1194

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

Online Energy-Efficient Task-Graph Scheduling for
Multicore Platforms

Karim Kanoun, Nicholas Mastronarde, Member, IEEE, David Atienza, Senior Member, IEEE,
and Mihaela van der Schaar, Fellow, IEEE

Abstract—Numerous directed acyclic graph (DAG) schedulers
have been developed to improve the energy efficiency of various
multicore platforms. However, these schedulers make a priori
assumptions about the relationship between the task dependen-
cies, and they are unable to adapt online to the characteristics
of each application without offline profiling data. Therefore, we
propose a novel energy-efficient online scheduling solution for
the general DAG model to address the two aforementioned prob-
lems. Our proposed scheduler is able to adapt at run-time to the
characteristics of each application by making smart foresighted
decisions, which take into account the impact of current schedul-
ing decisions on the present and future deadline miss rates and
energy efficiency. Moreover, our scheduler is able to efficiently
handle execution with very limited resources by avoiding schedul-
ing tasks that are expected to miss their deadlines and do not
have an impact on future deadlines. We validate our approach
against state-of-the-art solutions. In our first set of experiments,
our results with the H.264 video decoder demonstrate that the
proposed low-complexity solution for the general DAG model
reduces the energy consumption by up to 15% compared to an
existing sophisticated and complex scheduler that was specifically
built for the H.264 video decoder application. In our second set
of experiments, our results with different configurations of syn-
thetic DAGs demonstrate that our proposed solution is able to
reduce the energy consumption by up to 55% and the deadline
miss rates by up to 99% compared to a second existing schedul-
ing solution. Finally, we show that our DAG flow manager and
scheduler have low complexities on a real mobile platform and we
show that our solution is resilient to workload prediction errors
by using different estimator accuracies.

Index Terms—Adaptive, directed acyclic graph, energy-
efficient scheduler, multimedia embedded systems, online.

Manuscript received September 29, 2013; revised January 18, 2014;
accepted March 11, 2014. Date of current version July 15 2014. This work
was supported in part by a Joint Research Grant for ESL-EPFL by CSEM, in
part by the BodyPoweredSenSE (20NA21 143069) RTD projects evaluated by
the Swiss NSF and funded by Nano-Tera.ch through the Swiss Confederation,
and in part by Grant NSF CNS 1016081. This paper was recommended by
Associate Editor Y. Xie.

K. Kanoun and D. Atienza are with the Embedded Systems Laboratory,
Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
(e-mail: karim.kanoun@epfl.ch; david.atienza@epfl.ch).

N. Mastronarde is with the Department of Electrical Engineering, State
University of New York at Buffalo, Buffalo, NY 14260 USA (e-mail:
nmastron @buffalo.edu).

M. van der Schaar is with the Department of Electrical Engineering,
University of California at Los Angeles, Los Angeles, CA 90095-1594 USA
(e-mail: mihaela@ee.ucla.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2014.2316094

I. INTRODUCTION

MERGING real time video processing applications such as
E video data mining, video search, and streaming multimedia
(see H.264 video streaming [13] or the new High Efficiency
Video Coding standard (HEVC) [17]) have stringent delay con-
straints, complex Directed Acyclic Graph (DAG) dependencies
among tasks, time-varying and stochastic workloads (due to
the underlying video source characteristics), and are highly
demanding in terms of parallel data computation. Multimedia
applications are in general modeled with DAGs where each node
denotes a task, each edge from node j to node k indicates that
task k depends on task j and each group of tasks has a common
deadline d;. As illustrated in the first layer of Fig. 1, DAG models
for applications with dependent tasks can be roughly classi-
fied into four types depending on the relationship between the
task dependencies and task deadlines. First, applications with
independent deadlines are modeled with independent DAGs
where each DAG models the dependencies among tasks that
share a common deadline. In Fig. 1, we illustrate two different
examples of independent DAGs models: DAG model 1 shows
a periodic DAG and DAG model 2 illustrates the general case
(i.e., aperiodic). Second, applications with dependent deadlines
are modeled with multiple connected DAGs where each DAG
models the dependencies among tasks that share a common
deadline. However, in this DAG model, there are also depen-
dencies between tasks with different deadlines. In Fig. 1, we
also illustrate two different examples of dependent DAGs: DAG
model 3 shows the widely studied fork-join model [16] where
only a single join edge links the last task with deadline d; to
the first task with deadline d;+; and DAG model 4 illustrates
the general case where a task’s children may have different
deadlines than the task itself and its other children.

The number of cores embedded in new mobile platforms is
continuously increasing (see Exynos 5 Octa [22], Tegra 4 [23],
and Snapdragon 800 [24]). Thus, numerous energy-efficient
task-graph scheduling algorithms [5], [8], [10]-[12] that take
advantage of dynamic frequency voltage scaling (DVFS)
enabled cores embedded in modern mobile platforms have
been proposed to schedule the aforementioned DAG models.
Approaches [10], [12] also take advantage of dynamic power
management (DPM) which is used to switch off unused cores
in order to reduce leakage energy. In [29], has been proved
that the leakage power also should be considered to minimize
the energy consumption. In Fig. 1, we first classify existing
solutions based on the applied DAG monitoring solution and

0278-0070 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KANOUN et al.: ONLINE ENERGY-EFFICIENT TASK-GRAPH SCHEDULING FOR MULTICORE PLATFORMS

1195

-— |Apphcatlon with dependent tasks| —_

__ Independent deadlines__

Periodic independent DAGs

Aperiodic independent DAGs

Dependent deadlines
— T

«
Connected DAGs: fork-join model Connected DAGs: general model

1) d (1) dy (1) d 1), d; (6 dy;) d,
N SN/ ! YN 3 i ¥ i
) 3,0 .0 O 2) (3! S 7\] {u\ !
DAG models holR oo Yaf L8 (9 1 a3 4
N Ye's ! ¥ NG D Y v
5) (6) (5 (6) (5 (6 Time 5 ! 10 (5 (16) Time
r i T i
DAG model 1 DAG model 2 DAG model 3 DAG model 4 (our model)
DAG Model 1 DAG Models 1.2.3 Application-specific DAG 2ILDAC model 25 4
DAG monitoring Offline monitoring Online monitoring e.g. H264 DAG online DAG Flow Manager (DFM)
solutions [10, 11] [5. 16,17, 18] monitoring [8] (Section II)
Energy-efficient Offline Semi-online Online scheduler [12] H.264 dedicated semi- online energy-efficient scheduler
hedulers heduler[10, 11] scheduler [5] (non-energy-efficient [16, 17, 18]) online scheduler 8] (Section IIL, contributions Table 2)

Existing approaches

Fig. 1.

their considered DAG models. We define the DAG monitoring
solution as the module used to process and analyze the DAG
before scheduling the tasks. While a scheduler is responsible
for core assignment and DVES selection, a DAG monitoring
solution is responsible for finding parallelization opportuni-
ties, tracking the execution of the DAG and preparing relevant
information related to each task in the DAG. Then, we further
categorize existing solutions based on their energy-efficient
scheduling analysis techniques (i.e., offline, semi-online and
online). Offline schedulers determine the scheduling policy
(i.e., list of possible scheduling decisions such as a look-up
table), core selections, and DVFS assignments at design-time.
Semi-online schedulers are similar to offline solutions except
that the scheduling decisions are made online based on the
current execution status of the application and the offline com-
puted scheduling policy. Finally, online schedulers generate a
scheduling decision based only on the current status of the
application without the need of any profiling data.

We contend that none of the existing online [12] and semi-
online [5], [8] scheduling approaches have considered the
general case of the DAG shown in Fig. 1 with DAG model
4, in which a task’s children can have different deadlines.
Instead, existing online and semi-online approaches convert
this type of DAG into a fork-join model, as illustrated in
DAG model 3 of Fig. 1. The fork-join parallelism model [16]
forces all tasks with deadline d; to finish processing before
any tasks with deadline d;;1 can be processed, thereby miss-
ing various parallelization opportunities, wasting energy, and
potentially increasing deadline miss rates. Only one semi-
online approach [8] has considered the multiple connected
DAGs model; however, this solution was only optimized for
H.264 video decoding and it requires profiling data to build
a look-up table for each video stream, which limits its ability
to be self-adaptive at run-time to different video workloads.
Finally, existing static approaches rely on worst case execu-
tion time and assume a periodic DAG (see DAG model 1 of
Fig. 1). Thus, they are not suitable for applications that adapt
their dependency structure on the fly at run-time and have
dynamic workloads (see stream mining applications [14]).

To summarize, each existing scheduler implements its own
DAG monitoring solution with several restrictions on the DAG
model. Moreover, none of the existing solutions are able to

Our proposed solution

Comparison of our application model, our online DAG monitoring solution, and our online energy-efficient scheduler among state-of-the-art solutions.

For each deadline: Multi-core platform

Adjacency matrix and dependencies K 1 Q Q D Q H
list with other deadlines d w: 1 : =[=[=]" ;

i o o } _____

Processing the full DAG by Information related to Scheduling the tasks

subsets of n deadlines in the buffer

each task in the buffer

Online DAG Flow Manager
\DFM - our previous work [23]|

Information related to
each deadline in the buffer

Online Energy-efficient
scheduler — Figure 7

Fig. 2. Overview of our novel scheduling approach for multicore platforms.

handle the general DAG illustrated in Fig. 1 in DAG model
4, which allows a task’s children to have different dead-
lines. Finally, existing scheduling solutions are unable to adapt
online to the characteristics of each application without the
need of offline profiling data.

To address the aforementioned problems, we propose a
novel energy-efficient online scheduler for multicore DVFS-
and DPM-enabled platforms for the general DAG model. Our
online scheduler integrates the DAG monitoring solution pre-
sented in [21] called the DAG flow manager (DFM). Fig. 2
illustrates the interconnection between the DFM and scheduler
modules and how they interact online with the application and
the platform.

The key contributions of our approach are as follows.

1) Our solution is a low-complexity online technique that
is fully independent from the considered DAG model.
It does not impose any restrictions on the DAG (see
restrictions on deadline dependencies as in the fork-join
model). Our scheduler covers online all DAG models
(Fig. 1).

Our scheduler is self-adaptive to the characteristics
of each application and does not require any offline
profiling data.

Our scheduler efficiently handles execution with very
limited resources by avoiding scheduling specific tasks,
that are expected to miss their deadlines, in order to
reduce the overall deadline miss rates.

5) Our scheduler is resilient to workload prediction error.

We validate our approach against existing solutions [8], [12].
In the first set of experiments, our results for the H.264 video
decoder demonstrate that our proposed low-complexity solution

2)

3)

4)

1196

for the general DAG model reduces the energy consumption by
up to 15% compared to a sophisticated state-of-the-art sched-
uler [8] that was specifically built for H.264 video decoding.
In the second set of experiments, our results with different
configurations of synthetic DAGs demonstrate that our pro-
posed solution is able to reduce the energy consumption by up
to 55% and the deadline miss rates by up to 99% compared
to a second existing scheduler [12]. Finally, we show that our
DFM and scheduler have low complexities on an Apple A6
SoC [25] and we show that our solution is resilient to workload
prediction errors by using different estimator accuracies.

The remainder of this paper is organized as follows. In
Section II, we first introduce our system and application
model and present the first phase of our approach namely
our online DFM to address limitations related to processing a
general DAG model online. Then in Section III, we describe
the second phase of our approach, namely, our online adap-
tive energy-efficient scheduling solution and how it exploits
the data prepared by our DFM. In Section IV, we present
our experimental results on the H.264 video decoder [1] and
also on different configurations of synthetic DAGs [6]. In
Section V, we describe the limitations of existing DAG mon-
itoring solutions and energy-efficient schedulers. Finally, we
summarize the main conclusions in Section VI.

II. PHASE 1: ONLINE DAG FLOW MANAGER (DFM)
A. Application and Platform Power Model

We model computationally intensive applications (see [13]
and [17]) as a DAG G =< N, € > of dependent tasks 7 with
nondeterministic workload w; and coarse-grained soft dead-
lines. \V is the node set containing all the tasks. £ is the edge
set, which models the dependencies among the tasks. Each
node in the DAG denotes a task #;. e;‘ denotes that there is a
directed edge from #; to #; indicating that task k depends on
task j. Each task 7 is characterized with its index j and a dead-
line d;. Our solution allows coarse-grained deadlines where a
deadline can be assigned to a subset of tasks indexed by i. Our
model covers all general DAG models (see all DAG models
of Fig. 1) including the general case where a task’s children
may have different deadlines than the task itself and its other
children (i.e., DAG model 4 of Fig. 1).

Our targeted multicore platform has M processors. The
major sources of power dissipation from each processor can
be broken down into dynamic power Py, and leakage power
Pieai [26]. The dynamic power consumption can be controlled
by the selected frequency and the supply voltage (see using
DVEFS) while the leakage power can be minimized with power
gating techniques (see using DPM). In our model, we assume
that each core has DVFES capability to trade off energy con-
sumption and delay. Each processor can operate at a different
frequency f; € [, where [denotes the set of available oper-
ating frequencies and f; < fij11. Finally, we assume that each
processor has two different modes namely, active and sleep
modes. In the active mode, the processor runs normally (i.e.,
full leakage power consumption) while in the sleep mode the
processor is power gated (i.e., inactive with reduced leakage
power consumption). Each time a processor is switched to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

$17)\818) 519

¥y

foo Timg

dii;

Fig. 3.
model.

H.264 decoder DAG model [13]. (a) Original model. (b) Fork-join

sleep mode, it requires Xy i, clock cycles to wake up and
switch to active mode. Our power model is based on the case
study realized in [26].

B. Limitations of Existing DAG Models

The H.264 decoding process is characterized by coarse-
grained deadlines. An example of these deadlines and the
dependencies between I, P, and B frames is illustrated in
Fig. 3(a) where I-frames are compressed independently of the
other frames, P-frames are predicted from previous frames, and
B-frames are predicted from previous and future frames [13].
Each frame is composed of three types of tasks, namely, initial-
ization (see i), slice decoding (here we illustrate three slices
per frame, see s», 53, and s4) and the deblocking filter (see f5).
In the example shown in Fig. 3(a) with four frames (I-B-P-B),
there are two deadlines corresponding to the display deadlines
of the two B frames. These deadlines are imposed by the frame
rate and the underlying dependency structure. For instance, if
the decoder is running at 30 frames per second, then frame k
has to be displayed at k/30 s (display deadline). However, if
frame k depends on frame k+ 1/ (with [> 0), then both frames
will have their deadlines set to the minimum one, i.e., k/30 s
(decoding deadline). Finally, in this DAG model, a task’s chil-
dren may have different deadlines (see [fs — i¢, f5 — i16]) as
in the 4th DAG model in Fig. 1.

Existing approaches (see Section V) do not consider DAG
models where a single task’s children can have different dead-
lines [see Fig. 3(a)]. Therefore, they are not able to correctly
handle such DAGs without applying additional modifications.
In fact, existing approaches are forced to use the fork-join
DAG model as presented in Fig. 3(b) where critical edges (i.e.,
edges linking a task to other tasks having different deadlines)
are removed and replaced by a single join edge that links
the last task with deadline d; to the first task with deadline
dit+1. Although the fork-join model preserves the dependency
coherency between tasks, it restricts the scheduler to oper-
ate one deadline at a time (i.e., the earliest deadline). Hence,
several parallelization opportunities are missed.

C. Our Proposed Online DAG Flow Manager

In our solution, we integrate the DFM that we proposed
in [21] to monitor general DAG models and to prepare a set
of outputs for our scheduler. In this section, we only provide
a brief description about the DFM applied task decomposition
and the outputs it generates for our scheduler. Full technical
details about the DFM are provided in [21].

KANOUN et al.: ONLINE ENERGY-EFFICIENT TASK-GRAPH SCHEDULING FOR MULTICORE PLATFORMS

li+2,5 =5 Time

d'+1 di+2

i

Fig. 4. Decomposition applied by our DFM on H.264 DAG [13].

We define T; as the subset of tasks having the same deadline
d; (we refer to T; as a deadline task set). We also define the
Working Set WS as a look-ahead window buffer with N T;s.
The DFM processes the full DAG of the application using
this WS buffer where only a limited number of deadlines are
monitored at a time. When all of the tasks in deadline task
set 7; finish executing, the DFM requests the next 7; input
from the application. Each T; is associated with an adjacency
matrix, a deadline and a list of edges connecting it with 7j4;
(with [#£ 0). This information must be provided to the DFM
by the application. Analyzing the full DAG of an application
by subsets of N deadlines (see T;s) is the key to having a low
complexity online DAG monitoring solution.

We denote by /;x the group of tasks 7; having the same
depth level Sf = k in T;. Note that, for all tasks in Tj, tasks at
depth level k+ 1 (see /; x+1) can only be scheduled after tasks
at depth level k (see /; ;) are finished. Fig. 4 illustrates in detail
the difference between #;, T;, and [; ; after applying the DFM
algorithm on a WS buffer containing part of the DAG of the
H.264 video decoder from Fig. 3. The DFM provides an output
structure called the Priority Table to assist online schedulers
with immediate parallelization opportunities and the priorities
of the available tasks. Each entry in the Priority Table cor-
responds to a task #;, which is characterized by its estimated
workload w; (clock cycles), its fixed deadline d’ (seconds),
with j € T;, and the dependency status 7; (see the total num-
ber of incomplete parent tasks that it still depends on). The
tasks in the Priority Table are sorted by the DFM according
first to their deadline d;, then refined to their depth level /; x
in 7; and finally to their estimated workload in case of a tie.
Several workload estimation methods [3], [20] with negligible
overhead have been proposed for multimedia applications. In
our DFM, we use a workload predictor based on the Kalman
filter [3] to estimate the workload of each task.

The DFM indicates to the scheduler which tasks are entry
nodes in the remaining tasks set using the dependency status
rj of each task #;. Nodes with ; = 0 in the Priority Table
are potential starting tasks for parallelization. The DFM pro-
vides also output to track the overall progress of each group
of tasks 7; such as total workload, executed workload, sched-
uled workload. Finally, for each 7; in the working set buffer,
it provides information related to each /;; in 7;, namely, the
total workload, the maximum number of allowed cores and
the minimum amount of parallelizable workload.

1197

III. PHASE 2: ONLINE ENERGY-EFFICIENT
ADAPTIVE SCHEDULER

A. Problem Statement

Given a multicore platform with M cores, k frequencies and
two power modes (i.e., active and sleep mode) per core, and
the output of the DFM, namely, the Priority Table, the depen-
dency status r;, the depth values 8‘{» , the estimated workload w;
of each task #; and the overall progress of each group of tasks
T;, the goal is to find an online schedule that is fully adaptive
to the different application characteristics that minimizes the
deadline miss rate and the total energy consumption of the
available cores, without the need of any offline profiling data.
The proposed scheduler should be able to efficiently sched-
ule multiple deadlines simultaneously (i.e., frequency selection
and core assignment for each task) and to decide when to
switch cores to sleep mode. Finally, the proposed scheduler
should automatically detect when a system is very congested
and avoid scheduling tasks that are expected to miss their dead-
lines and do not have an impact on future deadlines in order
to reduce the deadline miss rate.

B. Motivational Example: Scheduling General DAG
Models with Dependent Deadlines

We compare our scheduling solution to an online sched-
uler [12] that applies the least possible restrictions on its
application model compared to other state-of-the-art solutions.
We use a general DAG model with dependent deadlines as
illustrated in Fig. 5(a). In [12], an online scheduling approach
called was proposed for multimedia applications, where the
earliest deadline is scheduled with limited consideration of
future tasks’ deadlines and workloads. Indeed, based on the
derived estimated duration of all pending tasks, a new virtual
deadline is set in order to have more balanced workload dis-
tribution over the time. The number of required active cores
for the next deadline is computed based on the estimated
energy consumption to complete available deadlines in the
buffer for different cores configurations. Then, a largest task
first (LTF) schedule is applied and each core is given a mini-
mum frequency that meets its assigned workload requirement
for the next deadline. Fig. 5(b) shows how the M cores-Largest
Task First-Dynamic Power Management (MLTF-DPM) algo-
rithm [12] schedules the task set illustrated in Fig. 5(a)
along with the tasks’ workloads and deadlines (in time slots).
For this example, we assume that there are two cores in
the platform and each core has two frequency/voltage pairs
(ff = I vy and (ff = fuax, V2) with Vi < V5 and
k = (1 or 2). For instance, task 1 (i.e., f1) will require one
time slot when executed with 5 and two time slots when
executed with f;. As shown in Fig. 5(b), one out of the
two deadlines is missed and all the scheduled workload is
executed with f,,,. Clearly, schedulers assuming a fork-join
model are unable to produce a balanced workload, which
results in several wasted gaps (i.e., when a core is idle and
waiting for another task to finish). In the next section we
present an overview of our proposed scheduling solution and
we show how it can efficiently schedule the general DAG
in Fig. 5(a).

Tasks workload
1-5,7-9, 10, 1
11, 13,14, 16
6,9,12,15,18 2
17 3
Deadlines | value
d, 12
d, 16
(a)
’H Unused Gap D T, tasks D T, tasks D DVFS applied with fm‘é ‘

ENO N0 SN S S
B oA NS D0 2 a0 S
(C)
6 dz
Corel WL t6 ?& ty J_g tu J% t17 :T
005 Check /

(d)

Energy-efficiency check: ?
Priority for filling these gaps is switched to tasks in T, DVFS applied
(e)

Fig. 5. Motivational example for our proposed energy-efficient scheduler. (a)
Motivational example: dependent deadlines DAG (general case). (b) Fork-join
scheduling model [12]. (c) Filling the gaps without QoS and energy efficiency
checks. (d) Filling the gaps: QoS check applied. (e) Filling the gaps: QoS and
energy-efficiency checks applied.

C. Overview of the Proposed Scheduling Solution

For a working set buffer with N deadlines monitored by
our DFM, we define T, as the subset of tasks with the earliest
deadline d, and T,y; (with 0 <[< N) as the subset of tasks
with a future deadline d.4;. When all the tasks in 7, are sched-
uled then 7,4 will become T,. We identify then N subsets of
tasks to schedule (i.e., Te, Te+1,. .., Te+N—1). Given this work-
ing set decomposition provided by our DFM output, first we
tune the deadline value of each T; in the WS buffer in order
to create more balanced workload over the time. Then, and
as illustrated in Fig. 6, we propose two different scheduling
algorithms running at the same time and cooperating together
to schedule available tasks in the WS buffer. While, the first
scheduling algorithm is responsible for mapping tasks with the
earliest deadline (i.e., T,), the second scheduling algorithm is
responsible for mapping tasks from future deadlines (i.e., Te4;
with 0 </ < N) to the gaps generated by the first scheduler.

The first online scheduling algorithm dedicated to 7, is a
single priority scheduler. In fact, given the critical path work-
load of the remaining tasks in 7,, we determine the minimum
operating frequency such that the earliest deadline d, is likely

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

to be met. Moreover, and with the support of our DFM output,
our first scheduling algorithm is also responsible for automati-
cally detecting when a system is very congested and selecting
online from 7, the appropriate tasks drop when their deadlines
are expected to be missed. In fact, the proposed scheduling
solution is designed for soft real-time tasks where deadline
misses are tolerable, but degrade the quality of service (QoS).
However, because of the dependencies among tasks, not all
tasks are equally important, so it is possible to improve over-
all performance by selectively dropping unimportant tasks.
The earliest deadline scheduler is illustrated in Fig. 6 by the
modules to the right of the T, task set arrow.

The schedule for tasks in 7, may create several gaps, which
can be filled with ready tasks that have later deadlines, namely,
ready tasks in T,4; with O < [< N. Filling these gaps has
the effect of reducing the workload intensity and relaxing the
dependency constraints for future tasks. However, if a ready
task in 7, takes longer than the gap to finish, then it will delay
the processing of remaining tasks in 7,, possibly leading to
deadline misses. Fig. 5(c) illustrates an example of a scheduler
filling a gap without comparing the workload to the size of
the available gap. The first deadline is then missed. To avoid
this, we propose a second scheduling algorithm to fill the gaps
with tasks from 7,4, for 0 < I < N. As illustrated in Fig. 6
by the modules to the right of the 7T,4; task set arrows, our
Tey1 scheduler provides first a QoS check in order to make
the decisions coherent with the 7, scheduler choices. Fig. 5(d)
illustrates an example of our QoS check module applied on the
schedule of Fig. 5(a). With the new generated schedule there
are no more deadlines misses, however, there is wasted time (or
slack time) between d; and d» that can be used more efficiently.
Thus, the scheduling algorithm for filling these gaps should
not be overly aggressive (i.e., it should not fill the gaps all the
time) because tasks in T,4; will have a dedicated time in the
future to be processed (i.e., when T, becomes empty and tasks
from T,4; migrate to 7T, set), which should be used efficiently.

To avoid this slack time and reduce the energy consumption,
our T,4; scheduler provides also an energy-efficiency check
module, which is applied before filling a gap. This module
takes into account: 1) previous QoS check and 2) the exe-
cution status of each available 7; in the predecoding buffer
provided by the DFM to estimate the maximum allowed fre-
quency for an energy-efficient execution. In fact, tasks in 7,4
will be allocated dedicated time in the future to be processed
(i.e., when T, becomes empty and tasks from 7,,; migrate to
T,), which should be used efficiently. Scheduling a gap with
a task using a higher frequency than it will require if it is
scheduled in its future allocated time could be less energy
efficient. Fig. 5(e) illustrates an example of the energy effi-
ciency check applied on top of the previous QoS check. For
gaps 6-8 and 9-11, we notice that our scheduler switched the
priority for filling these gaps to tasks from 73. Our scheduler
detected that scheduling #17 in its original allocated time (i.e.,
between d; and d») is more energy efficient (i.e., using lower
frequency with a lower voltage) than scheduling it in the gap.
By applying the QoS and energy efficiency checks together,
our approach is then able to remove the deadline miss and to
reduce the energy consumption as well. We apply these checks

KANOUN et al.: ONLINE ENERGY-EFFICIENT TASK-GRAPH SCHEDULING FOR MULTICORE PLATFORMS

Notification of a termination of a task

Earliest Deadline’s Tasks

1199

:-Earliest deadline scheduler 1

h 1 T, tasks set
1
H Phase 1: 1 T .
1
'DAG Flow Manager (DFM) — elz:SdThri‘; E’:gff‘f’efr T,.q tasks set
1 Section I : z Future

T..o tasks set

: platform

- Apply DVFS !

! I Largest Task First Compute 1 : d

| schedule | | Critical Path _ |
Drop the task

' i 000

1 i Deadline’s Tasks :
T

e

Fig. 6. Complete overview of our novel online energy-efficient scheduler.

N1 tasks set

1 \
o
Fill the Gap] ! ID O DI
1 .| Compute QoS & energy- Apply DVFS ! !
I~ | Available Gap efficiency check ! :C] D D:
Active/Sleep
Future deadlines scheduler !

g p——— AU N SN PR P 1

Algorithm 1 Computing the Critical Path Workload

Algorithm 2 Earliest Deadline Scheduler

: for m in cores do
@e,0m < 0

end for

: for I, in T, do

for tasks ¢ in [, ; do
m <— argmingQe k.m
Ve kom <= Pekom + Wj

end for

De,k <— MaAXyy Pe k,m

10: for m in cores do

Pek+1,m <= Pek

12: end for

13: end for

14: return @, ju5

R A A Rl e

each time before a task is scheduled and using updated infor-
mation (generated by our DFM) related to all the tasks in
the buffer creating foresighted decisions from the scheduler.
This guarantees continuous adaptation to each application’s
time-varying workload at run-time.

D. Optimizing the Deadlines

An optimized selection of the DVFS value of each mapped
core requires a balanced workload distribution over time [12].
Therefore, in our approach, we set new virtual deadlines,
respecting the original ones, based on the solution presented
in [12]. In [12], only the earliest deadline is tuned once before
scheduling all its tasks and based on the derived estimated
workload of all pending 7;s in the WS buffer. This approach
is only efficient if the scheduler assigns tasks from earliest
deadline only. However, in our approach, we schedule tasks
from multiple 7; at the same time. Thus, we tune the deadline
value of each of the available T;s in the WS buffer each time
a core becomes available. This will guarantee a continuous
adaption to the execution status of the applications. In fact,
we use the updated information provided by the DFM (see
Section II-C) namely: total workload and executed workload
of each T; in the WS buffer to estimate the remaining work-
load of each T;. We denote the virtual deadline value of T;
with d}. The number of clock cycles allocated to each of the
available T;s in the WS buffer is then (d] — d}_,) * finax-

E. Earliest Deadline Tasks Scheduler

In the algorithm presented in this section, we define @, x
(with k = 8, and e refers to the earliest deadline d,) as the

1: Optimizing the deadline values d, (Similar to [12] but
applied to all the deadlines in the WS buffer)
2: Compute critical path workload ¢, j45; Of remaining tasks
in T, using Algorithm 1
3: 0f @e jasr < d, then
Schedule the task with

fPVES = argmin {fn: L - an} (1)
foel d) — (current time)
5: else if d) < @ jusr < d. then
6: Schedule the task with f.x
7: else if d, < @, 145 then
8: if all dependencies with other 7;s are cleared out then
9: Drop the remaining tasks in 7,
10: Cancel the execution of currently running tasks in 7,
11: else
12: Schedule the task with f,4x
13: end if
14: end if

number of clock cycles after which all the tasks #; in [, x have
finished their execution. We call ¢, ; a global synchronization
point between [, ; and [, x4+ tasks (i.e., it indicates the com-
pletion of [, tasks and the start of /, x4 tasks). We also use
@e.k.m to indicate the number of clock cycles after which the
core m becomes available in depth level [, ; of 7.

By using the Priority Table, the depth level information
le k, and each task’s estimated workload w; (all provided by
our DFM as described in Section II-C), the scheduler simu-
lates a LTF schedule of all the remaining tasks for each of
the I, x, with kK > 0, in order to compute the critical path
workload among all the cores. We describe this procedure
in Algorithm 1. In lines 1-3, we initialize a temporary syn-
chronization point ¢, 0., (cycles) for each core to 0. In lines
5-8, we perform an LTF schedule for each /, k. In lines 9-12,
the algorithm selects the core with the maximum workload
obtained from the simulated schedule of [, ; tasks and uses it
as the new global synchronization starting point for the next
level I, x+1. By repeating these steps to all the remaining /, x
for d; (line 4), the total critical path workload among all the
cores is then obtained. The returned number of cycles ¢, jus
(line 14, “last” representing the last depth level in 7,) is then
the critical path workload among the cores.

We illustrate an example of the execution of the critical
path workload computation algorithm in Fig. 7, where the total

1200

.4
l,_,. + Tasks with same depth level |

Fig. 7. Finding the critical path workload among the cores in the platform.

critical path workload is obtained from both core 1 (I, 0, /2,
le3 lo5) and core 2 (lp.1, Lo 4).

As shown in Algorithm 2 (line 3-14), our scheduler either
schedules the next available task or drops all the remaining
ones in 7, depending on the current execution status of 7.
In fact, if @¢ ju5r < d then the task is scheduled with fDVF §
(line 4), which guarantees the execution of the critical path
workload before the virtual deadline d,. However, If d}’ <
Qe.last < d then the task is scheduled with the maximum
available frequency. Finally, if ¢ . > d. then there is a
high probability that deadline d, will be missed. Therefore,
we check for the dependency status of 7, to decide if we can
safely avoid scheduling the rest of the 7, task set. We use then
the DFM output to check if the dependencies of 7, have been
already cleared out with all Tjs for j # e. If it is the case,
then we avoid scheduling all the remaining tasks of 7, and
we cancel the execution of all currently running tasks in 7.
Otherwise, we schedule the task with the maximum frequency.

Due to all the uncertainties in the workload estimation and
the generated gaps that are used later by the second scheduler,
the fPVFS value is calculated each time a core and a task in
T, are available. Once 7, becomes empty, remaining tasks of
the next earliest deadline set 7,41 will migrate to 7.

FE. Gap Detection

Tasks in T, with deadline d, that are currently running have
the same depth level [, o because there are no dependencies
between tasks at the same depth. Therefore, If a core becomes
available and there are no tasks ready to be scheduled from 7,
a gap is then detected on the available core as all the remaining
tasks of 7, start from [, with kK > 1 and depend on at least
one of the tasks currently running in [, 9. We calculate the
gap’s maximum size, which respects previous DVFS frequency
decision f}" made by core m on tasks with deadline d., as follow:
we compute the first synchronization point ¢, o (cycles) based
on the tasks currently running from /, o with their corresponding
selected frequencies and we initialize then the total gap value
with ¢, o. Then, starting from ¢, o, we simulate an LTF schedule
on the remaining unscheduled tasks of 7, very similar to the one
described in Algorithm 1 but taking into account the previously
computed fPVFS (see Section ITI-E) on the workload of each task
in the simulated schedule in order to respect previous DVFS
frequency decision. To this end, in Algorithm 1 we change
line 7 with @e x.m < Qem + Wj X (fmax/fDVFS). Once the
LTF schedule is simulated we can easily compute the available
gap at each depth level knowing ¢, x and @, i, provided by
algorithm 1. Foreach/, ; we only consider the maximum gap with
8ape.k < MaXy, (e k — Pe.k.m). Note that, the gap occurring in
lo.x 1s a flexible gap that can happen either at the beginning or

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

_____ i i i o i
1

Core 1

_____ S oo . i iy T

iy L, I FANA

e

|D Running taskl D Non-ready taskl @@ Detected Gap

[Total maximum gap

Fig. 8. Computing the maximum gap size among the cores in the platform.

Algorithm 3 QoS and Energy Efficiency Checks Before
Filling the Gaps with Nonearliest Deadline Tasks T,

1: Compute available gap g; (see Section III-F)

2: for each T,; in the WS buffer with [> 0 do

3: Compute the minimum required frequency for the
critical path workload of T,4; to meet do4;

. Pe+1,las
fe+l,cp = argmin fn# <fa (2)
A e+l Yeti-1

4: for each available tasks #; with workload w; and dead-
line d,4; from the priority table (i.e., DFM) do
if g; > w; then
6: Compute the lowest frequency such as w; can be
completed within the gap g;

W

£9°5 = argmin {fk:ﬂ < fi } 3)

fiel g JSmax
7 if /95 > f, 1/ o then
8: Fill the gap with #; at f-Q08
9: return 1
10: end if
11: end if
12: end for
13: end for

14: if g; > w; then
15: Switch the core having the gap to sleep mode
16: end if

at the end of the schedule of /, x. Therefore, we add it to the
gap detected in /[, x—1 in order to give more flexibility to the
T4 task set scheduler proposed in the next section. Therefore,
starting from ¢, o, two consecutive gaps are concatenated until
either the last level /. j4 is reached or if at least one level [,
has a number of tasks more or equal than the number of cores.
For instance, in Fig. 8, the gap occurring in /, » was not taken
into account because /, 1 already has three tasks and the number
of cores is 3. Finally, the last part that we add to the total gap
size is the slack time occurring at the end of the deadline which
can be easily deduced with slack = d — @, 145:. We illustrate an
example of the calculation of the gap’s maximum size in Fig. §,
where the maximum total gap is the sum of the gaps detected
in core 2 for [, o, core 3 for [, 1 and the slack time d) — ¢, 2.

G. Energy-Efficient Tasks Scheduler to Fill the Gaps

We describe this procedure in Algorithm 3. Our algorithm
goes first through each of the available T,4; in the buffer in
ascending order of their deadlines (line 2). Then, as shown

KANOUN et al.: ONLINE ENERGY-EFFICIENT TASK-GRAPH SCHEDULING FOR MULTICORE PLATFORMS

with 2 in Algorithm 3, we compute the critical path frequency
Jea1,cp Which denotes the minimum frequency that meets the
deadline requirement of the critical path workload @4/ a5
(cycles) of T,y during the time d, , —d, , ;. The critical
path workload @4 145 1S computed using Algorithm 1 with
T,y tasks as presented in Section III-E. Once fo1/ p is cal-
culated. We go through each available task #; in T,,; in the
order given by the priority table provided by the DFM mod-
ule (line 4). We compare then the gap size g; and the task
workload w;. If the task workload is greater or equal to the
gap size, then scheduling the current task #; may cause some
of the remaining tasks in 7, (i.e., tasks with earliest deadline)
to miss their deadline. Therefore, in this case, we request the
next available task from the Priority Table until the condition
(gj = wj) is met. If no available task in the buffer satisfies this
QoS condition then the gap is not filled. However, if a task #;,
satisfying the previous condition (i.e., (g; > wj) exists, then we
proceed with the energy efficiency check which allows us to
take a foresighted decision based on future deadlines’ execu-
tion status. To this end, and as shown in 3 of Algorithm 3, we
compute the minimum allowed frequency f>2°% to use in the
gap for the given workload w;. In words, 7905 is the lowest
frequency at which a task of workload size w; can be com-
pleted within a gap of size g;. Finally, by comparing f,1/ ¢, and
f7-9°5 we can determine if scheduling the task in 7,,; in the
available gap at frequency f/-2°5 is energy-efficient or not. If
179%5 > f, 11 ¢p, then it will cost more energy to schedule #; in
the gap at frequency 2% than to schedule it later at its allo-
cated time (i.e., between d, ;| and d,) at frequency fe+/,¢p
(note that in both cases #; will meet its deadline). Therefore, if
the energy efficiency check is met then the gap is filled, other-
wise we move to the next available task in the Priority Table
and we apply the QoS and energy efficiency checks again. If
there is no task that satisfies these two conditions and the gap
meets the minimum duration requirements for a core to be
efficiently switched to sleep mode (i.e., g > Xswircn) then the
core is switched to sleep mode for the duration of the gap in
order to reduce the leakage power (line 14-16).

The gap-filling algorithm is the main module in the sched-
uler responsible for reducing the dynamic power and leakage
power. In fact, filling gaps with future deadlines creates a
more balanced workload distribution among the cores and
makes it easier to meet the deadline constraints with the lowest
possible frequency. However, for processors that have signifi-
cant leakage power, using the lowest processor speed may in
fact increase the overall energy consumption. The proposed
approach can be easily adapted to this situation by specifying
to the algorithm the minimum frequency starting from which
the leakage power of the considered processor is not significant
for the estimated duration of the task.

IV. EXPERIMENTAL RESULTS

We have implemented in C our task-graph scheduling
approach, namely, the DFM, the deadline tuning module, the
T, task set scheduler (including the task dropping feature) and
the T,4; task set scheduler (i.e., the gap-filling algorithm) as
presented in Sections II-C and III. We have also implemented

1201

a module that simulates if a core is active or depending
on the mapped task and its DVFS value (i.e., the execu-
tion status of the application). This last module requires then
accurate measurement of the workload of each task in order
to detect when a core finishes the execution of its mapped
tasks. Therefore, we use accurate statistics generated from
the tested application executed on a sophisticated multipro-
cessor virtual platform simulator. In fact, in this paper, we use
the multiprocessor ARM (MPARM) virtual platform simula-
tor [4], which is a complete SystemC simulation environment
for MPSoC architectural design and exploration. MPARM pro-
vides cycle-accurate and bus signal-accurate simulation for
different processors. In our experiments, we have generated
with MPARM the workloads and the dynamic power con-
sumption statistics of each slice decoding task using ARM9
(90nm technology) power consumption figures with DVES
support (300MHZ at 1.07V, 400MHZ at 1.24V, and 500MHZ
at 1.6V). We use the estimated average dynamic power con-
sumption generated by MPARM per task per voltage as well
as the execution time of each task. Finally our leakage power
model and sleep mode model are based on a case study of an
ARMO946 realized in [26]. Thus, we assume that the leakage
power consumption is 12% of the maximum dynamic power
consumption. The leakage power is cut by 96% when the pro-
cessor is switched to sleep mode and the processor requires a
few hundred clock cycles to wake up.

We demonstrate the advantages of our online energy-
efficient scheduler compared to existing scheduling
approaches [8], [12] in terms of energy-efficiency, deadline
miss rates, overhead and workload prediction error resiliency
on a set of experimental benchmarks.

1) A real multimedia application: H.264 video decoder [1].

2) Multiple different configurations of synthetic DAGs

generated with GGEN tool [6].

A. Comparison with State-of-the-Art Schedulers Using the
H.264 Video Decoder Application

1) Experimental Setup: In this first set of experiments, we
compare our general scheduling solution to a sophisticated
approach [8] specifically designed for the H.264 video decoder
application and based on a Markov decision process (MDP)
formulation. Even though the approach states that it is an
online solution, the online part is only restricted to a look up
table generated at design time for each platform configuration
or new video input. Indeed, the approach proposed in [8] gen-
erates an optimized scheduling policy offline and tuned indi-
vidually to each video input at design time using offline profil-
ing data. The scheduler proposed in [8] is then a semi-online
solution. We only compare to its dynamic energy consumption
as [8] does not take into account leakage energy consumption.

In our benchmark setup, we also consider a second online
scheduler with DPM and DVFS capability namely the MLTF-
DPM approach presented in [12] and which we have already
described in Section III-B. In [12], future tasks’ deadlines and
workloads are taken into account before scheduling 7,. The
MLTF-DPM approach models a multimedia application as a
sequence of jobs that must be executed one after the other.

1202

20%

N
o

Dynamic + Leakage energy
reduction (vs.12)
Dynamic Energy reduction

(vs. [8])

2

Football Coastguard Foreman

(a)

[l MLTFDPM [12]
[mpP [8]
|:| Qur solution

W

Football Coastguard Foreman Silent

(b)

Fig. 9. H.264 decoder benchmarks on four different video stream with WS =
4 and #cores = 4. (a) Energy reduction resulted by our scheduler with respect
to [12] and [8]. (b) Number of missed frames out of 203 decoded frames.

15% | - 1

w
o

10% | - |

5%

=
o

Missed frames (max:203)
N
=}

0%

Silent

Each job J; can be further partitioned into n; sub-jobs run-
ning on several cores in parallel with the same deadline d;. If
we compare the MLTF-DPM application model to our appli-
cation model, each job J; is similar to /; x except that in our
general DAG model /; ; does not have a fixed deadline (in
Section II-C, we defined /; x as the group of tasks #; having
the same depth level §/ = k in T;). To make the MLTF-DPM
scheduler a generic approach, we need then to add a virtual
deadline to each /; ; in the working set buffer. First, we opti-
mize the deadline value of each 7; and compute the minimum
required number of active cores as described in [12]. Then, we
calculate an optimized virtual deadline for each /. x in 7,. To
this end, we compute the maximum allowed deadline for each
Lok to finish its execution before the tuned deadline of 7,. We
apply then an LTF schedule on T, starting from its last depth
level and going back in the time from the tuned deadline of 7,
to set the maximum value of each global synchronization point
@e k- Finally, we apply the technique used in MLTF-DPM on
the previously computed ¢; x to set the final optimized virtual
deadline of each /; ; as described in [12].

For our multimedia benchmark, we use the Joint Model ref-
erence software (JM 17.2) of an H.264 video decoder [1]. The
DAG model that we consider for our benchmark is similar to
the one shown in Figs. 3(a) and 4 with an IBPB GOP struc-
ture. However, we have used eight slices per frame instead of
three slices. We validate our proposed solution on four CIF
resolution video sequences namely: Foreman, Silent, Football,
and Coastguard. These sequences have different motion char-
acteristics, which impact the workload intensity and variation.
We measure the workload and the energy consumption of tasks
using the aforementioned H.264 video decoder that we have
parallelized and executed on MPARM. The workload measure-
ments are used only to detect when a core is active or idle and
they are not used in the decision of our solution.

Finally, in our DFM we have used a workload predictor
based on the Kalman filter [2], [3] to estimate the workload
of each task in the application. Each type of task in the DAG
is handled with its own workload predictor. By using different
estimator accuracies in our experiments in Section IV-C, we
show that our scheduler is resilient to prediction error.

2) Comparison of the Multimedia Benchmarks—Energy
Consumption and Deadline Miss Rates: In Fig. 9, we show
the total energy reduction and the deadline miss rates obtained
by our proposed solution compared to the MDP [8] and the
MLTF-DPM [12] approaches on a four-core platform for the
Foreman, Silent, Football, and Coastguard sequences. For our

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

scheduler, we have processed the H.264 DAGs by a work-
ing set buffer size of four deadlines (i.e., 80 nodes and 136
edges for this example). As shown in Fig. 9, our scheduler out-
performs the sophisticated MDP approach [8] and the online
MLTF-DPM [12] in all tested scenarios. In fact, compared
to [8], our approach has reduced the dynamic energy con-
sumption by up to 15% for the football sequence and we
have even reduced the number of missed frames from 5 to 1.
This is because the MDP approach assumes that the system is
time slotted and that slice-scheduling and DVFES decisions are
determined at the beginning of each time slot. The discrete-
time assumption drives it to underestimate the amount of
slices that can be decoded in each time slot, and therefore
drives it to select higher processor frequencies than necessary,
which leads to suboptimal energy consumption. Moreover,
each frame ignores the fact that other frames might require
system resources (i.e., each frame-level MDP assumes that
all of the cores are available for that frame until it is fin-
ished decoding, which is not true). This assumption drives
the MDP to select lower than optimal processor frequencies.
In contrast, in our new work, we consider an event-driven
system in which scheduling and DVFS decisions are made
every time a processor core becomes available. Moreover, the
task scheduling and DVFS decisions account for the resources
being used by other tasks. This results in reduced unused gaps,
more energy-efficient operation, and less deadline violations.

When comparing to [12], we have also reduced the total
energy consumption by up to 9% for the silent sequence
and reduced the number of missed frames from 37 to 1 in
the Coastguard sequence with 5% of total energy reduction.
Finally, if we consider only Foreman and Silent, where at most
three frames were missed for all schedulers, we observe a
higher energy reduction when compared with MDP, thus the
MLTF-DPM consumes less energy than MDP. This is because,
in the MLTF-DPM approach, the DPM and the deadline tun-
ing optimization module assume a balanced workload which
is the case here as we have four cores and eight slices per
frames that is two slices per core for each frame. However,
and as shown in Fig. 9(b), the MLTF-DPM scheduler fails to
efficiently schedule Football and Coastguard as they have dif-
ferent motion characteristics resulting into different workload
variation topologies. Unlike the solutions proposed in existing
approaches, in our scheduler, we tune all the deadlines avail-
able in the working set at the same time, and we use the gap
efficiently in order to create more balanced workload distri-
bution among the cores and relax future deadline constraints.
Finally we have also shown that our generic online solution
was able to adapt to the workload variation characteristics of
each of the four tested video sequences without the need of
any profiling data.

B. Generalizing the Results with Synthetic DAG Models

1) Experimental Setup: Existing online energy-efficient
schedulers assume either periodic task model or no
dependencies between different T;s tasks (see Sections I
and V). These schedulers are then unable to directly work with
any general DAG that we consider in our application model

KANOUN et al.: ONLINE ENERGY-EFFICIENT TASK-GRAPH SCHEDULING FOR MULTICORE PLATFORMS

80%

Leakage energy
reduction (vs.[12])

[[©500MhZ &5 400MhZ B 300MhZ |

T0%F i mn e e

Dynamic Energy
reduction(vs. [12])

60%

50% | - | .
40% o o oo e o
30% | - : SR
20% | - : g

10% SRR BRI !

(a) ERDOS TGFF LAYER

[12] ours [12] ours [12] ours
ERDOS TGFF LAYER

B deadiine misses | 100%

71%

i
14% 4,

[12] ours
TGFF

0%

[12] ours
(c) ERDOS

[12] ours
LAYER

Fig. 10. Synthetic DAGs with deadlines set 10% less than the critical path
workload (8 = —0.1). Comparison between our solution and an adapted
version of [12]. (a) Leakage and dynamic power consumption reduction.
(b) Frequency usage. (c) Deadline miss rates.

(see Section II-A). Therefore, we compare our results to the
adapted version of MLTF-DPM, as described in Section IV-A.

To generate different synthetic DAG configurations for our
general DAG model benchmark, we use the GGEN [6] tool to
model an application with 100 connected DAGs. We connect
these DAGs by randomly adding m edges in a way that some
tasks in DAG g depend on some other tasks in DAG g — 1. For
the workload, we assume that an application of n tasks has k
types of workloads. We assign then each task #; with a random
type number a; between 1 and &, and we compute the workload
with w; = (1 + a)w(a;) where w(a;) is the minimum workload
value of all the tasks with type a; and « € [0, 0.5]. « represents
the workload variation. Finally, to assign realistic deadline to
each DAG, we compute the critical path workload w{” of each
DAG i by simulating an LTF schedule on a six-core platform
and using Algorithm 1. The final deadlines (in seconds) are
assigned with d; = d;—y +wi” * lrj—ﬁ with B € [—0.25, 0.25].
Negative 8 is used to simulate tight deadlines and positive
is used to simulate relaxed deadlines.

2) Comparison of the Synthetic DAGs Benchmarks: Energy
Consumption and Deadline Miss Rates: In this section, we
first compare our solution to MLTF-DPM [12] presented in
the previous section, for different configurations of synthetic
DAG models. Then, we discuss how our solution scales with
respect to the number of considered deadlines in the buffer and
the number of cores in the platform. Finally, we illustrate the
benefit of avoiding scheduling tasks that are expected to miss
their deadlines and do not have an impact on future deadlines.

In the first set of general DAG experiments, we gener-
ate the synthetics DAGs with Erdos, Task Graphs For Free
(TGFF), and Layers DAG generation methods as presented
in [6]. We set previously described parameters to n = 25,
k=15, B =—0.1 (i.e., deadlines are 10% less than the critical
path workload), « = 0.4 and m € [5, 10]. For TGFF method,
we set the maximum number of ingoing and outgoing edges
per node to 4, for Erdos and Layer we set the probability of an
edge to appear in each DAG to 0.5, and for the Layer method
we set the number of layers to 4. We choose these parameters
in order to simulate a slightly congested system. Fig. 10(a)
shows the dynamic and leakage power reduction compared to

1203

3 3 250
2 - -
E 1400 —=— ws=2 < [EIYVlth pPM I.W|thout DPM]
3 —k— ws=4 | 8590
§ 1200 R I
o o150 M| M| : W -
jo2]
g 1000} =k & » = o5 DNOREe = # & # % 5 2 o 3
5 & 100
2 800 - [12] ours [12] ours [12] ours
4 cores 6 cores 8 cores 4 cores 6 cores 8 cores
(a) (b)
Fig. 11. Synthetic DAGs: comparison of the results generated by our solu-

tion for different buffer sizes and different number of cores in the platform
(with 8 = —0.2). (a) Dynamic energy consumption. (b) Leakage energy
consumption with and without DPM technique.

MLTF-DPM [12]. Our solution has reduced the total energy
consumption by up to 55% for the Erdos DAG model and
51% for the TGFF DAG model. The energy reduction for the
Layer DAG model is less significant than the other two DAG
models with up to 21% of energy reduction. This is is due to
the dependency topology that we have set in our Layer DAG
model. In fact in our Layer DAG generation method, we gen-
erate 25 tasks distributed into four layers, which is around six
tasks per layers. Scheduling this DAG on a six-core platform
provides a better balanced workload distribution among the
cores and generates less gaps than the other models creating
then a more congested application.

To better understand how this significant energy reduc-
tion is obtained for different DAG models, in Fig. 10(b),
we show the distribution of the frequency usage of the total
workload assigned by [12] and our solution. A higher frac-
tion of workload processed at lower frequencies is desirable
because it indicates lower dynamic energy consumption. We
also compare the deadline miss rates in Fig. 10(c). Our solu-
tion significantly reduces the usage of the maximum frequency
by up to 86% and the deadline miss rates by up to 99% (with
0% to 1% miss rates overall). Even though, the deadline miss
rates reduction is less significant for TGFF, we still have a
total energy reduction by up to 51%. The MLTF-DPM solu-
tion fails to schedule these three configurations of synthetic
DAG models for two main reasons. First, it assumes a bal-
anced workload distribution among the cores when selecting
the number of cores to be activated and when tuning the dead-
line values, however, this is not correct in reality because of
the dependencies, which make it difficult to balance the load.
Second, the deadlines of these DAG models were set to be 10%
less than their original deadlines (the original values were set
based on an LTF schedule on a six-core platform and using
Algorithm 1). Thus, when a deadline is missed, it will be diffi-
cult for the MLTF-DPM solution to catch up on the following
deadline because it does not fill the available gaps. Unlike
MLTF-DPM, in our solution we efficiently use the gap-filling
algorithm to relax the workload for future deadlines and to
create a real balanced workload distribution making then the
assumption made when tuning all the deadlines more realistic
and correct. Filling the gaps with tasks with future deadlines
significantly reduces the usage of the maximum frequency
resulting in less energy consumption. Moreover, our solution
implements a finer grained technique to select which cores to
switch to sleep mode based on the current execution status of
each core as described in Section III-G.

1204

2350

100% - 5 2300

: P =

s B om & % (0 = 2250 | - -3k
: 20% - o | EE 2000 - -
1% - =2 4 AR

: . 3% 4% 3% g 2150
1 @) (1) 1 @ 2100
B=—0.25 B=-0.225 p=-0.2 B=—-0.25 p=-0.225 B=-0.2

(2) (b)
Fig. 12. Synthetic DAGs: comparison of the results generated by: 1) our

solution scheduling all the tasks and 2) our solution avoiding scheduling tasks
missing their deadlines for very congested systems with § = —0.2, —0.225,
and —0.25. (a) Deadline miss rates. (b) Energy consumption.

Then, in the second set of synthetic DAGs experiments, we
illustrate how our solution scales with respect to the number of
considered deadlines in the buffer and the number of cores in
the platform. We use the DAG Layer model with 20 tasks per
deadline divided into six layers. We set 8 to 0.2 (i.e., deadlines
are set to 20% less than the critical path workload). We vary
the buffer size (ws = 2 deadlines and ws = 4 deadlines) and
the number of cores. We limit the number of cores to 4, 6, and
8 as the deadlines are originally set based on the critical path
workload among the cores of an LTF schedule simulated on
the generated DAG on a six-core platform (i.e., we generate a
DAG designed to run on a platform with at least six cores and
reduce its tasks’ deadlines by 20% of their original values).
We show then how the scheduler scales when it has two cores
less or more than the minimum required ones. Fig. 11(a) shows
the dynamic energy consumption for each configuration while
Fig. 11(b) shows the leakage energy consumption obtained by
our scheduler with and without DPM. We do not show the
deadline miss rates in the figure, however, they vary between
2% and 4% depending on the configuration. Thus, our sched-
uler was able to efficiently schedule, on a four-core platform,
a DAG that was supposed to run on at least six-core platform
thanks to the management of multiple deadlines at the same
time in the WS buffer. In fact, it was not possible to sched-
ule such a DAG when using a buffer size ws = 1 even on a
six-core platform as shown in the previous set of experiments
with MLTF-DPM scheduler. Thus, considering more than one
deadline in the working set buffer can remove the need of
having more cores. Our solution can be used then in systems
to determine how many cores to use at run-time.

Fig. 11 shows two main results. First, the dynamic energy
consumption decreases with respect to the number of cores.
The energy reduction is less significant from six to eight
cores than from four to six cores, which means that the avail-
able parallelizations in the DAG require no more than six
cores. Thus, more gaps are likely to be unused for six- and
eight-core platforms. Our scheduler is able to detect these
unused gaps and switch their cores to sleep mode. This is
illustrated by the leakage energy consumption of our solu-
tion with DPM in Fig. 11(b) with respect to the number of
cores. In fact, the DPM solution implemented in our sched-
uler efficiently switches the cores to sleep mode and keeps the
same leakage level as with the six cores configuration. Second,
the dynamic energy consumption decreases with respect to
the number of deadlines in the working set buffer, as more
parallelization opportunities can be exploited. This is also

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

60 60
[0 DFM(H.264) : [CIDFM(TGFF) ;

50 ([Scheduler(H.264 4 cores)| = = =~ - - 50 | @ Scheduler(ERDOS)| - - -
2 [Scheduler(H.264 6 cores)] - |2 [Scheduler(TGFF) | -
S 40 G 40
2 M Scheduler(H.264 8 cores) 2 M Scheduler(Layer)
3 30 : 1 %8 -
S
€ 20

107} -

2 4 5 10 20 30 40 50
Number of deadlines in the working set Number of tasks per deadline

(a) (b)

Fig. 13. Average execution time per DFM and scheduler call. (a) Variation
of the number of deadlines per working set and the number of cores (with
20 tasks per deadline and using the H.264 video decoder DAG model).
(b) Variation of the number of tasks per deadline and the dependency topology
(with four deadlines per working set and using six cores).

illustrated in Fig. 11(b). The figure shows that for the case
where the DPM is not used, the leakage energy consump-
tion is significantly reduced between ws = 2 and ws = 4 as
more gaps are then efficiently filled and the leakage power is
then reduced. Our solution efficiently adapts then to different
platform configurations.

Finally, in Fig. 12, we illustrate the benefit of avoiding
scheduling tasks that are expected to miss their deadlines.
We use the Layer DAG generation method to generate DAGs
with parameters similar to the ones generated previously but
using a very congested systems. We set m € [1,5] and 8 =
—0.2, —0.225, and —0.25. Fig. 12(a) shows the deadline miss
rates generated by: 1) our solution scheduling all the available
tasks and 2) our solution using the task dropping feature. We do
not show the results generated by [12] as this solution was notable
to schedule this type of DAG even for § = —0.1 [see Fig. 10(b)].
Our results show that by partially avoiding scheduling some
tasks, the task dropping feature can significantly improve the
deadline miss rates in very congested systems. In fact, for
B = —0.25, by selectively dropping some tasks in six different
deadline task sets, we decreased the miss rates from 99% to
11%. Moreover, for § = —0.225 and —0.2, by selectively
dropping some tasks in two different deadline task sets, we
decreased the miss rates from 22% and 4% to only 3% for
both cases. Additionally, our task dropping feature reduces the
energy consumption by up to 2.8% as shown in Fig. 12(b).

C. Computation Overhead Analysis

To measure the overhead of our proposed solution, we run
the full algorithm on the Apple A6 SoC using the iPhone 5
mobile platform [25] and we measure the average execution
time per DFM call and per scheduler call. Fig. 13 shows the
average time spent by the DFM and the scheduler each time
a task finishes its execution for different DAG and platform
configurations. In Fig. 13(a), the measured average execution
time slightly increases with respect to the number of deadlines
in the working set. In fact, the decomposition technique that
we have applied in our working set buffer allows each T; to
be processed separately. Thus, it made it possible to increase
the number of deadlines in the working set with an accept-
able overhead. For the scheduler, the measured execution time
also slightly fluctuates when we vary the number of cores
because the gap pattern changes, which has an effect on the
number of times the gap filling module is called. During the

KANOUN et al.: ONLINE ENERGY-EFFICIENT TASK-GRAPH SCHEDULING FOR MULTICORE PLATFORMS 1205
s Football 4 Football TABLE I
_ 3Fg?;maan <3 3Fgro;maan AAAAAAAAAAAA ENERGY-EFFICIENT SCHEDULER FEATURES: COMPARISON OF EXISTING
g M0 coast | BBy % (7 Coast APPROACHES TO OUR SOLUTION
105 - s :
] Z 1] cneionon DL PHNE NG energy-efficient profiling data | self-adaptive | tasks dropping
TOORF=F"- « - - - v GE schedulers required feature
0% 20% 40% 60% 80% % 20% 40% 60% 80%
Predictor maximum error rate Predictor maximum error rate 10}, [1]][’5][20]’ (21] zzs][.]0 =) ng
S yes (limitec n
(2) (b) MLTF [12] w0 vox [Tte) 0
MDP [8] yes yes (limited) only H.264
Fig. 14. Evaluation of our algorithm with respect to different workload Our solution no yes yes

estimator error rates. (a) Energy consumption. (b) Deadline miss rates.

full execution of an application, the DFM and scheduler are
called as many times as the number of tasks in the applica-
tion. Therefore, if we consider the example of the H.264 video
application running at 30 frames/s with 10 tasks per frame (ini-
tialization + eight slice decoding + deblocking filter), there are
10 x 30 = 300 tasks to schedule in 1 s. Thus, our module will
be called 300 times in 1 s. As shown in Fig. 13(a), for the
six-core configuration, 32us are needed for the DFM and the
scheduler to be executed once. 9.6ms (32us x 300 tasks) are
then required by the DFM and the scheduler to map the tasks
of 30 frames which is less than 1% of the available 1 s for
decoding 30 frames.

We also illustrate the average execution time of our DFM
and scheduler for each DAG topology (i.e., Erdos, TGFF and
Layer) in Fig. 13(b) with respect to the number of tasks per
deadline and using a six-core configuration. For clarity, in
Fig. 13(b), we show the execution time of the DFM only for
the TGFF case as we measured similar results for other DAG
models. The average execution time of the DFM increases lin-
early with respect to the number of tasks per deadline. For the
scheduler, the average execution time depends on the depen-
dency topology of the DAG. Our scheduler spends more time
with Erdos DAG than other models. In fact, Erdos produces
more gaps than the other considered DAG models, as we found
that the GAP filling method was called up to 2.2 times the
number of times it was called in other DAG models depend-
ing on the number of tasks considered per deadline. Finally,
the execution time measured with the Layer DAG model for
the 20 tasks configuration is very similar to the value mea-
sured for the H.264 video decoder example with six cores and
four deadlines (recall that there are two frames per deadline,
i.e., 20 tasks, in the H.264 case).

D. Prediction Error Resiliency

In this section, we run our algorithm with different work-
load estimator accuracies. We use then a random estimator
that estimates a workload value in [ActualExecutionTime x
(1 — x),ActualExecutionTime x (1 + x)] with x =
{0,0.1,0.2,...,0.9}. Each execution uses a different x. We
do not compare our solution to MLTF-DPM because it cannot
schedule the generated DAGs [as shown in Fig. 10(c)] even
with a good workload estimator.

Fig. 14 shows the energy consumption (compared to the
energy consumed with x = 0) and the deadline miss rates of
each execution with respect to all the x values for the H.264
video benchmark with four cores and four deadlines per work-
ing set. Compared to the energy consumed with x = 0 (i.e.,

known workload values), our scheduler is able to decode the
video sequences with less than 1.5% deadline miss rates and
consuming no more than 6% of energy for x < 0.5. Moreover,
for the Football video sequence, the execution with x = 0.9
consumes less energy than the case with x = 0.2. In fact,
the scheduler decided to drop five frames (out of 203 frames)
due to wrong workload predictions (so there is less scheduled
workload overall). The scheduler is then able to efficiently
adapt to prediction errors.

We have also applied the same experiment to the synthetic
DAG model on a six-core platform. However, due to the lim-
ited space we do not show the results in a figure. We run the
Layer DAG model on a congested system where the deadlines
are set 10% less than their original values. For 0 < x < 0.3
the DAG is scheduled with less than 5% more energy and no
more than 2% deadline miss rates. For 0.3 < x < 0.6 the DAG
is scheduled with less than 11% more energy and no more
than 5% deadline miss rates. Overall, the obtained results for
the Layer model are very similar to the ones obtained for the
Coastguard video sequence in Fig. 14. Finally when applying
the same experiments on Erdos and TGFF DAG models, we
notice that varying x (i.e., the estimator accuracy parameter)
has almost no effect on the scheduler efficiency as these DAGs
were scheduled with less than 3% more energy and no more
than 1% of deadline miss rates. In fact, a lot of relative big
gaps are generated in the schedule of these DAG models, and
by scheduling tasks from future deadlines in advance, our gap-
filling module allows the scheduler to be resilient to prediction
error even for high x values.

The decision of the earliest deadline scheduler uses the crit-
ical path workload. Thus, if in one T7j, half of the tasks are
for instance estimated with an average of 30% more workload
and the other half with an average of 25% less workload. The
prediction error for the scheduler decision will be only around
5%. However, the gap-filling module decision is based on the
size of the gap, the task workload (the one to be scheduled)
and the critical path workload. Therefore, the gap-filling algo-
rithm is less resilient to prediction error. This explains also
why in the Layer DAG model (and also the H.264 decoder
case), where the system is much more congested than other
DAG models, the prediction error on the gap size and the task
workloads had a larger effect on the scheduler efficiency.

V. RELATED WORK

In Table I, we summarize different features considered by
state-of-the-art energy-efficient schedulers and we compare
them to our proposed solution. Moreover, in our previous paper

1206

[21], we discussed in detail the drawbacks and shortcomings
of DAG monitoring solutions and their application models.

In offline solutions, static schedules are generated at design
time and rely on worst-case execution time estimates to com-
pute the DVFS and DPM actions used to scale the voltage
and frequency and to switch on/off cores, respectively [10],
[11], [18], [19]. Synchronous dataflow (SDF) and cyclo-static
dataflow (CSDF) are also known to be powerful modeling
tools for static compile-time scheduling onto single and multi-
core processors [27], [28]. scheduling solutions based on data
flow models are designed for hard real-time tasks. For this
reason, these solutions must guarantee that all tasks can be
completed before their deadlines under their worst-case execu-
tion times. In contrast, the proposed energy-efficient scheduler
is designed for soft real-time tasks, where deadline misses are
tolerable. For the application model that we consider, these
static scheduling approaches are efficient if all the tasks start
and finish as planned (see if the workload and the starting time
of each task is fixed and known). However, they are unsuitable
for multimedia applications with dynamic workload. In fact,
modeling a nondeterministic workload with periodic tasks and
worst-case execution time leads to significant slack time and
inefficient resource utilization.

Semi-online schedulers [5], [8] have also been proposed
where the scheduling policy is computed offline and the
scheduling decision for the core assignment and the DVFS
selection are made online based on the current execution status
and an offline computed policy. In [5] and [8], both algorithms
construct a scheduling table at design time. In [5], in the online
phase, the lookup table provides multiple scheduling options
for each task depending on the execution status, and a dynamic
slack reclamation is performed as well. However, this approach
does not consider the DAG model with dependent deadlines as
shown in the DAG model 4 of Fig. 1 which limits its applica-
bility. Recently, a new scheduling approach [8], that takes into
account the DAG model presented in Fig. 3(a), has been pro-
posed. However, this solution is limited to work only with the
H.264 video decoder application and it is not applicable to the
general DAG model. In [8], a look up table is built at design-
time based on a MDP. The resulting scheduling policy offers
the possibility of dropping appropriate tasks during execution
to achieve lower deadline miss rates. The MDP formulation
was applied for slice-parallel video decoders and solved offline
using a two-level approach to reduce the complexity of the
algorithm. The scheduling policy, computed offline and based
on profiling data for each new video stream, is applicable only
for the H.264 DAG model at the slice level without considering
other type of tasks (i.e., initialization and deblocking filter).
Even though the MDP-based optimization proposed in [§]
showed promising results, it could not be used with arbitrary
DAG dependencies (i.e., other than the H.264 DAG model).

Semi-online solutions [5], [8] are unable to adapt at run-
time to different application dynamics because they require
profiling information prepared at design-time for each targeted
application. To address the limitations of semi-online solu-
tions, an online solution for energy-efficient task scheduling
on multicore platforms [12], that we have already presented in
Section III-B, has been proposed. Even though the proposed

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

scheduler does not require any profiling data, this solution is
restricted to schedule tasks from one deadline at a time limiting
then its ability to adapt to application characteristics. Moreover,
this scheduler is not able to generate a balanced workload
distribution over the cores resulting in several wasted gaps.

VI. CONCLUSION

In this paper, we have proposed a novel energy-efficient
online scheduler for general DAG models for multicore DVFS-
and DPM-enabled platforms. The key contributions of our
approach are as follows.

1) Our solution is a low-complexity online technique that

is fully independent from the considered DAG model.

2) Our scheduler does not impose any restrictions on the
DAG and it covers online all DAG models.

3) Our scheduler is fully self-adaptive to the characteristics
of each application and it does not require any offline
profiling data.

4) Our scheduler is able to efficiently handle execution with
very limited resources by detecting online the appropri-
ate tasks to drop in order to reduce the deadline miss
rates.

5) Our scheduler is resilient to workload prediction error.
Our results for the H.264 video decoder have demon-
strated that our proposed low-complexity solution for the
general DAG model reduces the energy consumption by
up to 15% with a lower deadline miss rates compared
to a sophisticated state-of-the-art scheduler [8] that was
specifically built for H.264 video decoding.

Moreover, our results with different configurations of syn-
thetic DAGs have demonstrated that our proposed solution is
able to reduce the energy reduction by up to 55% and the dead-
line miss rates by up to 99% compared to an existing online
scheduling solution [12]. We have also shown how our solu-
tion efficiently adapts with respect to the DAG type, and scales
well with the number of cores and the number of deadlines
considered in the buffer. The low complexity of our proposed
solution has been validated with a real execution of the full
algorithm on an Apple A6 SoC [25]. Finally, we showed that
our solution is resilient to workload prediction errors.

REFERENCES

[1]1 H.264/14496-10 AVC Reference Software Manual (revised for JM 17.1).

[21 G. Welch et al., “An introduction to the Kalman filter,” in Proc
SIGGRAPH, 2001.

[3] S.-Y. Bang, K. Bang, S. Yoon, and E.-Y. Chung, “Run-time
adaptive workload estimation for dynamic voltage scaling,” [EEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 28, no. 9,
pp- 1334-1347, Sep. 2009.

[4] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
“MPARM: Exploring the multi-processor SoC design space with sys-
temC,” J. VLSI Signal Process. Syst., vol. 41, no. 2, pp. 169-182,
Sep. 2005.

[5] J. Cong and K. Gururaj, “Energy efficient multiprocessor task scheduling
under input-dependent variation,” in Proc. DATE, Nice, France, 2009.

[6] D. Cordeiro et al., “Random graph generation for scheduling simula-
tions,” in Proc. SIMUTools, 2010.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2001.

[8] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. van
der Schaar, “Markov decision process based energy-efficient on-line
scheduling for slice-parallel video decoders on multicore systems,” I[EEE
Trans. Multimedia, vol. 15, no. 2, pp. 268-278, Feb. 2013.

KANOUN et al.: ONLINE ENERGY-EFFICIENT TASK-GRAPH SCHEDULING FOR MULTICORE PLATFORMS

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

O. Sinnen, Task Scheduling for Parallel Systems. Hoboken, NJ, USA:
Wiley, 2007.

Y. Wang et al., “Overhead-aware energy optimization for real-time
streaming applications on multiprocessor system-on-chip,” ACM Trans.
Design Autom. Electron. Syst., vol. 16, no. 2, pp. 14:1-14:32,
Apr. 2011.

Y. Wang, D. Liu, M. Wang, Z. Qin, and Z. Shao, “Optimal task
scheduling by removing inter-core communication overhead for stream-
ing applications on MPSoC,” in Proc. RTAS, Stockholm, Sweden,
2010.

Y.-H. Wei, C.-Y. Yang, T.-W. Kuo, S.-H. Hung, and Y.-H. Chu,
“Energy-efficient real-time scheduling of multimedia tasks on multi-core
processors,” in Proc. ACM SAC, New York, NY, USA, 2010.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560-576, Jul. 2003.

R. Ducasse, D. S. Turaga, and M. van der Schaar, “Adaptive topologic
optimization for large-scale stream mining,” IEEE J. Sel. Topics Signal
Process., vol. 4, no. 3, pp. 620-636, Jun. 2010.

M. Qamhieh, S. Midonnet, and L. George, “A parallelizing algorithm
for real-time tasks of directed acyclic graphs model,” in Proc. RTAS,
Apr. 2012.

OpenMP [Online]. Available: http://openmp.org

G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

M. Ruggiero, D. Bertozzi, L. Benini, M. Milano, and A. Andrei,
“Reducing the abstraction and optimality gaps in the allocation and
scheduling for variable voltage/frequency MPSoC platforms,” [EEE
Trans. Computer-Aided Design Integr. Circuits Syst., vol. 28, no. 3,
pp. 378-391, Mar. 2009.

J. Luo and N. K. Jha, “Power-efficient scheduling for heteroge-
neous distributed real-time embedded systems,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 26, no. 6, pp. 1161-1170,
Jun. 2007.

Y. Andreopoulos and M. van der Schaar, “Adaptive linear prediction
for resource estimation of video decoding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 6, pp. 751-764, Jun. 2007.

K. Kanoun, D. Atienza, N. Mastronarde, and M. van der Schaar,
“A unified online directed acyclic graph flow manager for multicore
schedulers,” in Proc. ASP-DAC, Singapore, 2014.

Samsung Exynos 5 Octa [Online]. Available: http://www.samsung.com/
exynos/

Nvidia Tegra 4 [Online]. Available: http://www.nvidia.com/object/
tegra-4-processor.html
Snapdragon 800 [Online].
snapdragon/processors
Apple A6 [Online]. Available: http://www.apple.com

S. Idgunji, “Case study of a low power MTCMOS based ARM926 SoC:
Design, analysis and test challenges,” in Proc. ITC, Santa Clara, CA,
USA, 2007.

A. K. Singh, A. Das, and A. Kumar, “Energy optimization by exploiting
execution slacks in streaming applications on multiprocessor systems,”
in Proc. DAC, Austin, TX, USA, 2013.

J. Zhu, 1. Sander, and A. Jantsch, “Energy efficient streaming appli-
cations with guaranteed throughput on MPSoCs,” in Proc. EMSOFT,
Atlanta, GA, USA, 2008.

F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-time
tasks on cluster-based multicores,” in Proc. DATE, Grenoble, France,
2011.

Available: http://www.qualcomm.com/

Karim Kanoun received the M.Sc. degree in com-
puter science from the Ecole Nationale Supérieure
d’Informatique et de Mathématiques Appliquées
de Grenoble School of Engineering in Informatics
and Applied Mathematics, Grenoble, France. He
is currently pursuing the Ph.D. degree in embed-
ded systems with Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland.

His current research interests include machine
learning and energy efficient schedulers for stream-
ing multimedia applications on mobile multicore
platforms and large-scale systems.

1207

Nicholas Mastronarde (S’07-M’11) received the
B.S. and M.S. (Highest Hons., Department Citation)
degrees in electrical engineering from the University
of California, Davis, Davis, CA, USA, in 2005 and
2006, respectively, and the Ph.D. degree in electri-
cal engineering at the University of California, Los
Angeles, Los Angeles, CA, USA, in 2011.

He is an Assistant Professor with the Department
of Electrical Engineering at the State University of
New York at Buffalo, Buffalo, NY, USA. For more
information, please visit his Research Laboratory’s
website: http://www.eng.buffalo.edu/~nmastron/.

David Atienza (M’05-SM’13) received the M.Sc.
and Ph.D. degrees in computer science and engineer-
ing from UCM, Madrid, Spain, and IMEC, Leuven,
Belgium, in 2001 and 2005, respectively.

He is an Associate Professor of Electrical
Engineering and Director of the Embedded Systems
Laboratory at Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland. His current
research interests include system-level design
methodologies for high-performance multi-processor
system-on-chip (MPSoC) and low-power embedded
systems, including new 2-D/3-D thermal-aware design for MPSoCs, ultra-low
power system architectures for wireless body sensor nodes, HW/SW reconfig-
urable systems, dynamic memory optimizations, and network-on-chip design.
He has co-authored over 200 publications in peer-reviewed international jour-
nals and conferences, several book chapters, and eight U.S. patents in these
fields.

Dr. Atienza has earned several best paper awards and he is an Associate
Editor of IEEE TRANSACTIONS ON COMPUTERS, IEEE DESIGN AND TEST,
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS, and Integration Elsevier. He received the IEEE
CEDA Early Career Award in 2013, the ACM SIGDA Outstanding New
Faculty Award in 2012 and a Faculty Award from Sun Labs at Oracle in
2011. He is a Distinguished Lecturer of the IEEE CASS during 2014-2015,
and a Senior Member of ACM.

Mihaela van der Schaar (F’10) received the Ph.D.
degree from Eindhoven University of Technology,
Eindhoven, The Netherlands, in 2001.

She is a Chancellor’s Professor of Electrical
Engineering at the University of California, Los
Angeles (UCLA), Los Angeles, CA, USA. Her
current research interests include engineering eco-
nomics and game theory, multiagent learning, online
learning, decision theory, network science, multiuser
networking, big data and real-time stream mining,
and multimedia. She was a Distinguished Lecturer
of the Communications Society during 2011-2012, the Editor-in-Chief of
IEEE TRANSACTIONS ON MULTIMEDIA from 2011 to 2013. She holds 33
granted U.S. patents. She is also the Founding and Leading director of the
UCLA Center for Engineering Economics, Learning, and Networks (see nete-
con.ee.ucla.edu).

Prof. van der Schaar was an Editorial Board Member of the IEEE
JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING in 2011. She
received an NSF CAREER Award in 2004, the Best Paper Award from IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
in 2005, the Okawa Foundation Award in 2006, the IBM Faculty Award
in 2005, 2007, 2008, the Most Cited Paper Award from EURASIP: Image
Communications Journal in 2006, the Gamenets Conference Best Paper
Award in 2011 and the 2011 IEEE Circuits and Systems Society Darlington
Best Paper Award. She received three ISO Awards for her contributions to
the MPEG video compression and streaming international standardization
activities.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

