

(
S̃+

i l S̃−
i+τl ′ + S̃−

i l S̃+
i+τl ′

)
−ε̄τl l ′

(
S̃+

i l S̃+
i+τl ′ + S̃−

i l S̃i+τl ′
)]

(3.5.11)

where τ is a translation vector, the l and l ′ index applies to the double layer square lattice and

ετl l ′ =
1+e iQ·τ

2 l = l ′

1−e iQ·τ
2 l 6= l ′

(3.5.12)

ε̄τl l ′ =
1−e iQ·τ

2 l = l ′

1+e iQ·τ
2 l 6= l ′

. (3.5.13)

Note that the vector τ describes only translations between unit cells, not the layers. If l 6= l ′,
the τ = 0 must be included to account for the nearest neighbour inter-layer interaction.

Substituting eq. 3.5.8-3.5.10 into eq. 3.5.11 we obtain a power series of terms in S:

Si l ·Si+τl ′ = S2
[

(Si l ·Si+τl ′)
(0) + 1

S
(Si l ·Si+τl ′)

(1)

+ 1

S2 (Si l ·Si+τl ′)
(2) +O

(
1

S3

)]
(3.5.14)

where we kept only terms up to 1
S2 in the above notation. We find

(Si l ·Si+τl ′)
(0) = (2ετl l ′ −1), (3.5.15)

(Si l ·Si+τl ′)
(1) =(1−2ετl l ′)(a†

i l ai l +a†
i+τl ′ai+τl ′)

+2ετl l ′(a†
i+τl ′ai l +a†

i l ai+τl ′)

−2ε̄τl l ′(ai l ai+τl ′ +a†
i l a†

i+τl ′) (3.5.16)

and

(Si l ·Si+τl ′)
(2) = (2ετl l ′ −1)ni l ni+τl ′ − 1

4

[
ετl l ′

(
a†

i l (ni l +ni+τl ′)ai+τl ′

+a†
i+τl ′(ni l +ni+τl ′)ai l

)
+ε̄τl l ′ ((ni l +ni+τl ′)ai l ai+τl ′

+a†
i l a†

i+τl ′(ni l +ni+τl ′)
)]

.

(3.5.17)
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We then proceed by doing a Fourier transform. We use

ai l =
1p
N

∑
k

e i k ·Ri ak (3.5.18)

a†
i l =

1p
N

∑
k

e i−i k ·Ri a†
k . (3.5.19)

The quadratic part eq. 3.5.16 becomes:

∑
i

(Si l ·Si+τl ′)
(1) =∑

k

∑
m,m′∈{l ,l ′}

(
Aτl l ′

k

)
mm′ a†

k(m)ak(m′)+
1

2

(
Bτl l ′

k

)
mm′

(
a†

km a†
−km′ +akm a−km′

)
(3.5.20)

with

Aτl l ′
k =Jτl l ′

(
2(1−2ετl l ′)+δl l ′ετl l ′cos(kτ) (1−δl l ′)ετl l ′cos(kτ)

(1−δl l ′)ετl l ′cos(kτ) 2(1−2ετl l ′)+δl l ′ετl l ′cos(kτ)

)
(3.5.21)

Bτl l ′
k =− Jτl l ′

(
2δl l ′ ε̄τl l ′cos(kτ) 2(1−δl l ′)ε̄τl l ′cos(kτ)

(1−δl l ′)ε̄τl l ′cos(kτ) 2δl l ′ ε̄τl l ′cos(kτ)

)
. (3.5.22)

In the monolayer case, the above formulas are still valid simply by considering only the
(

Aτ11
k

)
11

and
(
Bτ11

k

)
11

or equivalently by letting Jτl 6=l ′ = 0 such that the two layers are non-interacting.

3.5.2 Quartic products of spin operators

We treat in a similar way the quartic terms, but will keep only the terms quadratic in the boson

operators. Doing so we carry out the following approximation:

(Si ·Si+τ1 )(Si+τ2 ·Si+τ3 ) 'S4
(
(Si ·Si+τ1 )(0)(Si+τ2 ·Si+τ3 )(0)

+1

S

(
(Si ·Si+τ1 )(1)(Si+τ2 ·Si+τ3 )(0)

+(Si ·Si+τ1 )(0)(Si+τ2 ·Si+τ3 )(1))+O

(
1

S2

))
(3.5.23)

so one can use the formulas found for the case of the quadratic products of spin operators.

3.5.3 Effective Spin Hamiltonian in the spin-wave approximation

We finally sum up all quadratic and quartic products of spin operators to find a Hamiltonian

that has the following form:

H (4) ' H (0)
SW +H (1)

SW +H (2)
SW (3.5.24)
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where H (0)
SW is a constant, H (1)

SW has only terms quadratic in the boson operators and H (2)
SW has

quartic boson terms. Let us here discuss in what limit exactly the above expansion is justified.

Unlike the simple Heisenberg model case where only quadratic products of spin operators

must be considered, the limit here cannot be expressed only as a 1
S one. We actually work in a

mixed 1
S and t

U limit. If we denote [aa] and [aaaa] the terms quadratic and quartic in boson

operators respectively, we chose to only consider the following terms:

H (4) ' t 2

U
S2

(
Et 2/U + 1

S
[aa]+ 1

S2 [aaaa]

)
+O

(
t 2

U

1

S

)
t 4

U 3 S4
(
Et 4/U 3 + 1

S
[aa]

)
+O

(
t 4

U 3 S2
)

(3.5.25)

so we effectively work in a mixed limit where t 2

U S and t 4S2

U 3 are expected to be small enough

parameters to be neglected. Using the formalism developed before, we can then write the

following quadratic bosonic Hamiltonian

H (2)
SW =∑

k

∑
mm′

(Ak )mm′
(
a†

km akm′ +a†
km′akm

)
+ 1

2
(Bk )mm′

(
a†

km a†
−km′ +akm a−km′

)
(3.5.26)

where the matrices Ak and Bk are complicated sums over the ensembles of two-, three- and

four-sites closed loops as in eq. 3.4.58. We give the full expressions in the appendix B.3.

3.5.4 Bogoliubov transformation

We diagonalize eq. 3.5.26 using a Bogoliubov transformation. Defining the quasi-particle

operators:

bkn =∑
l

ul
kn akl + v l

kn a†
−kl (3.5.27)

we want ukl and vkl such that the quadratic Hamiltonian can be written as

H (2)
SW = ∑

k ,n
ωknb†

knbkn + 1

2

∑
k ,n

ωkn − 1

2

∑
k ,l

Akl l . (3.5.28)

In the case of a single layer, the index n is unnecessary. In the bilayer case, n ∈ {a, s} will index

the so-called symmetric and anti-symmetric modes. It follows from eq. 3.5.28 that we must

have [
H (2)

SW ,bkn

]
=−ωknbkn . (3.5.29)
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Carrying out the commutator, we arrive at the eigenproblem(
Ak −Bk

Bk −Ak

)(
ukn

vkn

)
=ωkn

(
ukn

vkn

)
(3.5.30)

where Ak and Bk are 2×2 real matrices for the bilayer case and real numbers in the case of a

single layer. The ukn and vkn are defined in a similar way as

ukn =
(

u1
kn

u2
kn

)
(3.5.31)

vkn =
(

v1
kn

v2
kn

)
(3.5.32)

(3.5.33)

for the bilayer case and are simply real numbers in the single layer case. In the single layer

case, we get the familiar result

ωk =
√

A2
k −B 2

k (3.5.34)

and

uk =
√

1

2

(
Ak

ω
+1

)
(3.5.35)

vk =sign(Bk )

√
1

2

(
Ak

ω
−1

)
(3.5.36)

and for the bilayer case

ωk s =
√

(Ak11 + Ak12)2 − (Bk11 +Bk12)2 (3.5.37)

ωk a =
√

(Ak11 − Ak12)2 − (Bk11 −Bk12)2 (3.5.38)

and

u1
k s = u2

k s =
1

2

√
A11

k + A12
k

2
+1 (3.5.39)

v1
k s = v2

k s =
1

2
sign

(
B 11

k +B 12
k

)√ A11
k + A12

k

2
−1 (3.5.40)

u1
k a =−u2

k a =1

2

√
A11

k − A12
k

2
+1 (3.5.41)

v1
k a =−v2

k a =1

2
sign

(
B 11

k −B 12
k

)√ A11
k − A12

k

2
−1 (3.5.42)
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3.5.5 First 1
S quantum correction

Here we treat the first 1
S corrections to the spin-wave solution. So far we only diagonalized the

quadratic part of the spin-wave Hamiltonian allowing us to write it down as a sum of the non-

interacting magnon quasiparticles energies. We will only consider the correction coming from

magnon-magnon interaction of order t 2

U S0 in eq. 3.5.14. Also we do not calculate the quantum

corrections coming from the interlayer magnetic couplings. While they can in principle be

calculated simply as shown below, they will bring very little contribution considering the

small magnitude of the interlayer coupling in the bilayer material that will be considered. A

rough estimate brings J⊥/J ∼ 2% as discussed on page 3.6.2. The quartic part of the spin-wave

Hamiltonian is thus

H (4)
SW =1

2

∑
i

∑
τ

4t 2
τ

U
(2ετ−1)ni ni+τ

− 1

4

[
ετ

(
a†

i (ni +ni+τ)ai+τ+a†
i+τ(ni +ni+τ)ai

)
+ ε̄τ

(
(ni +ni+τ)ai ai+τ+a†

i a†
i+τ(ni +ni+τ)

)]
(3.5.43)

which describes magnon-magnon interactions. The layer index has been dropped as we do

not consider interlayer couplings. We will treat it through a Hartree Fock procedure. We start

by defining the mean fields:

n =〈a†
i ai 〉 (3.5.44)

δ=〈ai ai 〉 = 〈a†
i a†

i 〉 (3.5.45)

tτ =〈a†
i ai+τ〉 = 〈a†

i+τai 〉 (3.5.46)

∆τ =〈ai ai+τ〉 = 〈a†
i a†

i+τ〉. (3.5.47)

Using those mean fields we can decouple the quartic term in eq. 3.5.43. We give as an example

the mean field decoupling of the quartic term ni ni+τ:

1

2

∑
i

∑
τ

ni ni+τ '
∑

i

∑
τ

n(a†
i ai +a†

i+τai+τ)

+ tτ(a†
i ai+τ+a†

i+τai )

+∆τ(a†
i a†

i+τ+ai ai+τ) (3.5.48)

and by inserting the Fourier transform of the boson operators ai we obtain

1

2

∑
i

∑
τ

ni ni+τ '
∑
τ

∑
k

2(n + tτcos(kτ)) a†
k ak +∆τcos(kτ)

(
a†

k a†
−k +ak a−k

)
. (3.5.49)

In principle this just defines a correction to the quadratic Hamiltonian so one could write down

mean-field self-consistent equations and use some iterative procedure to find self-consistent

mean fields. We don’t go so far here and only evaluate the mean fields on the unperturbed
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quadratic Hamiltonian. For the monolayer case we obtain:

n =∑
k

v2
k (3.5.50)

δ=∑
k

uk vk (3.5.51)

tτ =
∑
k

cos(kτ)v2
k (3.5.52)

∆τ =
∑
k

cos(kτ)uk vk (3.5.53)

Where uk and vk are the Bogoliubov coefficients from the unperturbed Hamiltonian H (2)
SW eq.

3.5.26. For the bilayer case we have:

n =∑
k

v2
k s + v2

k a (3.5.54)

δ=∑
k

uk a vk a +uk s vk s (3.5.55)

tτ =
∑
k

cos(kτ)i
(
v2

k a + v2
k s

)
(3.5.56)

∆τ =
∑
k

cos(kτ) (uk a vk a +uk s vk s) (3.5.57)

where ukb = u1
kb and vkb = v1

kb to shorten notations. The mean fields then define corrections

to the quadratic Hamiltonian which we give here:

d Ak =∑
τ

Jτετ(tτ−n)cos(kτ)

+ ε̄τ
[

(∆τ−n)

(
δ

2
− tτ

)
cos(kτ)

]
(3.5.58)

dBk =1

2

∑
τ

Jτετ

(
−∆τ

2
+

(
∆τ− δ

2

)
cos(kτ)

)
+ ε̄τ

(
(n −∆τ)cos(kτ)+ tτ

2

)
. (3.5.59)

Inserting these corrections to the eigen-energies finally gives the first order quantum correc-

tions. For instance for the single layer case:

ω̃k =
√

(A2
k +d Ak )− (Bk +dBk )2 'ωk

(
1+ Ak d Ak −Bk dBk

ω2
k

)
︸ ︷︷ ︸

Zc

(3.5.60)
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where ωk is the bare dispersion obtained from eq. 3.5.26. For the bilayer case we obtain:

ω̃k s 'ωk s

Z s
c︷ ︸︸ ︷(

1+
(

A11
k + A12

k

)
d Ak − (

B 11
k +B 12

k

)
dBk

ω2
k s

)
(3.5.61)

ω̃k a 'ωk a

(
1+

(
A11

k − A12
k

)
d Ak − (

B 11
k −B 12

k

)
dBk

ω2
k a

)
︸ ︷︷ ︸

Z a
c

. (3.5.62)

For the single layer square lattice nearest neighbour Heisenberg model, it turns out this

quantum renormalization is uniform (k-independent) with a value of Zc = 1.15.

3.5.6 Extracted physical quantities

We review here a few physical quantities that can be extracted from the above calculation

and confronted with experimental result. To exemplify, we show what these quantities are in

the case of the simple square lattice Heisenberg model with nearest neighbour interaction J

only. The first obvious quantity is the dispersion relation which will relate the momentum of a

spin-wave with its energy. Applying the formalism developed above, we obtain

ωk = 2J

√
1− 1

4

(
cos(kx )+cos(ky )

)2. (3.5.63)

This dispersion has a maximum energy of 2J along the magnetic zone boundary k = (π/2+
z,π/2− z) z ∈ [0,π/2] which is further uniformly renormalized by the first 1

S quantum correc-

tions by approximately Zc = 1.15. Gapless modes appear at k = (0,0) and k = (π,π) due to the

spontaneously broken spin rotational symmetry. The dispersion can be measured through

experiments such as inelastic neutron scattering or resonant x-ray scattering. In both cases

for each k , the mode in the dispersion will appear through a scattering event with some

probability amplitude which experimentally corresponds to a measured signal intensity. In

the case of INS, the signal is a functional of the dynamical spin structure factor which, at zero

temperature, is:

S(q ,ω) =∑
λ

〈0|S−
q |λ〉〈λ|S+

q |0〉δ(ω+E0 −Eλ) (3.5.64)

where |0〉 is the ground state and |λ〉 are all the intermediate excited states. In our case |0〉 is

the vacuum for the spin-waves quasiparticle operator bk and, to a first approximation, the

|λ〉 = b†
k |0〉 are excited states where a single spin-wave has been created by the spin raising

operator.

An important remark is that this spin operator is written in the physical basis, not in the

effective spin basis! As seen previously in section 3.4.3, this implies that in the effective spin
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basis this operator is renormalized with a q-dependent weight eq. 3.4.64:

S̄α(4)
k = Sαq

[
1−∑

τ

(
tτ
U

)2 (
1−e i q ·τ

)]
+O

(
t 4

U 4

)
. (3.5.65)

In the above formula, the operators Sαq now are the effective ones from which we derived the

spin-wave theory. We can thus rewrite those in terms of the spin-wave operators bk :

S+
q = 1

2

(
(uk + vk )(bk −b†

−k )+ (uk+Q − vk+Q )(bk+Q +b†
−k−Q )

)
. (3.5.66)

Putting everything together one gets the dynamical structure factor:

S(q ,ω) = 1

4
(uq + vq )2

[
1−4

t 2

U 2

(
1− 1

2

(
cos(qx )+cos(qy )

))]2

δ(ω−ωq ). (3.5.67)

Physically, the renormalization is due to the charge fluctuations of the Hubbard model which

we integrate perturbatively in our effective theory. It is thus not surprising that a measured

magnetic signal will be weakened by these fluctuations as empty and doubly occupied sites

have zero spin and thus cannot couple to a magnetic probe such as INS. An important aspect

linked to the discussion in the thesis chapter 2 is that this renormalization is constant along the

magnetic zone boundary. We show on fig. 3.11 the dispersion and intensity of the spin-waves

along the high-symetry directions of the Brillouin zone. In the case of a bilayer square lattice

Figure 3.11 – Example of the spin-wave dispersion and intensity for the square lattice Heisen-
berg antiferromagnet. Y-axis on the left is for energy and y-axis on the right for intensity.
Intensity comes as the familiar spin-wave result Iq ∼ (uq +vq )2 (dotted line) and the physically
more relevent one where the intensity is renormalized by the Hubbard model charge fluctua-
tions (solid line) as given in eq. 3.5.67. In this example we have used a too large ratio t/U = 1/5
so that the renormalization is graphically obvious. A more reasonable ratio for cuprates would
be t/U ∼ 1/10, implying a maximum reduction at q = (π,π) of 15% of the intensity.
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Heisenberg model, the same calculation leads to:

S(q ,ω) =(
uq s + vq s

)2 cos2(qb)δ(ω−ωq s)

+ (
uq a + vq a

)2 sin2(qb)δ(ω−ωq a) (3.5.68)

where now for single q momentum one finds the symmetric and anti-symmetric modes, b

is the translation vector between the two layers. For simplicity we dropped here the charge

fluctuations renormalization as the effect is small and essentially identical to the monolayer

case. The two modes respective intensity is modulated with the perpendicular component of

q as qb ∼ qz . Each mode is either gapped at (0,0) or (π,π) and the two are perfectly degenerate

along the magnetic zone boundary. By interchanging the modes definition if inside or outside

of the magnetic Brillouin zone, we would obtain the more familiar acoustic (gapless at (0,0)

and (π,π)) and optical (gapped) modes. We give a representation of the modes with equal

out of plane and in-plane couplings J⊥ = J on fig. 3.12. Another important quantity is the

Figure 3.12 – Example of the spin-wave dispersion and intensity for the bilayer square lattice
Heisenberg antiferromagnet with equal out of plane and in-plane coupling J⊥ = J . Y-axis on
the right is for energy and y-axis on the left for intensity.
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zero-temperature staggered magnetization:

S̄z
Q =∑

i
(−1)i 〈0|S̄z

i |0〉. (3.5.69)

Again we must be careful to identify that in the above equation the spin operators are the

physical ones defined in the Hubbard basis. In terms of the effective spin operators we get:

S̄z
Q = Sz

Q

(
1−8

t 2

U 2

)
(3.5.70)

Formulating this in term of spin-waves operators and calculating the zero-temperature average

gives

〈0|S̄z
Q |0〉 =

(
S − 1

N

∑
k

v2
k

)(
1−8

t 2

U 2

)
. (3.5.71)

Considering the spin-waves fluctuations only, the staggered magnetization is reduced by 40%

for spin- 1
2 . For a ratio of t/U = 1/10, the charge fluctuations would further reduce it by 8%.

Finally, it is interesting to take a closer look at these charge fluctuations directly which could

be quantified by the average number of double occupancies. Using the Hellmann-Feynman

theorem [Feynman, 1939], we would have for the Hubbard model:

〈GS|ni↑ni↓|GS〉 = d

dU
〈GS|HHub|GS〉 (3.5.72)

It means that in our effective theory, taking the derivative of the ground state energy would

give an approximate of 〈ni↑ni↓〉. The ground state energy has many contributions coming from

the effective low-energy derivation and the spin-waves approximation. But in the case of the

Heisenberg Hamiltonian with J = 4t 2/U , all these contributions are of order t 2/U . It follows

that the density of double occupancies will be proportional to t 2/U 2 which is consistently the

same dependence we found for the charge fluctuation renormalization factor.

3.6 Comparison to experimental data

In this section we will confront the various quantities extracted in section 3.5.6 with experi-

mental results when available. We will focus on the three compounds LCO,SCOC and BSYCO,

the first two being monolayers cuprates and the third a bilayer cuprate. We first review the

quantities in section 3.5.6.

– Magnon dispersion: ωk is one of the most accessible properties for spectroscopic probes.

In fact the data quality is such that a systematic fit with the theory will results in strong

constraints on the model parameters. The other quantities can thus in a later step be

evaluated and compared to experiments when possible.

– Magnon intensity: For INS, the magnon intensity is very well known experimentally and

theoretically. Below we will therefore give our predicted magnon intensity and compare it to
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available INS data which we only have for La2CuO4. For the other compounds, we do have a

RIXS experimental magnon intensity. The issue is then that it is much more complicated to

obtain a theoretical RIXS cross-section prediction [Nomura and Igarashi, 2005; Forte et al.,

2008; Ament et al., 2009; Haverkort, 2010] and we did not pursue that direction.

– Staggered magnetization: In a neutron diffraction experiment, magnetic diffraction peaks

will show up with an intensity which scale quadratic with the local magnetic ordered mo-

ments. This could in principle provide an experimental estimate of the staggered magneti-

zation with the magnetic diffraction peak intensity I (Q) taken as:

I (Q) ∼ 〈Sz
Q〉2. (3.6.1)

However two difficulties arise. First the antiferromagnetic neutron diffraction peak really

measures

I (Q) ∝〈Sz
−Q Sz

Q〉 (3.6.2)

which in the spin-wave formulation is

〈Sz
−Q Sz

Q〉 = S2 −2S〈a†
i ai 〉+ 1

N 2

∑
i j
〈a†

i ai a†
j a j 〉. (3.6.3)

It follows then that eq. 3.6.1 corresponds to the naive decoupling 〈a†
i ai a†

j a j 〉 ∼ 〈a†
i ai 〉〈a†

j a j 〉
which overlooks two-magnon contributions such as 〈0|b−k bk b†

k ′b
†
−k ′ |0〉. Experimentally

a probably more important difficulty is that the proportionality constant in eq. 3.6.1 is

not trivial to determine accurately as it will depend on many details of the experimental

setup. A possibility would be to apply a magnetic field large enough to reach a saturated

ferromagnetic state where quantum and thermal fluctuations could be neglected. This has

been done for instance to establish an experimental absolute scale for the 1D spin chain

material CuSO4·5D2O [Mourigal et al., 2013] using a reasonable field of 5T. However this is

in practice impossible to reproduce in the 2D cuprate materials as the very large nearest-

neighbour interaction J ∼ 140meV is three orders of magnitude stronger than the one in

CuSO4·5D2O and would require an enormous magnetic field of thousands of Tesla. Other

possibilities are to carefully calibrate the instrument on some known material or compare

the magnetic Bragg peaks to the nuclear peak. Furthermore it will be also important to

include the charge fluctuations as in eq. 3.5.71.

– The charge fluctuations: The charge fluctuations 〈ni↑ni↓〉 can in principle be measured

using the neutron scattering sum rule:

∑
α∈{x,y,z}

∫
d qdωSαα(q ,ω) = N S(S +1), (3.6.4)

which is an exact result. But the charge fluctuation will reduce this sum rule as some fraction

of the sites are either doubly occupied or empty. Measuring the integrated cross-section thus

allows to determine the size of the charge fluctuations as those will reduce the effective total
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spin. The charge fluctuations have been calculated to be about 〈ni↑n j↓〉 ' 5%[Lorenzana

et al., 2005] in agreement with measurements [Walters et al., 2009].

As enlightened by ARPES measurements analysis [Tohyama and Maekawa, 2000], the single

hole dynamics must be described using a t − t ′− t ′′− J model. While this model originate from

the strong coupling expansion of the d-p model, it can also be related back to a more simple

phenomenological t − t ′− t ′′−U Hubbard model whose strong coupling expansion would

be equivalent (see section 3.3.3). In order to be able to relate back to the ARPES electronic

spectra from the measured magnetic spectra, we choose to consider the {t , t ′, t ′′} hopping

amplitude as given on fig. 3.13 which in turn defines the set of exchange plaquettes leading

to the effective spin Hamiltonian eq. 3.4.58. Some examples of plaquettes are shown on fig.

3.13. In the case of the bilayer system, we also add a perpendicular hopping t⊥ to the hopping

ensemble. These rather extended hopping ensembles generate a large number of exchange

plaquettes which are determined along with their spin-wave contribution in a systematic

way using a computer implementation of the problem. Indeed for the {t , t ′, t ′′} ensemblse,

there are 126 exchange plaquettes to consider and 145 for the {t , t ′, t ′′, t⊥} ensemble! Using the

formalism developed above, we generate an analytical expression of the magnon dispersion

with first order 1/S quantum corrections. This analytical expression is parametrized by the

hopping parameters and the Coulomb repulsion and is translated in the C programming

language in order to provide a fast evaluation mechanism for given wave-vector q and model

parameters {t , t ′, t ′′, (t⊥),U }.

Figure 3.13 – The CuO2 plane with the t , t ′ and t ′′ hopping amplitudes and a few examples of
the plaquettes exchange loops that enters the effective spin Hamiltonian eq. 3.4.58.

3.6.1 Experimental data

We give a quick overview of the experimental data that will be used to fit our theory.
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3.6. Comparison to experimental data

La2CuO4

Measured by Inelastic Neutron Scattering [Coldea et al., 2001a], this material is famous for

providing a strong support for the cyclic ring exchange relevance for the measured magnetic

spectrum. Indeed the data evidenced a large magnetic zone boundary dispersion of about

20meV which could be fitted to the effective spin Hamiltonian eq. 3.4.58 where only the nearest-

neighbour t is considered. A more recent measurement [Headings et al., 2010] (reproduced

on fig. 3.14 bottom panel) also highlighted an anomalous intensity reduction at q = (π,0)

compared to q = (π/2,π/2).

Sr2CuO2Cl2

In collaboration with Prof. Grioni’s group (Laboratory of Photoelectron Spectroscopy, EPFL)

we measured the RIXS magnetic spectrum of this material and extracted the magnon disper-

sion [Guarise et al., 2010; Guarise, 2012]. The experiment was carried out at the Swiss Light

Source ADRESS beamline using the RIXS instrument SAXES. As RIXS will not only pick up

single magnon but also two-magnons and in principle further order multi-magnon excitations,

the dispersion relation is extracted through an analysis of the spectral lineshape (details avail-

able in Marco Guarise’s PhD thesis [Guarise, 2012]). We reproduce here the extracted magnon

dispersion on fig. 3.14 middle panel. Along the magnetic zone-boundary, the dispersion is even

more pronounced than in La2CuO4 (LCO) with a 70meV between q = (π,0) and q = (π/2,π/2).

Bi2Sr2YCu2O8

Lastly we also measured in collaboration with Prof. Grioni’s group this bilayer cuprate com-

pound on the SAXES spectrometer. The same lineshape analysis provides the magnon dis-

persion. As Bi2Sr2YCu2O8 (BSYCO) has two coupled CuO planes, the spectrum should show

two magnon modes: an acoustic mode and an optical one as discussed in section 3.5.6 and

plotted on fig. 3.12. However the two modes will clearly separate with a finite intensity only

at q = (π,π) which we cannot measure due to the momentum transfer restrictions of the soft

x-ray radiation needed for copper L3 edge RIXS. Elsewhere the two modes lie very close to each

others and the SAXES RIXS energy resolution of 130meV could not resolve them separately.

We show on fig. 3.14 top panel the obtained dispersion which we can experimentally consider

as a nearly doubly degenerate magnon mode.

3.6.2 Fitting procedure

The spin-wave expansion of the effective spin Hamiltonian eq. 3.4.58 with the first 1/S quan-

tum corrections provides the magnon dispersion

ω(q) = Zc (q)ω0(q) (3.6.5)
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Figure 3.14 – Experimentally measured magnon dispersion relations. Top: BSYCO measured by
RIXS[Dalla Piazza et al., 2012], middle: SCOC measured by RIXS[Guarise et al., 2010], bottom:
LCO measured by INS[Headings et al., 2010] shifted by (π,π). Dashed lines are the magnon
dispersion of the simple Heisenberg model with J adjusted such that the q = (π/2,π/2) energy
matches experiments.
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parametrized by the Hubbard model parameters {t , t ′, t ′′, (t⊥),U }. It can simply be fitted using

a least-square minimization algorithm. However the quantum renormalization Zc (q) contains

the integrals 3.5.50-3.5.53 which are computationally demanding. To reduce the computa-

tional expense of the quantum renormalization, we apply a two-step fitting procedure:

1. Set Zc (q) = 1.156, the first order q-independant 1/S quantum correction.

2. Fit the experimental data against the {t/U , t ′/t , t ′′/t , (t⊥),U } parameter set using the

dispersion formula eq. 3.6.5.

3. With the obtained parameter set {t/U , t ′/t , t ′′/t , (t⊥),U }, calculate the quantum renor-

malization by numerical evaluation of the integrals 3.5.50-3.5.53.

4. Compare the newly obtained Zc (q) to the old one. If the difference is smaller than a

given threshold, the fit is said to be converged. If not go back to 2 using the new Zc (q).

Looking at the various dispersions, it can be seen that the fit is under-constraint. One can

indeed only identify three independent features in the measured magnon dispersions: The

energy at q = (π,0), the energy at q = (π/2,π/2) and the linear branch slopes at q = (0,0) or

q = (π,π). In the bilayer case, a fourth constraint would be the bilayer splitting at q = (0,0) or

q = (π,π) if available. For BSYCO, as the measured RIXS spectrum cannot resolve the bilayer

splitting, we use the value t⊥ = 54meV as determined by ARPES[Chuang et al., 2004]. Using

this value, it is usefull to give a rough estimate of the respective magnitude of the nearest

neighbour coupling and the intralayer one. Taking J ∼ 0.14eV and U ∼ 3.5eV from the ARPES

estimate for SCOC [Tohyama and Maekawa, 2000] and assuming J⊥ = 4t 2
⊥/U gives J⊥/J ∼ 2%.

It is thus expected that the interlayer coupling will bring little contribution to the spin-wave

dispersion and very little bilayer splitting.

Counting the number of independent model parameters we see that in the monolayers and

bilayer there are four and five respectively while the independent features are only three and

four. It follows that one should expect the solutions space to be one-dimensional in parameter

space. We choose to set up the fitting procedure such that this line of solutions will be a

function of the Coulomb repulsion U . To do so, we first reformulate the model parameters as

{t/U , t ′/t , t ′′/t ,U }. We then define a plane of (t ′′/t ,U ) pairs and, for each one of those, fit the

two other parameters t/U and t ′/t . The fit result might be dependent of the starting guess for

the fitted parameters (t/U )0 and (t ′/t )0 and even completely fail if those are not reasonable.

To avoid this issue we choose (t/U )0 such that it reproduce the correct energy scale for the

q = (π/2,π/2) magnon energy that is it must satisfy

ω(π/2,π/2) ' 8

(
t

U

)2

U . (3.6.6)

The starting parameter (t ′/t )0 is considered as a correction and is chosen small. However we

found than its sign with respect to t ′′ is important and thus performed the fit for both t ′t ′′ > 0

and t ′t ′′ < 0, keeping the best solution. We then obtain χ2(t ′′/t ,U ) which quantifies the quality

of the fit for each (t ′′/t ,U ) pairs. We will show that inspecting the function χ2(t ′′/t ,U ) will

allow to determine the solutions line as a function of U .
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3.6.3 Fitting results

For brevity, we show below only the fitting results for SCOC. The BSYCO and LCO fitting results

can be found in appendices B.4 and B.5. Performing the fitting procedure, we obtain the

following quantities as a function of t ′′/t and U :

– χ2(t ′′/t ,U ) quantifying the fit quality.

– t
U (t ′′/t ,U ) and

– t ′
t (t ′′/t ,U ) the fitted parameters.

– S−〈a†a〉
S (t ′′/t ,U ) the reduced staggered magnetization,

– 〈ni↑ni↓〉(t ′′/t ,U ) the double occupation density,

– Z c (t ′′/t ,U ) = 1
ΩBZ

∫
d q Zc (q , t ′′/t ,U ) the average first 1/S quantum correction and

– σ2
Zc

= 1
ΩBZ

∫
d q(Zc (q , t ′′/t ,U )−Z c (t ′′/t ,U ))2 its variance on the Brillouin zone.

We plot the fit qualityχ2(t ′′/t ,U ) on fig. 3.15. There is an obvious mirror symmetry between the

t ′′/t > 0 and the t ′′/t < 0. It is easily explained as follow: In the magnon dispersion the magnetic

exchange energies are either of the form t 2
i /U or t1t2t3t4/U 3 where the electronic exchanges

ti form a closed loop. In the first case the sign of ti is obviously irrelevant for the magnon

energy. In the second case we note that t causes an electronic exchange between the ↑ and the

↓ sublattice while t ′ and t ′′ associate exchange stays on the same sublattice. Consequently,

if t is present in a given term, it must be of a even power as one needs an even number of

nearest neighbour hoppings to come back on the starting point sublattice. The sign of t is thus

arbitrary explaining fig. 3.15 symmetry. We point out however that the relative signs of t ′ and

t ′′ are not arbitrary because of terms proportional to t 2t ′t ′′/U 3. For some choices of (t ′′/t ,U )

pairs, the fit will completely fail either because varying t/U and t ′/t cannot bring a good

magnon dispersion or even because for such parameters the spin-wave approach simply fails.

This is the case when t ′/t and t ′′/t are so large that the frustration induced by the magnetic

couplings destroys the long-range Néel order invalidating the fundamental assumption of the

spin-wave approach. These areas a marked on fig. 3.15 in dark red. Elsewhere on the (t ′′/t ,U )

plane, a reasonable fit can be obtained. One clearly sees on fig. 3.15 two distinct valleys of

good χ2 solutions. Discarding the mirrored solutions, for a given U one can find two best fit

solutions defining two (t ′′/t ,U ) best fit lines shown by the white markers on fig. 3.15. The

value of χ2 along these best fit lines strongly constrains U > 2eV as seen on fig. 3.16 top panel.

Looking at the value of the fitted parameters t ′/t and t/U along these best fit lines, we see that

the inner line solution corresponds to the t ′t ′′ < 0 solution while the outer line corresponds to

the t ′t ′′ > 0 solution. We show the evolution of the fitted parameter solutions as a function of

U on fig. 3.16. For both t ′t ′′ < 0 and t ′t ′′ > 0 solutions, the ratio t/U decreases monotonously

from t/U ∼ 0.18 to t/U ∼ 0.1 for greater U ’s while the other parameter amplitudes t ′/t and

t ′′/t increase. For each choice of U in the range allowed by fig. 3.16 top panel, a magnon

dispersion can be drawn. We plot several of the obtained dispersions on fig. 3.17 along with

the original experimental data. Compared to the spin-wave solution of the simple Heisenberg

model with J adjusted such that ω(π/2,π/2) = 2J (dashed grey line on fig. 3.17), our solution

obviously better matches the ω(π,0) energy as well as the magnon branches slope at q = (0,0)

or q = (π,π) which should not come as a surprise given the large number of fitting parameters.
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Figure 3.15 – Color map of the fit quality as a function of U and t ′′/t . In the outer dark red
regions the parameters are such that the spin-wave approach fails indicating the breakdown
of the long-ranged Néel order hypothesis. In the central area of the displayed (t ′′/t ,U ) plane,
the spin-wave approach does bring a meaningful solution which results in a good fit quality.
In particular, two distinct valleys of best fit solutions can be followed as a function of U .
Inspecting the resulting (t/U , t ′/t ) fitted parameters, we see the inner solution corresponds to
t ′t ′′ < 0 and the outer one to (t ′t ′′ > 0).
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Figure 3.16 – Fitted parameters for the best fit lines defined on fig. 3.15. Top panel shows χ2

along the inner (solid line) t ′t ′′ < 0 best fit line and the outer (dashed line) t ′t ′′ > 0 one. On the
bottom panel are show the corresponding fitted parameters (t ′′/t , t ′/t , t/U ) as a function of U
along the best fit lines, solid line for t ′t ′′ < 0 and dashed for t ′t ′′ > 0.

To better view the details of the fit we subtract this simple Heisenberg spin-wave solution

from the experimental data and to the fitted dispersion. We obtain fig. 3.17 bottom panel

where we also include the fit to a spin-wave solution to the strong coupling limit of the nearest

neighbour hopping t −U Hubbard model (eq. 3.4.58 considering only t ), the dashed red line.

This fit to the t −U Hubbard model corresponds to what was done in Coldea et al. [2001a]. We

see that, while it adequately matches the two magnon energies at q = (π,0) and q = (π/,π/2),

it fails to fit the steeper slope at q = (0,0) and q = (π,π). We can further show the value of

the staggered magnetization, the double occupation density and the strength of the first 1/S

quantum correction along the best fit lines defined in fig. 3.15. We show the results again only

for SCOC on fig. 3.18 for the t ′t ′′ < 0 solution. As seen on fig. 3.16, increasing U ’s causes the t ′

and t ′′ amplitudes to grow in order to still obtain a fit to the experimental data. The induced

additional couplings will bring magnetic frustration causing the Néel order to weaken until a

point where it becomes zero. At that point the spin-wave theory is not self-consistent anymore.

While for SCOC a good fit could be obtained using values of U as large as 5eV, we see on fig. 3.18

top panel that above 4.5eV the staggered magnetization vanishes putting an upper boundary to

the allowed range of U . While an experimental determination of the staggered magnetization

is a difficult task, some estimate have been provided for SCOC with Sz (π,π) = 0.34±0.04
gµB

[Vaknin

et al., 1990] which we added on fig. 3.18 top panel assuming g = 2. With the uncertainty of the

measurement, we can draw a rough determination of U ∼ 2.8±0.3eV which must not be taken

too seriously due to the important experimental difficulty of providing such measurement on
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Figure 3.17 – The obtained fitted dispersion for Sr2CuCl2O2. Top panel shows the experimental
data and a range of fitted solutions (solid blue lines) with the magnon dispersion of a simple
Heisenberg model (dashed grey line) with J chosen such that ω(π/2,π/2) = 2J . On the bottom
panel we subtract it to the data and the fitted dispersions and also show the dispersion from a
fit to the t −U Hubbard model fourth order strong coupling expansion (dashed red line).
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an absolute scale. Another interesting quantity is the average density of doubly occupied sites

Figure 3.18 – Various physical properties along the t ′t ′′ < 0 best fit line in fig. 3.15. Top: Reduced
staggered magnetization with an experimental determination (dashed black line, shaded area
represents the uncertainty). Middle: The doubly occupied site density. Bottom: The q-averaged
first 1/S quantum renormalization of the magnon energy, Shaded area represents the variance
σ2 across the Brillouin Zone.

〈n↑n↓〉 shown on fig. 3.18 middle panel. It is found it has rather constant value of about 5%

indicating that along the best fit line the regime in which the effective strong coupling theory

is carried out is not changing. Also this quantity can be put in relation with the electronic

shielding factor calculated in Lorenzana et al. [2005]. Lastly, to evaluate the stability of our

spin-wave solution, it is interesting to look at the first 1/S quantum correction along the best

fit line, shown on fig. 3.18 bottom panel. We plot the q-averaged renormalization factor Zc

as defined in eq. 3.5.60. Consistently with the decrease of the staggered magnetization, the

quantum correction increases along the best fit line for greater U indicating the loss of stability

of our solution for larger U . The shaded area on fig. 3.18 indicates the variance of the quantum

renormalization on the Brillouin zone. It is also found to grow for larger U ’s.

3.6.4 Comparison with electronic spectrum

In this section we review the conclusions that can be drawn when comparing the microscopic

electronic model parameters as obtained through electronic measurement (ARPES) or mag-

netic measurements (Raman,RIXS,INS). In the context of the cuprates, the Hubbard model

must be thought as a phenomenological one as discussed in section 3.3.3 because it cannot be
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considered as an effective theory of the d −p model due charge-transfer energy being smaller

than the Cu double occupation one. ARPES spectra are commonly analysed in term of a t − J

model which is indeed an effective theory of the d −p model. The related phenomenological

Hubbard model is the one from which a strong coupling limit effective model would result in

the same t − J model as the one obtained from the d −p one. The quasiparticle dispersion

from ARPES measurement of the SCOC material has been analysed and shown to be well

accounted for by a t − t ′− t ′′− J model:

H t−t ′−t ′′−J =− t
∑

〈i , j 〉1stσ

i
(
c̃†

iσc̃ jσ+h.c.
)
− t ′

∑
〈i , j 〉2ndσ

(
c̃†

iσc̃ jσ+h.c.
)

− t ′′
∑

〈i , j 〉3rdσ

(
c̃†

iσc̃ jσ+h.c.
)
+ J

∑
〈i , j 〉

Si ·S j (3.6.7)

where

c̃iσ = ciσ(1−ni σ̄) (3.6.8)

enforces the no double occupancy constraint. The t ′ and t ′′ model parameters can be related

back to a microscopic description of the CuO2 plane [Eskes et al., 1989; Hybertsen et al., 1990;

Tohyama and Maekawa, 1990; Matsukawa and Fukuyama, 1989b,b]. To relate this model to

our work we note that it corresponds to the t − t ′− t ′′−U Hubbard model:

H t−t ′−t ′′−U =− t
∑

〈i , j 〉1stσ

(
c†

iσc jσ+h.c.
)
− t ′

∑
〈i , j 〉2ndσ

(
c†

iσc jσ+h.c.
)

− t ′′
∑

〈i , j 〉3ndσ

(
c†

iσc jσ+h.c.
)
+U

∑
i

ni↑ni↓ (3.6.9)

taken in the strong coupling limit up to second order perturbation theory with J = 4t 2/U

and the other magnetic coupling J ′ = 4t ′2/U and J ′′ = 4t ′′2/U neglected. The dispersion of a

single hole in the antiferromagnetic background has been measured by ARPES and analysed

in terms of the t − t ′− t ′′− J model [Tohyama and Maekawa, 2000] bringing the microscopic

model parameters t = 0.35eV, t ′ =−0.12eV, t ′′ = 0.08eV and J = 0.14eV. Comparing these model

parameters to ours imply relating the full complicated effective spin-only Hamiltonian eq.

3.4.58 to the constrained fermionic one eq. 3.6.7. We thus do not expect a detailed agreement

but only require major aspects to be consistent. Probably the most important aspect is the

amplitude of the Coulomb repulsion U . The phenomenological Hubbard model attached to

the above t − t ′− t ′′− J model has U = 4t 2/J = 3.5eV.

First we can look at what U we get if we fit the experimental magnon dispersions to an effective

spin Hamiltonian derived from the t −U Hubbard model. Having only two parameters, the

fit provides a unique solution as was previously done in Coldea et al. [2001a]. This results in

table 3.1. It is immediately visible that the obtained Coulomb repulsion for all three materials

are very small. For SCOC and BSYCO, it is even less than 2eV and the ratio U /t ∼ 5.5 places

them quite far from the generally accepted ratio U /t ∼ 10 for cuprate materials. Also these

results are in complete disagreement with the ARPES U = 3.5eV for the phenomenological
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t [eV] U [eV]
SCOC 0.28 1.62

BSYCO 0.26 1.46
LCO 0.31 2.2

Table 3.1 – Fit of the experimental dispersion to the effective spin Hamiltonian eq. 3.4.58
considering only nearest neighbour hopping amplitude t .

t t ′ t ′′ 〈S〉/S c 〈n↑n↓〉
BSYCO 407(10) -207(3) 79(4) 0.3 0.146 5.9%
SCOC 480(10) -200(5) 75(5) 0.29 0.163 5.1%
LCO 492(7) -207(3) 45(2) 0.4 0.195 5.2%

Table 3.2 – Fitted parameters for the experimental dispersions of SCOC, BSYCO and LCO.
Guided by ARPES results, the Coulomb repulsion is chosen to be U = 3.5eV for all three materi-
als and only the t ′t ′′ < 0 solution is kept. Also shown are the reduced staggered magnetization,
the spin-wave velocity and the double occupancy density.

Hubbard model. We will see that this discrepancy can be resolved by including the t ′ and t ′′

hopping amplitudes in the phenomenological Hubbard model. This leads to the fits shown in

the previous section. Requiring U = 3.5eV for all three materials, we obtain the microscopic

parameters on table 3.2. The obtained rough agreement between our fitted parameters and the

SCOC ARPES ones consistently reconciliate the magnetic measurements and the electronic

ones in a unified microscopic theory.

Another puzzle attached to the ARPES measurement of the insulating cuprates is the so-

called waterfall controversy which we briefly exposed in section 3.2.1. The rather large nearest

neighbour hopping amplitude that is found in our work would strongly support the self-energy

induced kink scenario [Chang et al., 2008].

3.6.5 Comparison with magnetic measurements

The fit of the magnetic dispersion allowed to put strong constraints on the microscopic model

parameters. In this section we consider other ’magnetic’ quantities such as the dynamical spin

structure factor, the two-magnon oxygen K-edge RIXS spectrum and the Raman scattering

spectrum.

Dynamical spin structure factor

Neutron scattering carried on LCO has been very fruitful. First it proved in 2001 that extended

magnetic exchanges are relevant for cuprate materials [Coldea et al., 2001a]. Second it evi-

denced in the context of the cuprate the high energy magnon anomaly [Headings et al., 2010]

which was already observed in the CFTD material [Christensen et al., 2007]. This anomaly is

the subject of this thesis chapter 2. Briefly, it may be characterized by i) a reduction of the (π,0)
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magnon energy of 7% with respect to q = (π/2,π/2), ii) a reduction by 50% of the q = (π,0)

magnon intensity and iii) a continuum of excitations extending towards high energy from

the q = (π,0) magnon line. This was completely characterized in the context of the CFTD

material in Christensen et al. [2007]. For cuprates feature i) is not observable due to the large

enlargement of the q = (π,0) magnon energy due to the extended magnetic interactions. But

features ii) and iii) have been observed for LCO[Headings et al., 2010]. The magnon description

is by definition not suited to tackle feature iii) as it will only predict only as many magnon

modes as there are independent sites in the unit cell. But it is worth discussing what happen for

feature ii) when accounting from the charge fluctuation renormalization of the dynamical spin

structure factor as discussed in section 3.5.6. If only nearest neighbour hopping amplitudes

are considered, then we already discussed that the renormalization is constant along the mag-

netic zone boundary thus cannot explain an intensity difference between q = (π/2,π/2) and

q =π,0). But when the additional next- and next-next-nearest neighbour t ′ and t ′′ hopping

amplitudes are introduced, this is not strictly the case anymore. We show on fig. 3.19 the exper-

imental magnon intensity of LCO reported in Headings et al. [2010] along with the predicted

LCO magnon intensity using the microscopic parameters of table 3.2 with and without the

charge fluctuation renormalization. We see that the charge fluctuation renormalization only

brings a small 3% intensity variation between q = (π/2,π/2) and q = (π,0), a much too small

effect compared to the 50% reduction experimentally observed. In chapter 2 we argue that

the high-energy magnon anomaly has an entirely different origin than an effective model

renormalization of a spin-wave result.

Two-magnon quantities

Other important magnetic measurements are the copper K-edge RIXS and Raman scattering

experiments. These measurements do not transfer angular momentum to the sample thus

cannot probe individual magnon excitations. But conjugated two-magnon excitations are

possible. In linear spin-wave theory, the eigenstates are described as a gas of non-interacting

magnons which of course is an approximation. The neglected terms in the spin-wave expan-

sion generate magnon-magnon interactions which we already included for the single magnon

energy to first order perturbation theory using the Hartree-Fock approach in section 3.5.5. The

magnon-magnon interaction becomes even more important when considering two-magnons

correlation functions such as those probed by oxygen K-edge RIXS and Raman scattering and

lead, in the former case in one theoretical treatment [Canali and Girvin, 1992], to a 36.8%

renormalization of the two-magnon peak energy.

The Raman scattering results were briefly introduced in section 3.2.3. In summary, the two-

magnon peak energy has been consistently analysed in an RPA treatment of the magnon-

magnon interaction on a t −U Hubbard model to the fourth order t/U effective theory (eq.

3.4.58 with only the nearest neighbour hopping amplitude t )[Katanin and Kampf, 2003]. But

the asymmetric lineshape of the Raman two-magnon peak could not be reproduced.

Copper K-edge RIXS experiments were carried out on the doped and undoped LCO materials

and evidenced a peak in the RIXS signal at q = (π,0) and at a 500meV energy [Ellis et al., 2010].
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Figure 3.19 – Experimental magnon intensity in LCO as reported in Headings et al. [2010].
Dashed blue line is the predicted magnon intensity without charge fluctuation renormalization
with the LCO parameter set of table 3.2. Solid red line is the predicted magnon intensity
including the charge fluctuation renormalization. The insert show a zoom in of the magnetic
zone boundary intensity variation.
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The peak was interpreted as the RIXS equivalent of the Raman two-magnon peak.

To compare our results with these measurements, we calculate the two-magnon density of

state and the two-magnon part of the longitudinal dynamical spin structure factor. However

we do not go as far as calculating the magnon-magnon interaction effect and only show the

results in the non-interacting case. The comparison is based on the differences observed

between the non-interacting two-magnon quantities for the simple nearest-neighbour Heisen-

berg model and for our effective theory. We then postulate that the effect of magnon-magnon

interactions would be similar in our effective theory to the one already calculated in the case

of the Heisenberg model.

The density of two-magnon states is simply given by:

D(q ,ω) =∑
k
δ(ω−ωk −ωk−q ). (3.6.10)

The two-magnon part of the dynamical spin structure factor is obtained using:

Szz (q ,ω) =∑
λ

〈GS|Sz
−q |λ〉〈λ|Sz

q |GS〉δ(ω−Eλ+EGS), (3.6.11)

expressing the bare Sz
q in the effective theory spin operators as in eq. 3.4.64 in turn re-expressed

in terms of the magnon quasiparticle operators. The inelastic part is then only composed of

two-magnon excitations with the following intensity:

Szz (q ,ω) = R2
eff(q)

∑
k

1

2

(
uk vk−q −uk−q vk

)2
δ(ω−ωk −ωk−q ) (3.6.12)

where Reff(q) is the charge fluctuation renormalization factor eq. 3.4.65:

Reff(q) = 1−∑
τ

t 2
τ

U 2

(
1−cos(q ·τ)

)
(3.6.13)

We show the two-magnon density of states in both the case of the simple nearest neighbour

Heisenberg model and in the case of our full effective model with the SCOC microscopic

parameters from table 3.2 on fig. 3.20. The Heisenberg model J is adjusted such that the

q = (π/2π/2) magnon energy matches the one measured by RIXS for SCOC. At q = (0,0), the

sharp ω= 4J peak observed for the Heisenberg model is brought down in energy and widened.

We show an energy cut in fig. 3.21. While magnon-magnon interactions will lower the peak

energy, we note that the inclusion alone of the extended magnetic interaction from eq. 3.4.58

lead to a tail of excitations towards high energies from the main peak. It is tempting thus to

interpret the measured Raman scattering two-magnon peak asymmetric lineshape as an effect

of the extended magnetic interactions. But, while the density of states underlies the Raman

scattering signal, the matrix element effects might completely change this picture. Indeed

the Raman lineshape has been analyzed using the fourth order low-energy effective theory of

the t-U Hubbard model [Katanin and Kampf, 2003] which also includes extended magnetic

interactions. This approach did result in a slightly asymmetrical lineshape but not enough

compared to experiments. On can speculate that including the larger family of extended
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Figure 3.20 – Two magnon density of states in the case of the Heisenberg model (top) and in
the case of the full effective model eq. 3.4.58 (bottom) with the SCOC parameters from table
3.2. The Heisenberg model J is adjusted such that the q = (π/2π/2) magnon energy matches
the one measured by RIXS for SCOC.

magnetic couplings for a t-t ′-t ′′-U Hubbard model might increase the asymmetry. But in view

of the first chapter of this thesis, one can speculate that the origin of the asymmetrical Raman

lineshape has an entirely different origin than effective extended magnetic excitations. In

chapter 2 we argued that the asymmetric lineshape measured by INS on the CFTD material at

momentum q = (π,0) might be a signature of fractional excitations physics. One can therefore

speculate that fractional excitations might also be the explanation for the asymmetric Raman

lineshape [Ho et al., 2001]. Lastly we also note that the 500meV copper K-edge RIXS peak

can also be interpreted as an extended magnetic interaction effect. Indeed comparing the

density of states for the Heisenberg model and for our effective model we see a concentration

of two-magnon states exactly at q = (π,0). Again the RIXS matrix elements might change this

picture but we note that, at least for the dynamical spin structure factor, this feature survives

as shown on fig. 3.22.

3.7 Conclusion

This work is an attempt at using the available theoretical tools to obtain a detailed and unified

description of the cuprate superconductor family insulating parent compounds. The goal was

to provide a strong experimental footing to the microscopic model parameters. The cuprate

superconductors problematic generated a huge worldwide experimental thrust and an as-
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Figure 3.21 – Energy cut of the two-magnon density of states from fig. 3.20 at q = (0,0).

Figure 3.22 – Two magnon part of the longitudinal spin structure factor in the case of the
Heisenberg model and in the case of the effective model eq. 3.4.58 with the SCOC parameters
from table 3.2. The Heisenberg model J is adjusted such that the q = (π/2,π/2) magnon energy
matches the one measured by RIXS on SCOC.
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sociated huge literature. Here we chose to focus on experimental results from the ARPES,

INS, Raman scattering and RIXS techniques and show that they consistently constraint the

microscopic model parameters. Using the same unified effective theory framework, we could

account for the magnetic excitation spectrum of the LCO, SCOC and BSYCO materials and

show that it is consistent with the entirely different electronic measurements carried by ARPES.

Such a consistency across widely different techniques, while desirable, is rarely achieved. Fol-

lowing this determination of the microscopic model parameters, we discussed their adequacy

with the following experimental facts:

– In ARPES measurements, the waterfall feature discussed in section 3.2.1 was controversially

described either as an ARPES matrix element effect [Inosov et al., 2007] or an intrinsic self-

energy effect [Chang et al., 2008]. In the former case the associated bare band quasiparticle

dispersion was shallow corresponding to a small nearest-neighbour hopping t = 0.23eV.

The size of the nearest neighbour hopping t = 0.48eV from our fit of the magnetic spectrum

seems to support the latter interpretation of the waterfall feature.

– In copper K-edge RIXS at momentum q = (π,0), a strong peak at 500meV was interpreted

a two-magnon excitation. The concentration of states we find in the non-interacting two-

magnon density of states at this momentum supports this interpretation although the effect

of magnon-magnon interaction and RIXS matrix elements was not accounted for.

– Finally the asymmetric lineshape of the Raman scattering was addressed. While it would

seem tempting to link it to the magnetic zone boundary dispersion caused by the extended

magnetic interactions, such a course was already attempted in Katanin and Kampf [2003]

and did not result in a large enough asymmetry. The inclusion of the larger family of ex-

tended magnetic coupling from the t-t ′-t ′′-U Hubbard model low energy effective theory

might increase this asymmetry. But it was speculated that the asymmetric Raman lineshape

was a result of fractionalized excitations [Ho et al., 2001], a similar phenomenon as the zone

boundary anomaly evidenced in chapter 2. It might be very interesting to see if the varia-

tional Monte Carlo approach developed in chapter 2 could address the Raman asymmetric

lineshape problematic.
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A.1 Metropolis Monte Carlo

The metropolis Monte Carlo is a numerical approach to provide an estimate of an integral

when the space the integral is carried on is too large for a regular partition. We consider a

quantity F :

F =∑
α
ρ(α) f (α) (A.1.1)

where ρ(α) is a normalized probability distribution. The Metropolis Monte Carlo provides a

simple way to calculate an estimate of F by summing the contributions f (α) with the α states

being generated by a random walk following the probability distribution ρ(α). To define this

random walk, we must specify a proposal function P (α′|αn) where n index the random walk

steps. There is a great freedom into designing this proposal function and we only require that

it may generate a transition between any pair of states α and α′ in a finite number of steps. We

then define the transition probability matrix A (α′|αn):

A (α′|αn) = min

[
1,

P (αn |α′)ρ(α′)
P (α′|αn)ρ(αn)

]
. (A.1.2)

The random walk is then generated as follow:

1. A new state α′ is generated by the proposal function P (α′|αn).

2. A random number r ∈ [0,1) is drawn.

– If r <A (α′|αn) then the state is accepted and αn+1 =α′.
– If not then the state is rejected and αn+1 =αn .

3. Go back to 1.

Defined that way, the random walk conditional probability P (αn+1|αn) is:

P (αn+1|αn) =
{

A (αn+1|αn)P (αn+1|αn) αn+1 6=αn

1−∑
α′ A (α′|αn)P (α′|αn) αn+1 =αn

(A.1.3)

and verifies the detailed balance

P (α′|α)ρ(α) = P (α|α′)ρ(α′) (A.1.4)

which guaranties that the set of states {αn} drawn by the random walk will follow the probability

distribution ρ(α). Using this random walk we will then collect samples f (α) whose average

will be an estimate of F ' E(F ). We then would like to be also able to tell what the uncertainty

of this estimate is. If the samples are independent, we could simply use the estimate of the

standard deviation σ(F ):

σ(F ) ' E(σ(F )) =
√

1

L(L−1)

∑
α

(
E(F )− f (α)

)2. (A.1.5)
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This is only valid if the samples are independent which typically is not the case in a Markov

chain. To overcome this difficulty we simply choose to take the samples sufficiently far away

from each others in the random walk. Also the statistical average will only be reliable for

sufficient statistics. All these remarks are quite hand-wavy and we need a way to know whether

we can trust the estimate. We describe in appendix A.6 how we determine the uncertainty of

our numerical results.

A.2 Determinant update Formulas

The determinant update formula for a new matrix A′ where only one row/column has been

changed with respect to A can easily be calculated if one knows the inverse matrix A−1 and

remembering the inverse matrix is linked to the determinant through the co-factor matrix:

A−1 = 1

Det(A)
cof(A)T (A.2.1)

where the i , j ’th element of the cofactor matrix is:

cof(A)i j = Det
(

A\(i j )
)

(A.2.2)

where A\(i j ) is the matrix A where row i and column j have been removed. These considera-

tions lead to the simple determinant update formula where, for definiteness, we changed row

k in matrix A to get A′:

Det(A′)
Det(A)

=∑
j

A′
k j A−1

j k . (A.2.3)

A similar formula can be derived to also find the inverse matrix update (A′)−1. We note that

the determinant update formula involve a simple sum over the columns j of the A′ matrix

and thus is of linear complexity with respect to the matrix size N thus far better the cubic

complexity for calculating the determinant from scratch. In fact these results are only special

cases of the two following relations. Let A be a N ×N matrix, U a N ×m matrix and V an m×N

matrix. The rank-m modification of the matrix A is defined as:

A′ = A+UV (A.2.4)

for which we have the two results [Brookes, 2011]:

Det(A′) =Det(A)Det
(
I+V A−1U

)
(A.2.5)

(A′)−1 =A−1 − A−1U
(
I+V A−1U

)−1
V A−1 (A.2.6)

where I is the m×m matrix identity and it s assumed in A.2.6 that the m×m matrix I+V A−1U

is invertible. Let’s reformulate these results in a more useful way for the problem of changing

simultaneously mr rows and mc columns. We define the matrices of the new rows and columns
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as R and C respectively being mr ×N and N ×mc . We let r1, . . . ,rmr be the indices of the rows

to be changed and c1, . . . ,cmc the indices of the columns to be changed. Furthermore we define

the unit column-vectors êi where the only non-zero element is (êi )i = 1. Then one can see that

the following U and V do define a simultaneous change of the ri ’th rows and c j ’th columns of

A by the i ’th rows of R and the j ’th columns of C :

U =
(

C ′ Er

)
(A.2.7)

V =
(

Ec

R ′

)
(A.2.8)

with

Er =
(

êr1 êr2 . . . êrmr

)
(A.2.9)

Ec =


êT

c1

êT
c2
...

êT
cmc

 (A.2.10)

and

C ′ =(1−Er E T
r )(C − AE T

c ) (A.2.11)

R ′ =R −E T
r A. (A.2.12)

Then the matrix K = I+V A−1U has the block form:

K = I+V A−1U =


Ec A−1C −Ec A−1Er E T

r C

+Ec A−1Er E T
r AE T

c
Ec A−1Er

R A−1C −R A−1Er E T
r C

−RE T
c +R A−1Er E T

r AE T
c

R A−1Er

 . (A.2.13)

Let’s check the computational complexity of each blocks in the case mr ¿ N and mc ¿ N . The

upper left block has mc ×mc elements and its calculation requires O (N ) operations. The lower

left block has mr ×mc elements and requires O
(
N 2

)
operations. The upper right block has mc×

mr elements and requires O
(
N 0

)
operations. The lower right block has mr ×mr elements and

requires O (N ) operations. The complete calculation of the matrix K is of quadratic complexity

O
(
N 2

)
. When there are no row changes or no column changes, the above formulas might be

modified a little yielding:

K =Ec A−1C no row changes (A.2.14)

K =R A−1Er no column changes (A.2.15)

and thus are only of linear complexity O (N ). Once the matrix K is calculated, the determinant

update can be obtained from the rank-(mc +mr ) determinant of the K matrix. The inverse
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matrix update will require the inversion of K and additional rank-N matrix multiplications

making the inverse update of quadratic O (N 2) regardless of the fact there might be only

rows or only columns being changed. In summary the above formulas allow to calculate the

determinant update and the inverse matrix update in quadratic complexity O
(
N 2

)
at worst.

Of course the whole procedure gets increasingly expensive for larger mr and mc and is only

worth when mc ¿ N and mr ¿ N .

A.3 Modified Monte Carlo random walk: details

The random walk is generated by random exchanges of neighbouring anti-parallel spins as

explained in section 2.5.2. The calculation of the amplitude
〈
α

∣∣ψ〉
involving N↑ × N↑ and

N↓×N↓ Slater determinants we store the Slater matrices M〈α|ψ〉
i↑ j↑

and M〈α|ψ〉
i↓ j↓

:

M〈α|ψ〉
i↑ j↑

=
〈

Ri↑ ,↑
∣∣∣k j↑ ,↑,bk j↑

〉
(A.3.1)

M〈α|ψ〉
i↓ j↓

=
〈

Ri↓ ,↓
∣∣∣k j↓ ,↓,bk j↓

〉
(A.3.2)

and their inverse calculated once from a standard LU decomposition. The determinant is also

obtained that way and stored. These initial inverse matrix and determinant calculation are

of cubic complexity. When one proceeds in the random walk, the proposed state amplitudes

is obtained through the determinant update formula derived in appendix A.2. When a move

is accepted, one must also update the inverse matrix thus using also the previously seen

formulas from appendix A.2.

In the special case of the modified Monte Carlo random walk presented in section 2.6.3, one

has to take special care. The random walk starts by choosing an arbitrary particle-hole state

for
∣∣ψ〉= ∣∣k0,σσ′, q

〉
as the reference state to define the Slater matrices and their inverse. But

it might happen that some special state |α〉 is a node of this state
〈
α

∣∣k0,σσ′, q
〉 = 0 but not

of the other particle-hole states
〈
α

∣∣k 6= k0,σσ′, q
〉 6= 0. In that case the weight eq. 2.6.28 or

2.6.31 W q∆S(α) might still be finite and the move accepted. But because
〈
α

∣∣k0,σσ′, q
〉= 0 the

Slater matrix for
∣∣k0,σσ′, q

〉
is not invertible! To ensure this situation never happen we make

sure, when accepting a move |α〉→ ∣∣α′〉, that we also choose the particle-hole reference state∣∣k0,σσ′, q
〉 → ∣∣k ′,σσ′, q

〉
such that

∣∣〈α′∣∣k ′,σσ′, q
〉∣∣2 is maximum thus making the inverse

matrix well-defined.

A.4 Monte Carlo thermalization

The Monte Carlo random walk starts from a completely random state. It is likely this initial

state will have very little weight and the random walk will drift towards better states. This

is the so-called thermalization process where the visited states might not be representative

of the Monte Carlo probability distribution. The states associated with this process should

therefore not enter the Monte Carlo sampling as they will introduce a bias from the random
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Figure A.1 – Evolution of the Monte Carlo weight and staggered magnetization of the random
walk states for the SF+N state with weight ρ(α) = |〈α|GS〉|2. Top: weight normalized to the
average weight of the random walk. Bottom: Staggered magnetization.

initial state. It is therefore important to determine how long in terms of random walk steps

the initial thermalization takes, in order to only start sampling quantities safely away. In

some cases the thermalization may be as hard as to constitute the main goal of the Monte

Carlo procedure. In our case however it turns out to be an extremely fast and easy procedure

due to the lack of frustration involved in the square lattice antiferromagnet. We show on

fig. A.1 top panel the evolution of the Monte Carlo weight ρ(α) = |〈α|GS〉|2 as a function of

Monte Carlo step for the SF+N wavefunction for different system sizes. The x-axis is scaled

by the system size to allow comparison between different sizes. It is seen that the initial state

evolves in less than 20 ·L2 steps to gain a staggered magnetization and get a reasonable weight.

We obtain a similar result for the spin-liquid SF state. For calculations in the transverse or

longitudinal particle-hole subspace, we also obtain very similar results showing a very fast

thermalization. We show it in the SF case on fig. A.2. It is interesting to see that, while in the SF

state the q = (π,π) instantaneous spin-spin correlation function is peaked, the random walk

nevertheless alternates between positive and negative staggered magnetization.

The numerical results presented in this thesis were obtained using 100×L2 thermalization

steps to guarantee unbiased results. The very small cost of thermalization in our problem has

great advantage for massive parallelization. In the largest calculations we did, we ran up to 3200

parallel random walks each containing only a thousand evaluations of the measured quantities

done every L2 random walk steps where L2 is the number of lattice sites. We show below that

each thermalization step require O
(
L4

)
operations while each measurement requires O

(
L6

)
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Figure A.2 – Evolution of the Monte Carlo weight and staggered magnetization of the random
walk states for the SF state with weight ρ(α) =∑

k
∣∣〈α∣∣k ↑↓, q

〉∣∣2. Top: weight normalized to the
average weight of the random walk. Bottom Staggered magnetization.

operations. The thermalization thus amounts to a very minor cost in run-time making it

profitable to run many short parallel random walks to gather large statistics.

A.5 Calculation run-time scaling

The calculation run-time scaling can be deduced from the algorithmic complexity determined

in appendix A.2. For the groundstate and excited subspaces calculations, the random steps

cost O (N 2) operations either from the inverse Slater matrix update or, for the excited subspace

calculations, from the determinant update itself. Therefore the thermalization process run-

time will scale quadratically with system size as seen on fig. A.3.

The measurements run-time depends on the quantity. The simplest one which have only diag-

onal contributions 〈α|O ∣∣β〉= 〈α|O |α〉δαβ do not involve determinant updates. For instance

the staggered magnetization measurement run-time will scale linearly with system size while

the longitudinal instantaneous spin-spin correlation function will scale quadratically due to

the double sum in eq. 2.5.18.

For the quantities evaluated on the groundstate, quantities with off-diagonal matrix elements

〈α|O ∣∣β〉 6= 0 will involve determinant updates which are of linear complexity for the ground-

states if
∣∣β〉

differs from |α〉 by a unique hop of ↑ and/or ↓ spins. For instance the variational

energy of the Heisenberg Hamiltonian will scale quadratically with system size due to the

sum over sites coupled to the determinant updates. The transverse instantaneous spin-spin
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correlation functions measurement will scale in cubically with system size again due to the

double sum coupled to the determinant updates.

We finally consider the excitation subspace calculations. The overlap matrix is sampled using,

from eq. 2.6.30:

fOq∆S

kk′
(α) =

〈
k ,σσ′, q

∣∣α〉〈
α

∣∣k ′,σσ′, q
〉

∑
q

∣∣〈α∣∣k ,σσ′, q
〉∣∣2 (A.5.1)

which, for calculating all (k ,k ′) matrix elements is of quadratic complexity as the determinant

update where only rows or columns are changed is of linear complexity. For the case of the

projected Heisenberg matrix, the sampling is done using, from eq. 2.6.29:

fH q∆S

kk′
(α) =∑

β

〈
k ,σσ′, q

∣∣α〉〈α|H ∣∣β〉〈
β
∣∣k ′σσ′, q

〉
∑

q
∣∣〈α∣∣k ,σσ′, q

〉∣∣2 (A.5.2)

which involves simultaneous row and column changes in the determinant update from the〈
β
∣∣k ′,σσ′, q

〉
amplitude which are of quadratic complexity. Coupled to the sum over sites in

the Heisenberg model and the O (N ) number of k ′, it looks like the sampling of the projected

Heisenberg matrix is of quartic complexity! To fix the ideas let’s decide that the change |α〉→∣∣β〉
involves a row change in the spin-↑ and spin-↓ Slater matrices. In eq. A.2.13, the quadratic

complexity comes from the matrix-vector multiplication

Rα→β

(
M〈α|k ,σσ′,q〉)−1

.

It only needs to be calculated once for one |α〉→ ∣∣β〉
change. Then the vector-vector product:(

Rα→β

(
M〈α|k ,σσ′,q〉)−1

)
Ck→k ′

needs O (N ) operations and must be carried out O (N ) times. Therefore the total complexity is

only cubic as there are O (N ) matrix-vector products

Rα→β

(
M〈α|k ,σσ′,q〉)−1

to carry out. The measurement run-time of the projected Heisenberg matrix will therefore scale

cubically with system size. The number of Monte-Carlo steps in-between two measurement

is given by the system size N such that that it also amounts to a cubically scaling run-time.

We confirm in practice these predictions on fig. A.3 where is shown the required run-time per

measurement as a function of system size. For the largest system size calculated (L2 = 322),

one can see that the cost of thermalization steps is 6 orders of magnitude less than a single

measurment. Counting that about 100L2 thermalization steps must be carried out before

starting measurements, the cost of the whole thermalization costs less that 10% of a single

measurement, a negiligible cost.
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A.5. Calculation run-time scaling

Figure A.3 – Run-time needed versus system size for the excited subspace calculations (here
transverse). Thermalization steps (red open circles) scale quadratically with system size (cyan
solid line) and measurements (blue open circles) scale cubically with system size (green solid
line).
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Appendix A. Variational Monte Carlo appendices

A.6 Evaluation of uncertainties

To evaluate eq. 2.5.3, one sums only on a very small subset of the spin configuration space.

This naturally leads to an uncertainty on the end-result. For simple quantities such as the

staggered magnetization and the variational energy of the Heisenberg model, the uncertainty

can be calculated following Gros [1989]. As the data for large lattices were obtained using

massively parallel independant random walks (up to 3200) we usually bunch the obtained

data into Nb ∼ 10 〈O〉b statistically independant samples. The expectation value is then simply

obtained by taking the samples average:

〈O〉 = 1

Nb

Nb∑
b=1

〈O〉b (A.6.1)

and the uncertainty is obtained from the standard deviation

σ2(O) = 1

Nb −1

Nb∑
b=1

(
〈O〉b −〈O〉

)2
. (A.6.2)

For more complicated quantities like the projected Heisenberg model matrix eq. 2.6.29 and

the overlap matrix eq. 2.6.30, the uncertainty on the matrix elements could be found in the

same way. The problem is that the meaningful quantities are then obtained through solving

the generalized eigenvalue problem defined by these matrices. It is difficult to know how

the uncertainty on the sampled matrices will propagate by the diagonalization process. We

thus take the following practical approach: we compare the result obtained through the two

different ways:

– We completely collapse the sampled matrices into one projected Heisenberg and overlap

matrix pair, diagonalize and extract further quantities from the eigenvectors and eigenvalues.

This, for instance in the case of the spinon-pair root mean square separation eq. 2.8.19 gives

single points on figure 2.35 panel E.

– We bunch the sampled matrices into Nb = 10 projected Heisenberg and overlap matrix

pairs, diagonalize and extract Nb independant samples of further quantities from the Nb

samples of eigenvalues and eigenstates. The average value is then obtained using eq. A.6.1

and the unceratinty eq. A.6.2. In the case of the root-mean-square spinon separation eq.

2.8.19, this gives the errorbars which may or may not be centered on the points calculated

from the full collapse of the data in one unique sample.

Comparing these two ways allows to know whether the obtained values can be trusted by

making sure they are compatible. On fig. 2.35 panel E it is seen that the error propagation

is highly non-trivial as the q = (π,0) points display much larger uncertainties than the q =
(π/2,π/2) momentum points.
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B Effective low-energy model derivation
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Appendix B. Effective low-energy model derivation

B.1 Proof of the unitary transformation expansion formula

We give a short proof of eq. 3.4.13 here written simply as

e X Y e−X = Y + [X ,Y ]+ 1

2!
[X , [X ,Y ]]+ 1

3!
[X , [X , [X ,Y ]]]+ . . . (B.1.1)

Let

f (s) = e sX Y e−sX (B.1.2)

where s is a real number. We can write f (s) as a Taylor expansion around s = 0:

f (s) = Y +
∞∑

n=1

1

n!

d n f

d sn

∣∣∣∣
s=0

sn . (B.1.3)

Then proving that

d n f

d sn =
n commutators︷ ︸︸ ︷[

X ,
[

X , . . .
[

X ,e sX Y e−sX ]
. . .

]]
(B.1.4)

proves (B.1.1) by letting s = 1. By recursion:

– n = 1:

d f

d s
=X e sX Y e−sX −e sX Y e−sX X (B.1.5)

=[
X ,e sX Y e−sX ]

(B.1.6)

– recursion:

d n+1 f

d sn+1 = d

d s

n commutators︷ ︸︸ ︷[
X , . . .

[
X ,e sX Y e−sX ]

. . .
]

(B.1.7)

=
[

X , . . .

[
X ,

d

d s
e sX Y e−sX

]
. . .

]
(B.1.8)

=
n +1 commutators︷ ︸︸ ︷[

X , . . .
[

X ,
[

X ,e sX Y e−sX ]]
. . .

]
# (B.1.9)

B.2 Iterative approximate of the unitary transformation

We give here the details of the iterative scheme to derive an approximate of the unitary

transformation eq. 3.4.13 which approximately fulfill the conservation of the number of

double occupancies condition eq. 3.4.4. Following MacDonald et al.MacDonald et al. [1988],

we define the following notation:

T (k)(m1,m2, . . . ,mk ) = T (k)[m] = T̂ m1 T̂ m2 . . . T̂ mk (B.2.1)
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B.3. Formulas for the spin-wave Hamiltonian

Then we find that

[
V̂ ,T (k)[m]

]
=∑

l

(
l−1∏
i=1

T̂ mi
[
V̂ , T̂ ml

] k∏
i=l+1

T̂ mi

)
=U

∑
l

ml︸ ︷︷ ︸
=M (k)[m]

T (k)[m]. (B.2.2)

It naturally follows that the terms which do not commute with V̂ are those where M (k)[m] 6= 0.

At a given order k, the previous approximate i Ŝ(k−1) leaves only terms of order t k /U k−1. Calling

H
′[k] these terms:

H
′[k] =U 1−k

∑
{m}

C (k)[m]T (k)[m] (B.2.3)

where C (k)[m] are simply the coefficients. From eq. B.2.2 it follows that defining:

i Ŝ(k) = i Ŝ(k−1) +U−k
∑

{m}∈M (k)[m] 6=0

C (k)[m]T (k)[m]

M (k)[m]
(B.2.4)

will iteratively define order by order a suitable approximate of i Ŝ. We show on fig. B.1 a short

python program which carries out the calculation up to order t 4/U 3.

B.3 Formulas for the spin-wave Hamiltonian

We give here the formulas to calculate the Ak and the Bk factors in eq. 3.5.26:

H (2)
SW =∑

k

∑
mm′

(Ak )mm′
(
a†

km akm′ +a†
km′akm

)
+ 1

2
(Bk )mm′

(
a†

km a†
−km′ +akm a−km′

)
(B.3.1)

the Ak and Bk terms are expressed as a sum over the Aτl l ′
k and Bτl l ′

k terms as defined in eq.

3.5.21 and 3.5.22:

Aτl l ′
k =

(
2(1−2ετl l ′)+δl l ′ετl l ′cos(kτ) (1−δl l ′)ετl l ′cos(kτ)

(1−δl l ′)ετl l ′cos(kτ) 2(1−2ετl l ′)+δl l ′ετl l ′cos(kτ)

)
(B.3.2)

Bτl l ′
k =−

(
2δl l ′ ε̄τl l ′cos(kτ) 2(1−δl l ′)ε̄τl l ′cos(kτ)

(1−δl l ′)ε̄τl l ′cos(kτ) 2δl l ′ ε̄τl l ′cos(kτ)

)
(B.3.3)
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Appendix B. Effective low-energy model derivation

1# ! / bin/env python
from copy import deepcopy

3from scipy . misc import f a c t o r i a l

5c l a s s Op :
" Class representing T^ { ( k ) } [m] "

7def _ _ i n i t _ _ ( s e l f ,Tkm= [ ] ,Ckm=0) :
s e l f .Tkm=Tkm # operators

9s e l f .Ckm=Ckm # c o e f f i c i e n t s
def __repr__ ( s e l f ) :

11return ’ { 0 }T{ 1 } ’ \
. format ( s e l f .Ckm, \

13s e l f .Tkm)
def __mul__ ( s e l f , x ) :

15return Op( s e l f .Tkm, s e l f .Ckm* x )

17def commutator (A , B) :
out = [ ]

19for a in A :
for b in B :

21i f a .Tkm==[ ’ v ’ ] :
out+=[Op(b .Tkm, \

23b .Ckm*\
sum(b .Tkm) ) ]

25e l i f b .Tkm==[ ’ v ’ ] :
out+=[Op( a .Tkm, \

27−a .Ckm*\
sum( a .Tkm) ) ]

29else :
out+=[Op( a .Tkm+b .Tkm, \

31a .Ckm*b .Ckm) ,\
Op(b .Tkm+a .Tkm, \

33−a .Ckm*b .Ckm) ]
return out

35

def simpli fy (p) :
37# Set of unique terms :

out = [ ]
39un=set ( [ tuple (o .Tkm) for o in p ] )

for t in un :
41c=0

for o in p :
43i f tuple (o .Tkm) == t :

c+=o .Ckm
45i f abs ( c ) >1e−9:

out+=[Op( l i s t ( t ) , c ) ]
47return out

49def f i l t e r _ h f _ d o (op , order ) :
" f i l t e r s terms for half− f i l l i n g "

51i f op .Tkm[−1]==0 or op .Tkm==[ ’ v ’ ] :
return False

53for l in range ( 1 , len (op .Tkm) ) :
i f sum(op .Tkm[ l : ] ) <0:

55return False
i f sum(op .Tkm[ l : ] ) ==0\

57and op .Tkm[ l −1] !=1:
return False

59return len (op .Tkm) <order \
or sum(op .Tkm) ==0

61

i f __name__== ’ __main__ ’ :
63# i n i t i a l Hamiltonian

H0=[Op( [ 1 ] , 1 . 0 ) ,Op( [ −1 ] , 1 . 0 ) ,\
65Op( [ 0 ] , 1 . 0 ) ,Op( [ ’ v ’ ] , 1 . 0 ) ]

# i n i t i a l (empty) transformation
67S = [ ]

# i n i t i a l transformed Hamiltonian
69Hk=deepcopy (H0)

# order of the expansion
71order=4

for k in range ( order ) :
73# bad terms in H and update S

for o in Hk:
75i f o .Tkm! = [ ’ v ’ ] \

and sum(o .Tkm) ! = 0 :
77S+=[Op(o .Tkm, \

o .Ckm/sum(o .Tkm) ) ]
79# update H

Hk= [ ]
81for t in range ( k+2) :

h=deepcopy (H0)
83for s in range ( t ) :

h=commutator ( S , h)
85h=[o for o in h\

i f len (o .Tkm) \
87<=(k+1) ]

h=simpli fy (h)
89Hk=simpli fy (Hk+\

[ o*(1/ f a c t o r i a l ( t ) ) \
91for o in h ] )

Hk=simpli fy (Hk)
93print ( ’Hk= ’ )

for o in Hk:
95i f f i l t e r _ h f _ d o (o , order ) :

print (o)
97print ( ’ \nS( k ) = ’ )

for o in S :
99print (o)

Figure B.1 – Full python code to produce the iterative approximate of the unitary transforma-
tion
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B.3. Formulas for the spin-wave Hamiltonian

We give the definition for Ak . The Bk is exactly identical just by replacing the Aτl l ′
k with Bτl l ′

k .

Ak = ∑
{ }

(
4t 2

12

U
− 16t 4

12

U 3

)
S Aτ12l1l2

k + ∑
{ } 4t 2

12t 2
23

U 3 S Aτ13l1l3

k

− ∑
{ } 4t12t23t34t41

U 3

{ 4∑
i , j=1
i 6= j

S A
τi j li l j

k

−20
[

(2ετ12l1l2 −1)Aτ34l3l4

k + (2ετ34l3l4 −1)Aτ12l1l2

k

+ (2ετ23l2l3 −1)Aτ41l4l1

k + (2ετ41l4l1 −1)Aτ23l2l3

k

− (2ετ13l1l3 −1)Aτ24l2l4

k + (2ετ24l2l4 −1)Aτ13l1l3

k

]}
(B.3.4)

where the τi j li l j translation and layer indices are determined by the sites included in the two-,

three- and four-sites plaquette exchange
{ }

,

{ }
and

{ }
. The calculation of

the Ak and Bk is then performed using a symbolic algebra software by first enumerating

all possible plaquettes exchanges and then defining their corresponding A
τi j li l j

k and B
τi j li l j

k
matrices.
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Appendix B. Effective low-energy model derivation

Figure B.2 – Color map of the fit quality as a function of U and t ′′/t . In the outer dark red
regions the parameters are such that the spin-wave approach fails indicating the breakdown
of the long-ranged Néel order hypothesis. In the central area of the displayed (t ′′/t ,U ) plane,
the spin-wave approach does bring a meaningful solution which results in a good fit quality.
In particular, two distinct valleys of best fit solutions can be followed as a function of U .
Inspecting the resulting (t/U , t ′/t ) fitted parameters, we see the inner solution corresponds to
t ′t ′′ < 0 and the outer one to (t ′t ′′ > 0).

B.4 Fitting results for BSYCO

We provide in this appendix the fitting results in the case of the bilayer cuprate BSYCO. The

results are qualitatively identical to those of SCOC discussed in section 3.6.3 and are not

further discussed here.

160



B.4. Fitting results for BSYCO

Figure B.3 – Fitted parameters for the best fit lines defined on fig. B.2. Top panel shows χ2

along the inner (solid line) t ′t ′′ < 0 best fit line and the outer (dashed line) t ′t ′′ > 0 one. On the
bottom panel are show the corresponding fitted parameters (t ′′/t , t ′/t , t/U ) as a function of U
along the best fit lines, solid line for t ′t ′′ < 0 and dashed for t ′t ′′ > 0.

Figure B.4 – The obtained fitted dispersion for BSYCO. Top panel shows the experimental
data and a range of fitted solutions (solid blue lines) with the magnon dispersion of a simple
Heisenberg model (dashed grey line) with J chosen such that ω(π/2,π/2) = 2J . On the bottom
panel we subtract it to the data and the fitted dispersions and also show the dispersion from a
fit to the t −U Hubbard model fourth order strong coupling expansion (dashed red line).
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Appendix B. Effective low-energy model derivation

Figure B.5 – Various physical properties along the t ′t ′′ < 0 best fit line in fig. B.2. Top: Reduced
staggered magnetization with an experimental determination (dashed black line, shaded
area represents the uncertainty). Middle: The doubly occupied site density. Bottom: The q-
averaged first 1/S quantum renormalization of the magnon energy, Shaded area represents
the variance σ2 across the Brillouin Zone.
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B.5. Fitting results for LCO

Figure B.6 – Color map of the fit quality as a function of U and t ′′/t . In the outer dark red
regions the parameters are such that the spin-wave approach fails indicating the breakdown
of the long-ranged Néel order hypothesis. In the central area of the displayed (t ′′/t ,U ) plane,
the spin-wave approach does bring a meaningful solution which results in a good fit quality.
In particular, two distinct valleys of best fit solutions can be followed as a function of U .
Inspecting the resulting (t/U , t ′/t ) fitted parameters, we see the inner solution corresponds to
t ′t ′′ < 0 and the outer one to (t ′t ′′ > 0).

B.5 Fitting results for LCO

We provide in this appendix the fitting results in the case of the single layer cuprate LCO.

The results are qualitatively identical to those of SCOC discussed in section 3.6.3 and are not

further discussed here.
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Appendix B. Effective low-energy model derivation

Figure B.7 – Fitted parameters for the best fit lines defined on fig. B.6. Top panel shows χ2

along the inner (solid line) t ′t ′′ < 0 best fit line and the outer (dashed line) t ′t ′′ > 0 one. On the
bottom panel are show the corresponding fitted parameters (t ′′/t , t ′/t , t/U ) as a function of U
along the best fit lines, solid line for t ′t ′′ < 0 and dashed for t ′t ′′ > 0.

Figure B.8 – The obtained fitted dispersion for LCO. Top panel shows the experimental data and
a range of fitted solutions (solid blue lines) with the magnon dispersion of a simple Heisenberg
model (dashed grey line) with J chosen such that ω(π/2,π/2) = 2J . On the bottom panel we
subtract it to the data and the fitted dispersions and also show the dispersion from a fit to the
t −U Hubbard model fourth order strong coupling expansion (dashed red line).
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B.5. Fitting results for LCO

Figure B.9 – Various physical properties along the t ′t ′′ < 0 best fit line in fig. B.6. Top: Reduced
staggered magnetization with an experimental determination (dashed black line, shaded
area represents the uncertainty). Middle: The doubly occupied site density. Bottom: The q-
averaged first 1/S quantum renormalization of the magnon energy, Shaded area represents
the variance σ2 across the Brillouin Zone.
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Appendix C. Realization of in-house Quantum Wolf cluster

Components Model Number
CPU Intel i5-3350 96
Motherboard Gigabyte H61M-S1 96
Memory Patriot DDR3 1333MHz 2x4GB 96
Power supply FSP AURUM GOLD 600W 12
Fans Arctic Cooling F12-PWM 60
Ethernet cables Roline Kat. 5e Kabel 1m 96
Ethernet switches Zyxel XGS1910-48 2

‘

Table C.1 – Parts used to build the Quantum Wolf cluster.

In the process of the variational Monte Carlo project covered in chapter 2, the need of a large

amount of CPU time quickly rose. This need was partially met by obtaining ten million CPU

hours on the Swiss National Supercomputing Center (CSCS) Monte Rosa Cray XE6 cluster.

But the constaints linked to the proposal-based CPU time attribution along with my personal

interst in computing technical aspects motivated the realization of an in-house loosely inter-

connected cluster made out of consumer market parts. This kind of cluster is often reffered as

“Beowulf” cluster and is a competitive alternative to professionnally-built clusters when the

need of a fast-interconnect and of high quality of service are low. Probably following my badly

pronounced english and Henrik’s wild inspiration, the cluster was named “Quantum Wolf”.

Monte Carlo calculations such as the ones described in 2 typically meet these criteria. The

Monte Carlo sampling is trivially parallelized by carrying out several random walks in par-

allel, with essentially no communication needed between the running instances. In case of

unexpected termination, there might be essentially no data loss if the Monte Carlo statistics is

regularily saved, thus the there is no special reliability needs. Based on these considerations

we built a in-house cluster whose key-features are:

– 96 nodes each with a 4-core CPU, totalling 384 computational cores.

– 9.6 TFlops (synthetic from the CPU documentation)

– Energy consumption of 4.8 kW

– Low cost of 312 CHF/node

We show on table C.1 the specific parts which where used. The cluster in simply air-cooled

by a front wall of fans and a classic heat-exchanger at the back to thermalize the room the

cluster is sitting in. In order to use the power supply in the most energy-efficient way, we

power 8 nodes using a single power supply. The local network was setup with two switch

interconnected together and with the master node with a 10Gbit/s network speed. The nodes

themselves have simple 1Gbit networking. The computational nodes are diskless meaning

they completely load in memory a stripped-down debian-based operating system booted

from the local network. Standard comnputational libraries such as Message Passing Interface

(MPI), Basic Linear Algebra Subroutines (BLAS), lapack of hdf5 for instances.

In terms of reliability the cluster, once setted up, did not suffer major incidents with a constant

calculations being carried out over more than 3 months so far.
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Figure C.1 – Front view of the cluster. The fans of the top shelf have been removed showing
the motherboards stacked vertically in two rows such that each shelf carries 16 nodes powered
by two power supplies.
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