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Modeling of Reconfigurable Medical Ultrasonic Applications
in BIP

Stefanos Skalistis * Alena Simalatsar *

Abstract

Medical ultrasonic imaging applications require high quality of images produced in real-
time often with limited resources available. Deadlock-freedom and confluency must be guaran-
teed to ensure the correctness of the applications, while feasibility and optimality properties
are required to provide the best Quality of Service (QoS) within available resources. In
this report we introduce BIP (Behavior-Interaction-Priority) framework components as main
building blocks to model such applications in a correct-by-construction manner. Based on
those components we model a reconfigurable multi-mode processing pipeline for ultrasonic
imaging that supports QoS management by topology reconfiguration. Finally, as a proof of
concept, we present a simple quality controller as a well-triggered component, which when
combined with the processing pipeline can manipulate the quality of image processing.

1 Introduction

Ultrasonic imaging is widely used in medicine [7] as a diagnostic technique to provide static im-
ages (e.g., B-mode) and dynamic changes (e.g., based on Doppler effect). Static imaging provides
visualization of muscles and internal organs, to capture their size, structure and any pathologi-
cal lesions. Ultrasonic imaging based on Doppler effect [6] is widely used to visualize motion, in
particular blood flow for diagnosis, such as blood clots, heart valve defects, aneurysms and many
others. All these applications require high quality of images produced in real-time. Often ultra-
sonic devices are used in trauma and first aid cases as well as for remote diagnosis. This drastically
limits the available resources for ultrasound computation algorithms, which requires Quality of
Service (QoS) management. Moreover, deadlock-freedom and confluency must be guaranteed to
ensure correctness of the computational and controlling algorithms.

B-mode ultrasonic imaging, chosen as a case-study in this report, can be performed in different
ways, also called modes or processing pipelines, which may achieve the output image with different
quality characteristics and resource requirements. Thus, quality of final images depends first of all
on the chosen processing mode. Moreover, the components of a chosen processing pipeline may
perform the computation with different quality outcome. Components processing quality levels
can be controlled by certain parameters set, e.g. the cutoff quality of a low-pass filter by adjusting
the order of the filter. Based on that, we distinguish two approaches for QoS management driven
by i) topology, and ii) components quality levels.

BIP (Behavior-Interaction-Priority) framework [I] provides essential means for rigorous system
design. We employ a particular branch of BIP framework, namely well-triggered modal flows [3],
which ensures correctness by construction and encompasses a synchronous computation model.
Well-triggered modal flows requires no additional coordination with the BIP engine compared
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to the classical BIP. This is an important advantage, since additional coordination implies po-
tential computational overhead, which may be critical for a system with limited resources. A
well-triggered modal flow is composed of synchronized components, which successively perform
computation steps. It defines the behavior of the system. Well-triggered modal flows are consid-
ered to be most fitting to model real-time multimedia systems.

In the frame of development of a scalable low-power, high-performance and trusted ultrasonic
platform, feasibility, optimality and quality control become of utmost importance. In terms of
timing, feasibility implies that no processing task must miss its deadline. While operating under
this constraint, the system must make optimal use of its resources and time budget and at the
same time provide the maximum possible quality for the produced images. Existing work [5]
formulates and addresses the problem of QoS control of real-time multimedia systems in a feasible
and optimal manner.

In this report we present the model of a reconfigurable multi-mode ultrasonic application. The
application is modeled as a modal flow graph composed of well-triggered components, that guar-
antees deadlock-freedom and confluence by construction, with basic QoS management. We define
four essential types of the components required to build a reconfigurable multimedia application,
namely processing, buffer, accumulator and mode-selection components. We also reason about the
composition of such components showing that it results in a well-triggered composite component,
which is essential for overall deadlock-freedom and confluence. Each component of this modal-flow
comprises a configuration port that allows external component reconfiguration by a specific set
of parameters sent from a separate controller component. The configuration ports are used for
both structure reconfiguration by managing mode-selection components and buffer sizes as well
as specific quality level control of processing elements.

The rest of the report is structured as follows; Section [2] provides background information
regarding BIP, modal flow graphs, and QoS. In Section [3| the problem is presented through our
case study of a real-life ultrasonic application. Following, Section [4] describes our generic approach
for modeling image processing applications, with the use of modal flow graphs, that provides QoS
management and guarantees deadlock-freedom and confluence. Section [f] illustrates our approach
on a case study, emphasizing the QoS management by application structure. Finally, in Section [f]
we conclude and present ideas for future work.

2 Background

In this section we first present the essential background information, which starts with a general
description of the BIP (Behavior-Interaction-Priority) framework. Then we talk about a specific
part of this framework, namely modal flow components and graphs. We conclude the section with
the description of QoS management technique for multimedia systems.

2.1 BIP Framework

BIP [1] is a framework that provides essential means for rigorous design and modeling of hetero-
geneous systems. The BIP framework allows the modeling of systems as composition of atomic
components by encompassing three layers: Behavior, Interaction and Priority. The behavior of
each atomic component is described as 1-safe priority Petri-net extended with data and ports. The
composition of these components is supported by the Interaction and Priority layers. Interactions
between components, which are specified by connectors [2], are used to define the way systems are
composed of components. Priorities are used to eliminate conflicts between interactions and thus
restrict non-determinism.

In BIP the execution is driven by the BIP engine which has all the necessary information
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Figure 1: Example of Modal flow component.

about the components, their connectors and the associated priorities. At every execution cycle,
the engine receives information about the set of active ports for each of the atomic components.
It then computes the set of interactions that have maximal progress and if there are more than
one, picks one of them non-deterministically. The engine notifies the components of the chosen
interaction and computes the associated data transfers. Each of the notified components then
performs the associated transition and updates its state.

2.2 Modal Flow Graphs and Well-triggered Components

Modal flow components and modal flow graphs [3] are part of synchronous BIP and are used
to model systems that are composed of synchronous components. Modal flow components are a
particular class of 1-safe priority Petri-nets, extended with data and ports. As a result, modal
flow components can directly be translated into 1-safe Petri-nets, following the semantics defined
in [3]. These Petri-nets define the behavior of each component.

In modal flow components the dependency relations between events/actions are expressed using
three kind of causal dependencies [3]:

e Strong: An event ¢ strongly depends on p if the occurrence of p must always be followed
by ¢. That is p and ¢ can not happen independently.

e Weak: An event ¢ weakly depends on p if the occurrence of p may be followed by ¢. That
is either p happens or the sequence pq happens.

e Conditional: An event ¢ conditionally depends on p if both p and ¢ occur, then p must
be followed by ¢. Otherwise p and ¢ can occur independently.

In Figure [1, an example of a modal flow component is depicted. In the figure, solid arrows
with filled arrowheads depict strong dependencies, solid arrows with normal arrowheads depict
weak dependencies and dashed arrows depict causal dependencies. The rectangles represent ports
and their associated data. This notation will be used in the rest of the report.

In this example, a component is presented that can receive an input, process it and depending
on the size decide to compress it, or not, before delivering the output. In Figure [1] it is depicted
that Output strongly depends on Process, which, in turn, strongly depends on Input. This means
that the component provides an output after processing, which, in turn, may occurs only after the
component has received an input. It must be noted that this implies that the component, once
the input is received, will obligatory process it and consequently produce the output.

Furthermore, Compress weakly depends on Process, which means that compression may occur
after the processing. This depends whether the associated guard of that port, enclosed in square



brackets, validates to true. Also, Output conditionally depends on Compress, that is if both occur
then compression must happen before delivering the output. Finally, underneath each port the
update functions are placed, which describe the associated computations.

Well-triggered components are modal flow components for which deadlock-freedom and con-
fluence are guaranteed by construction iff the following constraints are met [3]:

e The causal dependency graph has no cycles.

e Each port has either strong or weak causes, but not both.
e Each port has at most a minimal strong cause.

e Each port that has strong causes, must have its guard true.

The example presented in Figure [1| is a well-triggered modal flow component. Interestingly,
these constraints, e.g. graph acyclicity, are easy to check, either manually or automatically.

Well-triggered components can be composed based on interactions among their ports. The
result of the composition is the modal flow graph that defines the behavior of the whole system.
It must be noted that composition is a partial operation. This means that the composition of
well-triggered components does not guarantee that the resulting modal flow graph will be well-
triggered as well. Thus, in order to guarantee deadlock-freedom and confluence the constraints
must be validated on the final modal flow graph.

As a result of confuency of well-triggered modal flow graphs, the existence of the BIP engine,
that is present in classic BIP, is redundant and unnecessary. The engine is considered redundant
since the confluent behavior of synchronous systems results in a deterministic execution of inter-
actions. The engine is unnecessary as it introduces an extra processing overhead. This overhead
originates from the fact that the BIP engine at each execution cycle computes the set of maximal
interactions. Based on the confluent behavior of synchronous systems, this can be replaced by a
single predefined scheduling of interactions out of all the possible ones. Finally, as a consequence
of confluency in BIP components, code generation is possible.

2.3 QoS

There exist different approaches to systems design that address different levels of systems critical-
ity. Currently, these systems are classified as safety-critical or best-effort systems. Safety-critical
systems require high level of correctness, meaning no violation of critical constraints, e.g. timing
constrains, when all the deadlines must be met. Engineering of such systems uses a conservative
approach based on the worst-case execution time, which is often largely over-estimated and, there-
fore, implies not optimal or even redundant use of available resources. The best-effort systems are
more relaxed in terms of critical constrains, where occasional miss of deadlines will not cause any
hazardous outcomes. The design of such systems is mainly targeting efficient and optimal use of
available resources.

Design of medical ultrasonic systems require meeting both critical and best effort properties.
Such engineering approach is addressed in [5]. The authors proposed a method for fine grain QoS
management of real-time applications, which allows the run-time adaptation of overall system
behavior. The proposed approach provides control over three main properties:

e Feasibility, that is no deadline is missed;

e Optimality, that maximizes the use of available resources, e.g. provide the best QoS within
specified resource constraints;

e Smoothness of quality levels, that is of particular importance to the multimedia applica-
tions.



Such QoS management considers a single-threaded process network application, which cycli-
cally performs data transformation. Possible QoS levels and platform-dependent timing informa-
tion of processing components must be provided as an input. The coordination of components
execution is then controlled by a controller that monitors the progress of the computation within
each cycle.

3 Reconfigurable Multimedia Systems

Generally, image processing and its applications follow the input-process-output paradigm. More
specifically, an image processing application can be analyzed in several stages of computation,
each of which receives the result of the previous computation stage as input, processes the input
and delivers the output to the next computation stage.

This paradigm inherently enforces the components of an application to form processing pipelines.
It is important to note that different pipelines may achieve their outputs with different quality
characteristics, resource requirements and/or implementation. For example, in Section differ-
ent ultrasound imaging pipelines for B-mode are presented. Another typical example of that are
pipelines that perform the required processing on raw images and then compress them, compared
to pipelines that first compress the images and then perform the required processing [8]. The
former, usually requires more resources but achieves better quality, while the latter requires less
resources but results in degraded quality.

It is apparent that even if both pipelines deliver same outputs, their implementation may differ
substantially since required processing actions performed on images have different nature.

To this end, we distinguish two different approaches for quality management:

e QoS by structure: In this approach, different quality outcomes are achieved based on the
mode of processing pipeline (i.e. processing first, compression first, etc).

e QoS by precision: In this approach, having a concrete pipeline, different quality outcomes
are achieved based on the parameters of the processing components (i.e. low compression-
rate).

In this work we focus on providing a framework to model image processing pipelines that can
be reconfigured by combining different modes in order to encompass QoS by structure.

3.1 Case Study

There exist several types of imaging applications that are based on ultrasound waves, including
A-mode, B-mode (or 2D-mode), Doppler mode, Harmonic mode, and many others [4]. B-mode
(brightness mode) ultrasound application is the most-known imaging technique due to its vast
applicability in several diagnostic domains.

In B-mode an array of transducers, called the probe, emits a beam of ultrasound waves and
scans a plane through the body, which is then transformed into a two-dimensional image on a
screen. There are variations of this technique that affect not only the way the retrieved signal is
processed, but also the quality of the output image. Such variations include, but are not limited
to:

e the mode of processing (baseline, in-phase and quadrature, frequency compounding, spatial
compounding);

e the shape of the probe (linear, convex, phased array, etc);

e the type of the beam wave (planar, curved, etc);



RF Beam
Processing Forming
A

Delay
= HP Filter = Apodization
Sum

Hilbert LP Filter Log . Scan» Rescale
Compression Conversion
[{ J L
g

Time Gain
Compensation

)

28
Demodulation Base Band
Processing

Figure 2: Baseline B-mode Processing.

Demodulation
A

f
Beam
BP
Formin ) Hilbert HLP Filter
; i 8 . Filter

Delay P
= Apodization Filter H Hilbert HLP Filter Sum
Sum
BP " .
Filter Hilbert LP Filter

Figure 3: Frequency compounding.

e the angle of steering of the beam.

In this report we focus on the algorithmic part of the variations of ultrasonic techniques, namely
modes of processing. Generally, B-mode imaging consist of four processing stages; i) RF processing,
ii) Beamforming, iii) Demodulation, iv) Baseband processing. These stages are comprised of
several components, the ordering of which may slightly vary depending on the processing mode.
More specifically, we consider the following modes:

1. Baseline B-mode Processing: This is the typical processing pipeline as depicted in Figure 2]

2. Frequency Compounding: In this mode multiple bands are separately demodulated and
then summed. As a result, the output image has less high-frequency noise but also lower
resolution. This mode differs from the Baseline B-mode Processing only in the Demodulation
stage. The modified Demodulation is depicted in Figure

3. Spatial Compounding: In this mode, instead of a single beam, several beams are emitted
with different types (e.g. steered, curved, etc). Since multiple firings are used to reconstruct
a single image, this procedure increases resolution. This mode differs from the Baseline B-
mode Processing only in the Baseband stage. The modified Baseband processing is depicted
in Figure [

4. I/Q mode: In this mode, in contrast with the aforementioned modes, the Demodulation stage
occurs before Beamforming. The output quality depends on the subject under study (e.g.
normal tissue, abdomen, etc.) as well as the configuration parameters of the components.
The whole pipeline for this mode is depicted in Figure

The quality of the resulting image depends on various aspects. It may depend on parameters set
of each component. For example, a low-pass filter with higher filter order, i.e. cut-off quality, will
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result in a signal less contaminated with frequencies higher than cut-off frequency. Alternatively,
the quality of the final image is also determined by the choice of the B-mode pipeline.

In this report we exploiting the possibility to achieve optimal quality outcomes by reconfiguring
the mode of operation. In this case study, we also focus on minimizing the program memory, that
is to avoid redundant components where possible. The reason is that such over-provisioning may
have a direct impact on implementation cost (i.e. in a FPGA implementation).

4 Components framework

In this section we present the framework of the classified components required to model ultrasound
image processing that allow to provide QoS not only by structure, but also support QoS by
precision.

We also show that their composition results in well-triggered components. This formal specifi-
cation guarantees that the final pipeline, which is composed of these components, is deadlock-free
and confluent.

In order to model reconfigurable multimedia systems, we consider the following components:

e Processing Components: These components are the building blocks that follow the input-
process-output. They are responsible for applying the necessary transformation to the input
in order to get the desired output. They may have multiple inputs and/or outputs but to
simplify we will refer them as input and output, respectively.

e Memory Components: These components are necessary for storing images between stages
that produce multiple outputs which have to be processed separately. For this reason they
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Figure 7: N-read Buffer Component of size s.

must support multiple reads of the same value. They may have multiple inputs, but only a
single output. There are several possible different types of memory components that can be
modeled, such as FIFO, LIFO, etc. Following in this section, an N-read buffer is formally
defined.

o Accumulating Components: These components are necessary for combining multiple images
into a single one (e.g. different color channels). They may have multiple inputs, but only a
single output. Following in this section, an N-write accumulator with a single input and a
single-output is defined.

e Mode-selection Components: These components allow the reconfiguration of the pipeline. It
has a single input and multiple outputs, one of which is active at any time, based on the
mode.

Based on this components, it is possible to model complex pipelines that can be reconfigured
and provide QoS by structure. In order to support QoS by precision, each of the aforementioned
components must have a configuration port that will allow modification of the processing param-
eters.

4.1 Processing Component

In Figure [6] the main building block of a pipeline, the processing component, is presented as
a well-triggered component. This component is responsible to receive an input, process it and
finally output the result in one computation step. At the beginning of each computation step the
component can receive new configuration parameters from the Conf port. It is assumed that the
component is initialized with default parameters.

In ultrasound applications the processing component, receives at the Input port a 2-dimensional
array that represents the image. Similarly, the component exposes the image at the Output port.
The Process port is needed to signal that the processing has been performed. Finally, the Conf
port is used to configure the component with appropriate parameters.

The strong dependencies between these ports enforce the input-process-output paradigm. The
conditional dependency between the Conf port and the Input port implies that if both happen
at same computation step, the configuration of the component must occur before the component
receives the input. That means that a) the component can receive new configuration if there is
no input to process; b) the component can receive the input and process it if there are no new
configuration parameters; c) the component will receive first the new configuration parameters
and then process the input based on these new parameters.
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4.2 N-read Buffer Component

Figure [7] presents a buffering element, of size s as a well-triggered component. Following the
standard notation, this component receives an image from the Input port and stores it internally,
by copying the image to the memory and adjusting the front pointer f and the element counter c.
The Output port exposes the oldest image stored internally, and when the image is read N times,
the rear pointer r and the element counter ¢ are adjusted. To achieve that behavior the output
counter o and the next index n are used. The Output port is active, i.e. can be executed, only
when the element counter is greater than zero, that is there is at least one image stored. Similarly,
the Conf port is active only when there is no image in the buffer.

Storing and retrieving an element from a buffer can occur in arbitrary orderings. It is assumed
that the buffer can execute both in a single computation step. Based on this assumption, Input
and Qutput can occur independently, but if they occur in the same computation step Output
precedes Input.

Finally, based on this well-triggered component, an unbounded buffer can be modeled as well by
simplifying the update functions for the position pointers f and r, f:=f+1 and r:=r+1 respectively.
A typical 1-read buffer can also be modeled by eliminating the update functions for o, n and replace
them with the value of 1.

4.3 N-write Accumulator Component

Similar in logic to the buffer component is the accumulator component presented in Figure[8] This
component when it receives a new input, it accumulates (e.g sum, average, select min/max, etc.)
the new input with all the previously received inputs. When it has received N inputs, it outputs
the result and empties the data in order to receive new inputs.

4.4 Mode-selector Component

Another important component required to model multi-mode processing pipelines is that of the
mode-selector. The role of this component is to direct the received input to the correct output
and thus change the processing pipeline.

In Figure [9 a selector component that supports two modes is presented. In this component
the Output! and Output2 ports weakly depend on the Inmput port. This means that the input can
be received without producing any output, in the case when the selected mode is not valid. As in
all previous cases the Conf precedes the Input port for the aforementioned reasons.

As with the processing component, the mode-selector component can be extended in multiple
outputs, in a similar manner.



L LUTDUTAINDUTE |
inputa] xa | QuiputAinputd [v8 [outoutE

vA, xB
InputA | ProcessA OutputAlnputB | ProcessB w/Outputy
Ll 4h Ll Ll
/ i
S/ InA = xA DataA := ! yA:= DataA DataB := yB := DataB

fA(InA, paramsA) " xB:=yB f(InB, paramsB)

ConfB : | *AyA,xB,yB: float[][] |
| )

paramsA := pA InA,DataA,InB,DataB: float[][] |
DA paramsB :=pB | pB : pA,pB: ParamTypel[] |
ConfAl [Processal ConfB [Processp| ————————————-—"——-—~

Figure 10: Composition of a Processing with another Processing component.

4.5 Composition of components

The framework components presented earlier, namely processing, buffer, accumulator and mode-selector
components, are well-triggered. In order to construct deadlock-free processing pipelines from such
components we have to reason if their composition results in well-triggered components as well.
Composition is performed by merging the interacting ports and inheriting the dependencies from

all the interacting ports. To check that the result is still well-triggered the following constraints
must be met [3]:

e The causal dependency graph has no cycles.

e Each port has either strong or weak causes, but not both.
e Each port has at most a minimal strong cause.

e Each port that has strong causes, must have its guard true.

Following, a proof scetch is presented, regarding that the result of the composition of the
framework components is well-triggered.

Processing - Processing: In Figure [I0] the composition of a processing with another pro-
cessing component is presented. It is clear that the result is a well-triggered component if these
are connected in series, that is the output of the former becomes the input of the latter.

Processing - Mode-Selector: In Figure the composition of a processing with a mode-
selector component is presented. Combining a processing component with a mode-selector compo-
nent, in terms of connecting the respective output and input, results in a well-triggered component,
since the mode-selector has no strong causes and no cycle is created, as can be seen in the figure..

Processing - Buffer: The same holds for combining the output port of the processing compo-
nent with the input port of a buffer. In Figure[l1]|this composition is presented. Their composition
is well-triggered, as the processing component has only strong causes and the input port of the
component has only one strong cause and no weak causes.

Processing - Accumulator: Similarly, combining the output of a processing component
with the input of an accumulator produces a well-triggered component. Indeed, in Figure [[3] the
resulting graph has no cycles and the accumulator component has only one strong cause and no
weak causes.

Accumulator - Mode-Selector: The composition of an accumulator component with a
mode-selector component, by connecting their respective output and input ports, results in a well-
triggered component, as depicted in Figure[I4] Although, the output port of the accumulator has
a guard, the mode-selector has no strong causes and the resulting graph has no cycles.

10
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Accumulator - Processing: Combining, on the other hand, the output port of the accu-
mulator component with the input port of a processing component is not straightforward. The

11



OutputAlnputB
vA, xB
[m==0]
OutputBl]
) OutputAlnputB /B = DataB
4 T
| tAl xA e QutputBll
fod s yA := DataA [m==1] [veloutouts]
DataAl := empty() OutputB2 zBlOutputB?
=1
paramsB := pB BE;tlaEﬁly: xB zB := DataB
|
I
A
InputA > AccumulateA
. 7
-~ DataA := fA(xA DataA,N)
c= o] c:=c+l
T
paramsA := pA I xAyA xB,yB,zB: float[](] :
: DataA,DataB: float[][]
DA |__ PAPB: ParamTypel]l |
ConfA AccumulateA

Figure 14: Composition of an Accumulator with a Mode-selector component.

output port of the accumulator has a guard, but this does not violates the constraints, since when
the two ports are merged, the resulting port has no strong causes. Thus, the resulting component
is a well-triggered component, as depicted in Figure

Buffer - Processing: Similarly, combining the output port of the buffer component with the
input port of a processing component results in well-triggered component, as after the combination
the resulting port has no strong causes. This is depicted in Figure 7?7

Mode-Selector - Processing: In the same manner, combining the output port of a mode-
selector component with the input port of a processing component results in a well-triggered
component, presented in Figure [I7], despite the guards.

Mode-Selector - Buffer: Finally, the same holds for combining the output port of a mode-
selector component with the input port of a buffer. Their composition is well triggered, as in
Figure since no cycles are created and the guards belong to ports with no strong causes.

It must be noted that there are several possible ways to combine these framework components.
Nevertheless, the most interesting combinations, that can be used in processing pipelines, are
those presented above.

5 QoS by Topology Reconfiguration

QoS by topology reconfiguration concerns the management of quality solely through the recon-
figuration of the pipeline structure and not the configuration of its components. Figures
depict three consecutive parts of the reconfigurable pipline that consolidates the B-mode pipelines
presented in Section 3.1

This consolidated pipline enables quality management by merely altering only the topology
of the pipeline based on the mode of operation, that is without changing the parameters of the
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Figure 15: Composition of an Accumulator with a Processing component.

s
s

OutputAlnputB

yA := DataA
Datad := empty()
c:=0

vA, xB
InputA] xA| [y8loutoutd
QutputAlnputB w| ProcessB n|OUtputy
p Ll Ll
,
/ | DataB := yB := DataB

f(InB, paramsB)

B := |yA
paramsB := pB o iﬁl <B
|
|
A
InputA | StoreA
L
Py
~7 DataA[f] := xA
c==0] o= (f+1)%s
cmerl
T l— fr.c,0,n,s,N: int :
paramsA := pA I xA,yAxB,yB: float{][] |
DataA,InB,DataB: float[][]
DA : pA,pB: ParamTypel[] :
ConfA | StoreA| |Prnre¢.qP.| ——————————————

Figure 16: Composition of a Buffer with a Processing component.

processing components.
Every component of this pipeline is represented by one of the framework components, namely
mode-selector, buffer, accumulator and processing component, that were defined in Section [
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Figure 17: Composition of a Mode-Selector with a Processing component.
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Figure 18: Composition of a Mode-Selector with a Buffer component.
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Figure 19: RF Processing, Demodulation(I/Q mode), Beamforming.

Each component has an In (resp. Out) port that corresponds to Input port (resp. Output) as
defined for the processing components. Interactions between components are depicted with solid
lines connecting participating ports. Each component has a Conf port that can be used for QoS
managment by precision by altering the processing parameters of the components. Apparently,
parameters adjusted through the Conf port for the mode-selector, accumulator and buffering
components do not affect the quality per-se, as they do not perform any kind of processing.

In Figure the first two components perform the RF processing, which is the same for all
modes. After that, for all modes except from I/Q, the Beamforming is computed (by the delay-
apodization-sum component). As stated in Section in I/Q mode the Demodulation occurs
before Beamforming. This is depicted in the lower branch (green line) in Figure where the
mode-selector component is used to switch among the modes. Further, that branch rejoins the
normal pipeline in order for Beamforming to be performed.

Figure [20] depicts the Demodulation for Baseline, Frequency and Spatial compounding modes.
In Baseline (blue line) and Spatial compounding (red line) the demodulation is performed through
a hilbert-transformation followed by a low-pass filter. On the other hand, in Frequency compound-
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Figure 20: Demodulation (for all modes except I/Q).
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Figure 21: Baseband Processing (for all modes).

ing (black line) the image is passed multiple times through different band-pass filters, i.e spliting
the image into several new images of different frequency-bands. The splitting is performed by
using a buffer and reconfiguring the cut-off frequencies of the band-pass filter, rather than using
multiple fixed filters, in order to reduce the number of components and thus reduce program mem-
ory. These images are then demodulated in the same manner as Baseline and Spatial compounding
modes.

Figure depicts the Baseband processing for all modes. In Spatial compounding, which is
depicted on the top branch (red line), the multiple firings, which are required in this mode, are
averaged after the scan-conversion. After averaging several images, the processing continues with
log-compression followed by the rescaling so as to produce the final output. Similarly, in Frequency
compounding (black line), the different images produced previously, by the band-pass filter, have
to be summed-up. Then the same processing as with Baseline B-mode (blue line) is following.
Finally, in the bottom branch, the I/Q signals are combined in the power-envelope and in the
similar manner with the Baseline B-mode produces the final output.
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Figure 22: Simple QoS controller as well-triggered component.

It must be noted that the components Sum, Averaging and Power Envelope can not be modeled
as processing components. Instead, they are modeled as accumulators. Similarly, the buffers
present in this pipeline should be unbounded N-read buffers, where each them has an appropriate
value of N.

This consolidated pipeline supports both QoS by structure based on the choice of a particular
pipeline mode, and QoS by precision, where each component can be reconfigured separately. It
also consists of well-triggered components, which can ensure deadlock-freedom and confluence. In
Figures [I9}21] there are some components with input ports belonging to more than one interaction,
which is not allowed in modal flows in general. This can be resolved by manually implementing
that part of the system. Of course, this may result in a non deadlock-free system and need to be
further studied.

Finally, in Figure [22] a simple QoS controller is presented as a proof of concept that such
a controller can be designed following the well-triggered paradigm. As such, the controller can
be combined with the aforementioned pipeline and thus have a fully deadlock-free and confluent
system that supports QoS management. This controller has two input ports, through which it
receives the values ¢r (quality with respect to resolution) and ¢gn (quality with respect to noise).
The controller chooses the appropriate mode by comparing these values with the thresholds @R,
@N. To make this more clear, the thresholds QR, QN distinguish the “high” and “low” quality
for noise and resolution, respectively, while the input values are the desired quality levels. For
example, if the requirements for quality with respect to resolution is “high” and the requirements
for quality with respect to noise is “low”, then the controller chooses mode m=1, which is then
trasmitted to the mode-selector components that perform the choice of the porcessing mode.

6 Conclusion & Future Work

Ultrasonic imaging applications require high quality of images produced in real-time with limited
resources available. In this context, feasibility, optimality and quality control are of significant
importance, but the safety-critical nature of such applications requires guarantees that the system
will be deadlock-free and confluent. We present an approach to model such applications using
a synchronous computation model. Our approach is based on Modal Flow Graphs, which is a
formalism that encompasses a synchronous computation model and guarantees by-construction
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deadlock-freedom and confluence provided the system satisfies some easy-to-check structural con-
straints.

There are two aspects of QoS management; QoS by precision is based on adjusting the pa-
rameters of some components of the computation chain, whereas QoS by structure is based on
changing the topology of the computation chain. We have presented a model of the pipeline that
consolidates four modes of ultrasound B-mode processing and provides quality control by struc-
ture through pipeline reconfiguration, as well as supports quality control by precision through the
adjustment of computational parameters at the component level.

We have introduced framework components, which are well-triggered modal-flow components,
that can be used to build reconfigurable multimedia pipelines. We have identified the conditions
that must be satisfied by the interconnection structure among the components in order to preserve
deadlock-freedom and confluence. With the case study we have demonstrated how the processing
pipline of the ultrasoic application can be composed out of these framework components.

Finally, we have presented a simple QoS controller as a well-triggered component which when
combined with a reconfigurable pipeline results in a fully deadlock-free and confluent system that
supports QoS management by topology reconfiguration.

As part of on-going and future work, in the context of our case study, we are investigating
parameters (e.g. variable cut-off frequencies of the filters, levels of saprcity of the computation
matrixes, etc.) and constraints (power, time) that affect the QoS management. Based on that,
we are planning to extend the quality controller to take into account parameters and constraints
of the underlying platform and provide optimal use of resources.

Acknowledgements The work described in this report is part of the UltrasoundToGo
project. The aim of this project is to develop a scalable low-power, high-performance, trusted
platform for 3D portable ultrasound imaging systems.
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