Turnpike and dissipativity properties in dynamic real-time optimization and economic MPC
Faulwasser
Timm
Korda
Milan
Jones
Colin
Bonvin
Dominique
2014
We investigate the turnpike and dissipativity properties of continuous-time optimal control problems. These properties play a key role in the analysis and design of schemes for dynamic real-time optimization and economic model predictive control. We show in a continuous-time setting that dissipativity of a system with respect to a steady state implies the existence of a turnpike at this steady state and optimal stationary operation at this steady state. Furthermore, we investigate the converse statements: We show that the existence of a turnpike at a steady state implies (a) that this steady state is the optimal steady state; and (b) that over an infinite horizon the system is optimally operated at this steady state. We draw upon a numerical example to illustrate our findings.
CONF