000197780 001__ 197780
000197780 005__ 20190812205743.0
000197780 037__ $$aCONF
000197780 245__ $$aConvex computation of the maximum controlled invariant set for discrete-time polynomial control systems
000197780 269__ $$a2013
000197780 260__ $$c2013
000197780 336__ $$aConference Papers
000197780 520__ $$aWe characterize the maximum controlled invariant (MCI) set for discrete-time systems as the solution of an infinite-dimensional linear programming problem. In the case of systems with polynomial dynamics and semialgebraic state and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality relaxations of this problem that provides outer approximations with guaranteed set-wise convergence to the MCI set. The approach is compact and readily applicable in the sense that the approximations are the outcome of a single semidefinite program with no additional input apart from the problem description.
000197780 700__ $$0246186$$g219039$$aKorda, Milan
000197780 700__ $$aHenrion, Didier
000197780 700__ $$aJones, Colin
000197780 7112_ $$dDecember 10-13, 2013$$cFlorence, Italy$$aIEEE Conference on Decision and Control
000197780 8564_ $$zn/a$$yn/a$$uhttps://infoscience.epfl.ch/record/197780/files/mci_outer_conference.pdf$$s688851
000197780 909C0 $$xU12397$$pLA3$$0252490
000197780 909CO $$ooai:infoscience.tind.io:197780$$qGLOBAL_SET$$pconf$$pSTI
000197780 917Z8 $$x219039
000197780 937__ $$aEPFL-CONF-197780
000197780 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000197780 980__ $$aCONF